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Abstract

In stereo vision, self-similar or bland regions can make it difficult to match patches
between two images. Active stereo-based methods mitigate this problem by pro-
jecting a pseudo-random pattern on the scene so that each patch of an image pair
can be identified without ambiguity. However, the projected pattern significantly
alters the appearance of the image. If this pattern acts as a form of adversarial
noise, it could negatively impact the performance of deep learning-based meth-
ods, which are now the de-facto standard for dense stereo vision. In this paper, we
propose the Active-Passive SimStereo dataset and a corresponding benchmark to
evaluate the performance gap between passive and active stereo images for stereo
matching algorithms. Using the proposed benchmark and an additional ablation
study, we show that the feature extraction and matching modules of a selection of
twenty selected deep learning-based stereo matching methods generalize to active
stereo without a problem. However, the disparity refinement modules of three of
the twenty architectures (ACVNet, CascadeStereo, and StereoNet) are negatively
affected by the active stereo patterns due to their reliance on the appearance of the
input images.

1 Introduction

Stereo vision is used by many artificial or natural vision systems to acquire depth information from
a pair of 2D projective views of the 3D world. In the context of computer vision, stereo matching
operates in a multi-step pipeline (Fig. 2) composed of: (i) a feature volume construction from the left
and right views, (ii) a cost volume computation, which may be coupled with a regularization module,
(iii) a disparity extraction from the cost volume, which is done using the argmin function, and (iv)
a disparity refinement module, which may also use the cost volume and/or the image features as
additional cues. The central step in this pipeline is the construction of the cost volume, which is a
function C(x, y, d) that measures how unlikely a pixel of spatial coordinates (x, y) is to be assigned
a disparity value d. Textureless and repetitive patterns in images can produce flat or periodic cost
curves in the cost volume, leading to erroneous disparity maps in passive stereo systems, where only
a pair of cameras is used. To address this issue, active stereo-based methods [13] project a pseudo-
random light pattern on the scene to remove the textureless or self-similar areas in the stereo images
(Fig. 1). Active stereo is now a critical component in many applications such as augmented reality
[22] and robotics [3]. They are also part of consumer electronics devices such as smartphones [26].

Traditional stereo matching pipelines rely solely on closed-form formulations [29]. However, in re-
cent years, learning-based methods have led to a series of breakthroughs in the field. Early learning-
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(a) (b) (c)

Figure 1: A sample from our dataset, with realistic (a) passive and (b) active stereo images along with
(c) their corresponding perfect ground truth disparities. The proposed dataset allows the comparison
of the relative performance of stereo vision methods when used for passive or active stereo matching.
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Figure 2: The typical stereo matching pipeline.

based methods focused on replacing one or more blocks in the traditional pipeline with a deep neural
network. The latest methods, however, address the problem in an end-to-end fashion; see [15] for
a detailed survey. Due to the lack of public active stereo datasets and the fact that passive stereo
was perceived as more challenging, most of these models have been trained for the passive stereo
problem. An important property of the closed-form formulae used in traditional stereo matching
methods is that when non-self similar texture is added to the scene, their performance monotoni-
cally increases. This key feature is at the core of active stereo systems [21]. If one can determine
that the latest deep learning methods can also leverage active pseudo random noise to improve their
prediction, this would show that these methods are indeed learning to match similar regions of the
images rather than fitting some bias into the data. Additionally, it provides some insight into the
models’ generalization ability, which is important for their safe deployment in their intended appli-
cation (e.g., autonomous driving).

Under ideal conditions, deep learning-based methods are expected to behave in a similar fashion to
their non learning counterpart and exhibit improved performance when additional pseudo-random
texture is added to the scene. Yet, many large-scale deep learning models see a degradation of
their performances when used on datasets that are only slightly different from their original train-
ing datasets [43]. They often require an adaptation procedure to generalize to new unseen domains
[33]. Furthermore, they can be severely affected by even little adversarial noise under certain cir-
cumstances [32], as they are prone to overfitting on small biases present in their training data [23].
However, these flaws are not everywhere. For example, it has already been shown that once simu-
lated images are close enough to real images, deep learning stereo systems generalize without issues
[34]. Also, unlike adversarial noise, the pseudo random patterns used in active stereo have not been
learned specifically to cause failure for deep learning models. This means that existing deep learning
methods might generalize to the active stereo domain without any form of fine-tuning.

In this work, we investigate how different state-of-the-art deep learning-based stereo matching ar-
chitectures are impacted when presented with active, instead of passive, stereo images. To make the
evaluation of the generalization ability of stereo vision models easier, we propose Active-Passive
SimStereo, a novel dedicated dataset composed of computer-generated images rendered using a
physically-based rendering engine. The proposed dataset provides both active and passive frames
for each given scene. This allows to evaluate and compare the performance of each algorithm
on active and passive stereo using exactly the same scenes. The data set is publicly available at
https://dx.doi.org/10.21227/gf1e-t452.

The remaining parts of the paper are organized as follows. Section 2 reviews the related work.
Section 3 describes the proposed dataset. Section 4 presents the proposed benchmark used for
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evaluation. Section 5 presents and discusses the results of existing methods. Finally, Section 8
concludes the paper.

2 Related Work

Many datasets and benchmarks have been proposed for passive stereo vision including the popu-
lar Middleburry dataset [29, 11], whose latest version uses a precise but expensive reconstruction
pipeline to acquire the ground truth [30]. The corresponding Middleburry Stereo Evaluation bench-
mark is widely used to evaluate stereo vision algorithms. Due to the challenges associated with
the 3D ground-truth acquisition, the aforementioned dataset only contains a small amount of la-
belled data, which is not sufficient to train large-scale deep architectures. Subsequently, the Scene
Flow datasets have been proposed [19]. They contain a large number of simulated image pairs with
ground-truth optical flows and disparities generated from open source motion graphics short movies
or randomized virtual 3D objects. However, the appearance of these simulated scenes is not realistic.
Thus, most deep learning-based models for stereo vision need to be fine-tuned after being trained on
the Scene Flow datasets. The UnrealStereo4K simulated dataset [34] was later proposed to provide
higher resolution and more realistic images, taken from video games scenes.

One of the most popular applications of stereo vision is autonomous driving, since vision based
systems offer a cost-effective alternative or complement to LIDAR-based systems for depth mea-
surement. Thus, many datasets and benchmarks have been specifically developed for this applica-
tion. Examples include the KITTI Vision suite [20, 7], which is currently the most popular stereo
vision benchmark for autonomous driving, DrivingStereo [40], which is a large dataset commonly
used for training rather than evaluation, and ApolloScape [12], which provides a benchmark suite
for different challenges related to autonomous driving, including stereo vision. The ground truth of
these datasets was obtained using a LIDAR-based system. Occasionally, a recognition system was
also used to detect and categorize cars in images before aligning a CAD model onto the LIDAR
depth map [20, 12]. The inherent noise associated with these various processing steps implies that
the ground truth cannot be trusted for very precise reconstructions. However, given that autonomous
driving scenarios do accommodate a disparity error of one or two pixels, this is not a problem for
the intended use of those datasets.

For active stereo vision, there are far fewer public datasets, none of which has become popular for
training or evaluating deep learning-based stereo matching methods. The few end-to-end methods
trained for active stereo use soft labels, i.e., labels with associated uncertainty, such as the depth
generated by stereo cameras [44, 41]. Other methods did also use self-supervision, e.g., by using
the information conserved when compressing a given image patch as supervisory signal [28]. Simu-
lation techniques have also been proposed to generate semi-realistic images from CAD models [25]
based on screen space projection of texture. This approach has been used on multiple occasions
[28, 44], but none of the produced datasets has been made public. In this work, We use a similar ap-
proach but with a physically-based rendering pipeline to improve the realism of the scenes, making
our dataset more suitable for evaluation.

Datasets providing images for both active and passive stereo matching are even more scarce. To the
best of our knowledge, only UnrealStereo4K [34] has monocular active frames for a subset of the
images, but this part of the dataset has not been made publicly available. Furthermore, monocular
active depth estimation is a slightly different problem from active stereo vision [27], as the matching
is performed between a pattern and an image, rather than between two images with a projected
pattern. Thus, there exists no public dataset available for evaluating stereo models on active stereo
images or evaluating the generalization capabilities of these models.

3 The ACTIVE-PASSIVE SIMSTEREO Dataset

Simulation offers both benefits and challenges for dataset creation. The size of real stereo datasets
with high quality ground truth like Middlebury 2014 is limited because of the complex setups and
amount of work needed [30]. On the other hand, automated pipelines like the ones used for Kitti
[20] are noisy. The Kitti benchmark is, therefore, limited to BADN metrics (see Section 4) with
large N and is not suitable for subpixel accuracy comparisons. Simulation on the other hand makes
labelling cheaper and noiseless. It also allows to generate the exact same image twice, once for
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