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Supplementary material

A Gaussian scale mixture model

For completeness, we restate the main equation of the Gaussian scale mixture model (GSM) here.
The GSM [1, 2] is a generative model of images x described by

x = zAy + ηx (1)

for projective fields A (with parameters θA), latent activations y (with prior covariance C), contrast
level z (with gamma prior parameters α and β) and pixel noise ηx (with variance σx). We first aim to
tune the projective fields so that they are able to maximally account for the pixel strength variability
of CIFAR-10 images. For some image xi, the least-squares reconstruction of the image x̃i using only
projective fields A is

x̃i = A (AT A)−1 AT xi (2)

Let images be indexed by i and the pixel within each image be indexed by j. We seek to reduce the
fraction of variance (across pixels) unexplained averaged across all images:

θ̂A = argmin
θA

Ei

[
Vj [xj − x̃j ]

Vj [xj ]

]
(3)

The optimized set of filters depict a diverse range of orientations, positions and scales (Fig S1A).
With the projective fields optimized and now fixed, we optimize the rest of the parameters θGSM by
maximizing the likelihood of observing these training images under the generative model. The joint
probability of observing image xi at contrast level z is given by

p(xi, z) ∝ N (xi; 0, z
2ACAT + σ2

x I)Gamma(z;α, β) (4)

We therefore minimize the negative log-likelihood summed across all images:

θ̂GSM = argmin
θGSM

(
−

Ni∑
i=1

log

∫
p(xi, z) dz

)
(5)

for total number of images Ni. On average, across all training images in CIFAR-10 [3], the optimized
GSM is able to achieve 21.83% variance unexplained (Fig S1C).

B Past and present training approaches of GSM-SSN

B.1 Gaussian scale mixture model

We first review the differences in the GSM used in Ref. 4 and the GSM that we constructed. The
projective fields of our GSM is obtained by optimizing for the fraction of variance explained on
CIFAR-10 images (Fig S1A). The rest of the parameters are optimized by maximum likelihood, and
the result is a realistic generative model of natural images. In the GSM of Ref. 4, Gabor filters were
artificially constructed (Fig S1B) and are unable to fully capture any statistics of natural images.
Furthermore, all other parameters were chosen by hand.

B.2 Training images

Since our GSM is optimized for CIFAR-10, we simply partition the dataset for training and testing.
In Ref. 4, 5 images were constructed using the basis functions from its own GSM. These same 5
images were used in both testing and training.
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Figure S1: Comparison of GSMs. A. Projective fields of the GSM after optimizing for fraction of
variance unexplained (FVU) on CIFAR-10 images. The filters span a diverse range of orientations,
positions and scales in order to capture the statistics of natural images. B. GSM projective fields
in a previous approach. The projective fields are generated by Gabor filters of the same frequency
and position, differing only in their orientations [4]. These filters are also the receptive fields of
SSNs trained in past approaches. The rotational symmetry of the filters allow for low-dimensional
parameterizations of the corresponding SSN, such as rotationally-symmetric weight and noise
matrices. C. Histogram of computed FVUs of all 50000 images in the test set. D. Examples of
least-squares reconstructed images in different percentiles of FVUs using filters from (A) in the
middle columns and (B) in the right columns. Original images are in the left columns.

B.3 SSN parameterizations

As mentioned in the main text, we trained two networks, one on the GSM of Ref. 4 (“ring SSN”) and
another on our own GSM (“general SSN”).

Input function. For both of our networks and in Ref. 4, the input function is parameterized by 3
parameters, as stated in the main text, which we will repeat here:

fi(hi) = θ1 (hi + θ2)
θ3 (6)

for parameters θh = {θ1, θ2, θ3}.

Weight matrix. In all networks, there are 50 excitatory and 50 inhibitory neurons, resulting in a
weight matrix of size 100×100. This corresponds to 10000 free parameters in the general SSN. For
Ref. 4 and the ring SSN, we partition the weight matrix into four 50× 50 blocks, corresponding to
all E-E, E-I, I-E and I-I connections respectively. Due to the rotational symmetry of the projective
fields in these two networks, we may constrain each block to be symmetric circulant, and therefore
each block is fully determined by the first half-row of the block. This corresponds to 26 parameters
per block (104 in total) for the ring SSN. For Ref. 4, each block is only parameterized by two terms,
corresponding to the height and width of a circular Gaussian curve (8 parameters in total).

Noise matrix. The noise matrix determines the covariance structure of the noise, and is therefore
also a 100 × 100 matrix. The parameterizations are exactly the same as the weight matrix for the
ring SSN (104 parameters) and the general SSN (10000 parameters). In Ref. 4, only 4 parameters are
used.

Summary. For Ref. 4, there are a total of

3 (input) + 8 (weights) + 4 (noise) = 15 parameters

For the ring SSN, there are
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3 (input) + 104 (weights) + 104 (noise) = 211 parameters

and for the general SSN:

3 (input) + 10000 (weights) + 10000 (noise) = 20003 parameters

B.4 Training algorithm

For the ring and general SSNs, we initialize membrane potentials at resting value (defined to be
0mV), and then add a constant external stimulus dependent input. We allow the network to evolve
over 500ms in 100 parallel trials, after which we compute the membrane potential mean ESSN[u]
and covariance CSSN[u] across all trials and average them over an additional 100ms. These are the
network moments to be compared with target moments in the cost function, which we also restate
here:

L = λµ ∥ESSN[u]− µGSM∥22 + λσ2

∥∥VSSN[u]− σ2
GSM

∥∥2
2
+ λΣ ∥CSSN[u]−ΣGSM∥2F (7)

after which we minimize this cost function by backpropagation through time using Adam.

B.5 Semi-analytical approach

The SSN in Ref. 4 was mainly trained using a semi-analytical method. By assuming that the
membrane potentials are characterized by a Gaussian process, it is possible to compute the time
evolution of membrane potential means and covariances over time, as described in equations (33)-(37)
of Ref. 5. This means that networks were not actually simulated. This semi-analytical result was then
compared against the target moments, and the parameters of the network were optimized using the
L-BFGS algorithm.

C Additional training details

The code to all our models can be found at

https://github.com/wmws2/stableSSN

All experiments were run on our high-performance computing cluster consisting of 4 A100 (80GB)
GPUs. We have used CIFAR-10 [3] and MNIST [6] for training and testing our models. To the
best of our knowledge, we have not encountered any personally identifiable information or offensive
content within the datasets. The exact initialization of every parameter can be found in Table S1.
Every optimization is performed using Adam [7] with default parameters.
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Table S1: Summary of model parameters.

MLP (MNIST)

description size type

weights (input → layer 1) Nexc×360 ReLU
weights (layer 1 → 2) 360×120 ReLU
weights (layer 2 → prediction) 120×10 softmax

Autoencoder

description size type

encoding weights (input → layer 1) Nexc×360 ReLU
encoding weights (layer 1 → 2) 360×120 ReLU
encoding weights (layer 2 → code) 120×40 sigmoid
decoding weights (code → 1) 40×120 ReLU
decoding weights (layer 1 → 2) 120×360 ReLU
decoding weights (layer 2 → output) 360×Nexc sigmoid

GSM

parameter description initialization optimized

ϕ orientation of a Gabor filter U(ϕ;−π, π) yes
x0, y0 pixel coordinates of a Gabor filter U(x0;−16, 16) yes
σ scale parameter of a Gabor filter U(σ; 0.2, 1.0) yes
σ2
x pixel noise variance 1.0 yes
C prior latent covariance least-squares fit yes
α shape parameter of contrast prior 2.0 yes
β rate parameter of contrast prior 0.5 yes

SSN

parameter description initialization optimized

θ1 constant in input function N (θ1; 0, 1) yes
θ2 baseline in input function N (θ2; 0, 1) yes
θ3 exponent in input function N (θ3; 0, 1) yes
W weight matrix N (wij ; 0, N

−1) yes

N noise matrix
(

1 0.1
0.1 1

)
yes

A neuron receptive fields GSM projective fields no
k constant in firing-rate non-linearity 0.3 no
γ exponent in firing-rate non-linearity 2.0 no
τe time constant of excitatory neurons 20ms no
τi time constant of inhibitory neurons 10ms no
τη time constant of noise 20ms no
T total simulation time 500ms no
λµ coefficient of mean term in cost 0.01 N−1 no
λσ2 coefficient of variance term in cost 0.02 N−1 no
λΣ coefficient of covariance term in cost 0.01 N−2 no

Adam

parameter description initialization optimized

beta_1 first moment exponential decay rate 0.9 no
beta_2 second moment exponential decay rate 0.999 no
epsilon second moment exponential decay rate 10−7 no
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