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Abstract

While existing automatic differentiation (AD) frameworks allow flexibly com-
posing model architectures, they do not provide the same flexibility for compos-
ing learning algorithms—everything has to be implemented in terms of back-
propagation. To address this gap, we invent Automatic Propagation (AP) software,
which generalizes AD, and allows custom and composable construction of complex
learning algorithms. The framework allows packaging custom learning algorithms
into propagators that automatically implement the necessary computations, and can
be reused across different computation graphs. We implement Proppo, a prototype
AP software package built on top of the Pytorch AD framework. To demonstrate
the utility of Proppo, we use it to implement Monte Carlo gradient estimation
techniques, such as reparameterization and likelihood ratio gradients, as well as
the total propagation algorithm and Gaussian shaping gradients, which were previ-
ously used in model-based reinforcement learning, but do not have any publicly
available implementation. Finally, in minimalistic experiments, we show that these
methods allow increasing the gradient estimation accuracy by orders of magnitude,
particularly when the machine learning system is at the edge of chaos.3

1 Introduction
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Figure 1: A simplified taxonomy of machine learning (ML) software development methodologies.
The computation software refers to existing ML tools such as PyTorch (Paszke et al., 2019) or NumPy
(Harris et al., 2020); the software library is reusable code for a new ML method.

When a machine learning (ML) researcher comes up with a new algorithm, they are faced with
a dilemma: do they directly implement an application of their algorithm using existing ML tools
(Fig. 1a); or do they implement a library for their algorithm, then use the library to implement the
desired application (Fig. 1b). The first approach is faster, because the researcher only has to worry
about the details of the specific application; the second approach may take longer to implement, but
will enable reuse of the code and speed up implementing future applications. Clearly, the second
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approach is preferable in the long-term. Our work aims to overcome this dilemma by simplifying
the intermediate stage of implementing reusable code for the algorithm. The approach is illustrated
in Fig. 1c, where, our invention, automatic propagation software, ameliorates the shortcomings of
existing tools that we utilize concurrently to implement reusable code for a new algorithm. This
interusability was a key design choice, as it allows benefitting from the rich ML software ecosystem.

In ML a vast amount of effort has already been placed in developing computational software related
to back propagation, ranging from established automatic differentiation (AD) libraries (Paszke et al.,
2019; Tokui et al., 2015; Abadi et al., 2016; Bradbury et al., 2018); newer AD libraries(Oktay et al.,
2020; Paszke et al., 2021); deep learning libraries (Chollet et al., 2015); extensions to AD libraries
(Dangel et al., 2020; Rogozhnikov, 2021) to frameworks that use these AD libraries as tools to
implement algorithms (Krieken et al., 2021; Tran et al., 2016; Gardner et al., 2018). Moreover, some
libraries do not directly build on these frameworks, but can be combined together, e.g., Ray (Moritz
et al., 2018) for distributed computing. Creating each one of these libraries takes significant effort,
and it makes sense to build on the work of others to simplify implementing new algorithms. Due to
this, new implementations tend to follow the old design paradigms of existing software.

Barham and Isard (2019) described this situation with the sentence “Machine learning systems are
stuck in a rut”. They argued that current ML systems are optimized for computations encountered
by popular algorithms, yet, other calculations may be slow, despite in principle requiring a similar
amount of operations. Such an imbalance would discourage researchers from trying new ideas that
require novel forms of computation. Our own observation is that existing AD frameworks encourage
implementing algorithms by designing a differentiable “surrogate loss” (Schulman et al., 2015;
Foerster et al., 2018) often employed for implementations of Monte Carlo (MC) gradient estimators
(Krieken et al., 2021). However, this may not be the most natural way to express the algorithms,
or indeed, it may not even be possible. Minka (2019) argued that a general-purpose ML language
should “simplify implementation of all ML algorithms”, and promoted a message passing approach.

Message passing (MP) is a promising candidate for a general ML framework because of the many
already existing efficient algorithms that are based on it. Some of the prominent MP algorithms are
belief propagation (Pearl, 1982) and expectation propagation (Minka, 2001) in probabilistic modeling,
and turbo codes in information theory (McEliece et al., 1998). In modern deep learning, MP is used
in graph neural networks (Wu et al., 2020). Also, back propagation can be seen as an MP algorithm
that passes the gradient messages backwards. A closely related framework to MP is the Actor Model
of computation (Hewitt et al., 1973), where programs operate by actors passing messages between
each other. The Actor Model has been suggested as a promising framework for parallel AI systems
(Hewitt and Lieberman, 1983) and has been noted to enable modularity (Agha, 1986). We aim to
incorporate these strengths into a practical general-purpose message passing framework that enables
conveniently implementing a variety of MP algorithms, and propose automatic propagation (AP).

We list our desiderata for a general-purpose framework, and the approach we take to meet these
desired properties in Proppo, our prototype AP software package.

Ease of use. Proppo is implemented entirely in Python, a language favored by ML researchers.

Flexibility. Proppo allows implementing arbitrary message passing algorithms.

Computational speed. Proppo interfaces with existing computational frameworks such as PyTorch
to achieve efficient computation. Proppo adds functionality to such frameworks; the computational
speed will depend on how the user implements their algorithm.

Reusability of code. Proppo allows packaging algorithms into propagators—the key building blocks
of AP software—that encapsulate an algorithm and can be reused across different computation graphs.

Composability. Proppo includes special sequence propagators (Sec. 3.3) that allow combining
multiple propagators together to form new propagators. These new propagators may then be further
composed, allowing to deal with arbitrary complexity.

The main functionality of Proppo is to provide base classes for the propagators, and to implement
automatic message passing. When a user wants to implement a new algorithm, they need to create the
propagators to represent their algorithm as a message passing program. When a user wants to use an
existing algorithm, they can simply download the existing propagators, and apply them in their code.
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To demonstrate the utility of Proppo, we use it to implement the total propagation (TP) and Gaussian
shaping (GS) gradient algorithms (Parmas et al., 2018; Parmas, 2018). Both of these are techniques
for MC gradient estimation without previously existing publicly available implementations, and they
were one of our key motivations for this research. In particular, the probabilistic computation graph
framework (Parmas, 2018, 2020) influenced our thinking on MC gradient estimation, as it makes clear
that MC gradient estimators can be implemented as MP programs passing information backwards.
Our experimental results in Sec. 4.2 and App. C.3 demonstrate orders of magnitude improvement in
gradient accuracy for these methods. The improvement was particularly large when the system was
at the edge of chaos. This implies that AP software can achieve fundamentally better computational
results compared to the current AD software paradigm. To demonstrate the scalability and practicality
of Proppo, in our concurrent work (Anonymous, 2023) we use Proppo to replicate the model-based
RL results of (Parmas et al., 2018) and we apply TP to the high dimensional visual MBRL algorithm
Dreamer (Hafner et al., 2020). All our results imply that Proppo is scalable, leads to more modular
code, simplifies implementation of some algorithms and can lead to greatly improved performance.

2 Preliminaries

2.1 Automatic differentiation software

A recent review of AD in ML was written by Baydin et al. (2018). To explain the functionality of AD
software, suppose that a user has written a program to compute the output of a function y = f(x)
given the input x. In such a situation, AD software can automatically obtain the gradient ∇xf(x).
Such functionality is achieved by differentiating each intermediate computation and applying the
chain rule. A series of computations can be represented as a directed acyclic graph with nodes and
their associated variables xi, and with an edge from node i to j when the variable xj is computed
with a function fk(xi, . . .) taking the variable at node i as an input. In this case, the total derivative
from x to y can be obtained by summing the product of derivatives across all paths between the two
nodes (Bauer, 1974),

∇xf(x) =
∑

Path∈Paths[x→y]

∏
Edge[l→k]∈Path

∂xk
∂xl

. (1)

A naïve way to implement AD would be to compute the intermediate Jacobians ∂xk

∂xl
by differentiating

the operations fk(xl, . . .). However, note that this will require storing full Jacobian matrices having
size K × L, where K and L are the respective dimensionalities of the variables. Moreover, if the
gradient were computed by multiplying the Jacobians in the forward direction from x to y, this would
require matrix-matrix multiplications at each step, and may incur a large computational cost. Reverse
mode automatic differentiation (also known as back propagation), overcomes this issue by performing
the computations backwards from the y node. As y is just a 1 dimensional scalar, its local Jacobian
is a vector. Therefore the computation at the last step is a vector-matrix product, yielding another
vector. This vector is propagated backwards, yielding a vector at each backward step. This allows
computing the total gradient using only vector-matrix products, leading to a large computational
saving compared to computing the gradients in the forward direction using matrix-matrix products.

Another subtle point is that it is not necessary to compute the intermediate Jacobians ∂xk

∂xl
, one

merely needs a means to compute vT ∂xk

∂xl
, where v is the back propagated gradient vector. So

in practice, AD software often only stores the variables necessary to evaluate, vT ∂xk

∂xl
, and never

explicitly computes ∂xk

∂xl
. This leads to further computational and memory savings, as the full

Jacobian matrices with size K × L need not be stored. In PyTorch, this is implemented in the
torch.autograd.backward(tensors, grad_tensors) function, where tensors corresponds
to xk and grad_tensors corresponds to v. All in all, AD software implements forward functions
to cache the necessary data at each node, and backward functions to evaluate the vector-Jacobian
product at each node using the cache, resulting in efficient and automatic computation of the gradient.

2.2 Basics of Monte Carlo gradient estimation

In ML, the computations may be stochastic, and the objective is an expectation J = Ex∼p(x;β) [f(x)].
In this case, it is not clear how to directly differentiate the stochastic operations, and we use
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Monte Carlo (MC) methods to obtain an estimator, ĝ, for the gradient dJ
dβ , s.t. E [ĝ] = dJ

dβ . Such
methods have been reviewed in ML by Mohamed et al. (2020). The two major MC gradient estimators
are the reparameterization (RP) (Rezende et al., 2014; Kingma and Welling, 2013) and likelihood
ratio (LR) (Williams, 1992; Glynn, 1990) gradient estimators. The LR method uses f(x) to construct
an estimator, whereas RP uses∇xf(x). Total propagation (TP) (Parmas et al., 2018) combines LR
and RP using inverse variance weighting. Moreover, TP does so at a step-wise level at each sampling
node. The required step-wise computations interfere with the natural operation of back propagation,
necessitating AP software to implement TP. We give more background on these methods in App. A.

3 Proppo explanation

Propagation Graph

Computation Graph

Propagation Manager

Propagation Node

Computation Node

Figure 2: Automatic propagation framework (Sec. 3). A subset of the nodes are designated as
propagation nodes forming the propagation graph. The propagation manager traverses the
propagation graph and activates the propagators to ensure the correct functioning of the implemented
algorithm. Here, the propagation graph is illustrated as a chain, but it may also have a graph structure.
The gray dashed lines show the corresponding same nodes in the propagation and computation graphs.

A schematic illustration of automatic propagation software is provided in Fig. 2. Automatic propaga-
tion is not an alternative to existing frameworks, such as AD packages, rather, it adds functionality on
top of them, and can be used in conjunction. We first explain the Proppo framework, in its simplest
form, which is one specific implementation of AP software; we explain the different components of
the framework (Sec. 3.1), then the processes by which they operate (Sec. 3.2). Finally, we explain AP
from a more general perspective (App. B.1), loosening some of the specific choices in Proppo.

3.1 Components of Proppo

Computation nodes. Automatic propagation software can be combined together with
any other computation package or program code. These external packages can be

used regularly as one would usually write code. However, at certain locations in the
code, the user can specify special computations that will determine what algorithm is imple-
mented using the AP software. These special computations will create propagation nodes .

Propagation nodes. The propagation nodes determine the structure of the operations per-
formed in the AP software. In Proppo, each propagation node includes the three components:

(1) a pointer to a propagator that determines the forward and backward computations be-
longing to the node, (2) a cache/memory that stores necessary information for the computations
occurring at the node, (3) a message box for incoming messages from other propagation nodes.

Propagators. The propagators are the key components of AP software. The propaga-
tors determine the computations performed at each propagation node. In Proppo, each

propagator implements a forward and backward mode of computation. The forward function is
used when the node is first created; it may take an input from the program code, perform com-
putations, store data in the memory of the node, and produce an output. The backward function
is used in later processing; it performs computations using the stored data in the memory and
incoming messages to the node, and sends messages to other nodes in the propagation graph.
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Messages. Globally, the algorithms are implemented by passing messages between the prop-
agation nodes. Each message includes the two components: (1) the contents of the message,

(2) an address determining where the message should be sent. A typical address may be a pointer
to the parent node of the current propagation node, so that the messages are passed backwards.

Propagation manager. In Proppo, all of the messages are first passed to the propagation
manager, then the propagation manager decides where to send the message based on the

address in the message. The propagation manager also has other important roles: it constructs the
propagation graph, keeps track of the nodes, activates the propagators and passes messages.

3.2 Typical program flow and usage of automatic propagation software

Usage of AP software can be broadly categorized into two: (1) implementing a new algorithm into an
AP package, (2) using an algorithm already implemented in AP software. We start by explaining
how one would typically use an already existing algorithm packaged into AP software. We begin by
explaining a minimalistic code snippet in Fig. 3 of MC gradient estimation with Proppo.

1
2
3
4
5 state = torch.randn(batch_size ,
6 num_dimensions)
7 for t in range(horizon_length):
8 state = rnn(state)
9

10
11 loss = loss_func(state)
12 loss.backward ()

(a) PyTorch code

1 # Configuration code
2 prop = RPProp(config) # Choose RPProp or LRProp
3 manager = PropagationManager(
4 default_propagator=prop)
5 # Program code
6 state = torch.randn(batch_size , num_dimensions)
7 for t in range(horizon_length):
8 state = rnn(state)
9 state = manager.forward(state)

10
11 loss = loss_func(state)
12 manager.backward(loss)

(b) Proppo code combined with PyTorch code

Figure 3: Code for estimating the gradient w.r.t. the parameters of a recurrent neural network (rnn).

Minimalistic code example. In the example in Fig. 3a, a batch of initial states (state) is sampled
from a Gaussian distribution (lines 5–6), this batch is pushed through the recurrent neural network
(rnn) for horizon_length times, then a loss is computed using the function loss_func, finally the
gradients are backpropagted from the loss node by calling loss.backward(). As explained in the
preliminaries (Sec. 2.1), the gradients will backpropagate until the parameter node in the computation
graph. The regular PyTorch code in Fig. 3a computes the gradient using back propagation; the
Proppo code in Fig. 3b modifies the computation by adding noise into the forward computation, and
estimating the gradient using either RP gradients or LR gradients. Conveniently, only the definition
of the propagator on line 2 has to be changed to switch between using LR or RP gradients. Moreover,
settings such as whether the LR gradient should use a baseline or not can be specified in the config
without having to modify the program code. Finally, note that instead of changing the behavior
to use MC gradient estimators by using RPProp or LRProp, one could also simply use standard
back propagation by setting an appropriate different propagator in the configuration. This was a
minimalistic example to give a taste of how Proppo might be used. In practice both the configuration
and program code may be more complicated with multiple types of propagators. We will explain how
existing AP algorithms would typically be used with reference to this minimalistic example.

Using an AP algorithm. The code for using AP software can be broadly separated into two:
the configuration code that sets up the AP software and selects the algorithm to be used, and
the program code that determines how and where the algorithm is applied. It may be beneficial to
keep these sections of the code distinct to improve the readability and modularity.

In the minimalistic example in Fig. 3b the configuration code is on lines 2–4. When configuring the
code, the user instantiates the propagator and propagation manager objects from their existing class
code, while giving them the appropriate configuration. A propagator may be created using

propagator = Propagator(config).

There are different propagator classes, and the user would use a different command for the different
types of propagators. Some propagators may allow for a configuration input to make small tweaks to
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the behavior. The propagation manager may be created using

manager = PropagationManager(config).

Here the configuration input may define default propagators to be used for specified computations,
default message passing styles, etc. The configuration in the RNN example was simple, but in general
the configuration may be more complicated and include setting up many different types of propagators
and equipping them to the manager by assigning them names by which the manager identifies them.

After selecting the desired algorithm by properly configuring the AP software, the user must modify
the program code to make it compatible with the AP software and properly implement the algorithm.
In the minimalistic example in Fig. 3b, the program code is on lines 6–12, and the modifications to
use Proppo are on lines 9 and 12. We emphasize that the same modifications may be compatible with
multiple algorithms, so that only the configuration code has to be modified to switch between the
algorithms. The main purpose of the modifications to the program code are to activate the propagators
and construct the propagation graph. A propagator is activated using the command

output = manager.forward(input, arguments).

This command will add a node into the propagation graph of the manager. In the current case, the
manager has been equipped with the default propagator prop. When manager calls the forward
function, it will create a new node, and assign the prop propagator to it. Then, the forward method
of prop is called with the input. The forward method applies some modification to the input, stores
data in the memory of the node, and produces an output. Note that the data stored in the memory of
the node will be used later during the backward pass of the algorithm.

The arguments input to the forward function serves multiple purposes. One of the main purposes
is to modify the behavior of the propagator in some way. For example, in the minimalistic code in
Fig. 3b the propagator injects noise into state to produce the output, so one part of the arguments
may be the type of noise and the parameters of the noise distribution. Note that often these settings can
be defined in the configuration without having to modify the arguments, e.g. the type of distribution
may just be fixed in the configuration code. Another role of the arguments is to modify the targets
where the messages should be sent if the default setting is unsuitable. Furthermore, if multiple types
of propagators are necessary to implement the algorithm, the arguments may also be used to select
between different propagators equipped to the manager.

Finally, the backward pass of the algorithm is invoked by calling

manager.backward().

When the manager.backward function is called, the manager will typically call the backward
function of the propagator of the last node, pass the message to its target node, call the backward
function of the previous node, and iterate this process from the end of the graph until the beginning.
If the propagators are correctly implemented, and the propagation graph is correctly constructed, this
framework allows automatically using an algorithm available in the AP software.

A keen reader may have noticed that in the minimalistic example in Fig. 3b an additional loss input
was given to the backward call. This is a convenience implemented in Proppo, where the manager
will automatically add a propagator corresponding to the loss as the final node before starting to iterate
backwards on the propagation graph. Alternatively, the same operations could have been implemented
by the commands manager.append_loss(loss) followed by manager.backward(). Internally,
append_loss(·) simply calls the forward method of a special propagator designed for adding a node
corresponding to a loss. In Proppo, yet another way how the lines 11–12 for adding the loss could have
been implemented is the following: manager.append_loss(state, lossfunc=loss_func) fol-
lowed by manager.backward(). In this case, the loss function loss_func is passed to the prop-
agator directly via the lossfunc keyword, and the propagator will compute the loss by inputting
state into loss_func. The last method of implementation is beneficial for compatibility between
different types of loss propagators, for example, it is useful for easily switching between the loss
operations necessary for Gaussian shaping gradients and a regular loss computation. We see that
there are many different ways to implement the same algorithm using propagators.

Creating an AP algorithm. In the previous section, we saw that the functionality of an AP
algorithm is determined by the implementation of the propagators. Consequently, creating a new AP
algorithm requires implementing the appropriate propagators corresponding to the desired algorithm.
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In Proppo, several base classes for new propagators are already provided, and the user must only
implement the forward and backward methods of the propagators.

In principle, the forward and backward methods can contain arbitrary code, and there is no
restriction on what they can do. The programmer must figure out how to implement their algorithm
through a process of storing data in the forward pass, and further computations and message passing
in the backward pass. The programmer must also decide how many different types of propagators
are necessary for their algorithm, and also how they are intended to be used in the program code.
Like with any software, good design of the code and clear documentation are crucial for usability.

Throughout our discussion of AP software, we have promised composability and customizability of
the algorithms. We note that merely using AP software to implement an algorithm does not guarantee
that the algorithm will be composable. It is up to the creator of the algorithm to design the propagators
so as to facilitate such desirable properties. However, we find that the paradigm of propagators is a
good framework by which to construct an algorithm in a composable way. In particular, in Sec. 3.3
we highlight common propagator types that can lead to composable and flexible algorithms.

3.3 Example elementary propagators

In AP software, composability is achieved by deriving new propagators from already existing
propagators. The simplest form of this may be to connect propagators into a chain, and activate their
methods in sequence. In Proppo, we provide two propagators with such functionality, ComboProp
and ChainProp. While both of these methods activate the forward and backward methods of the
constituent propagators sequentially, they differ in how the messages and nodes are handled.

ComboProp. This propagator is a simple way to connect propagators into a chain. The output of
the forward method of one propagator is fed into the input of the next propagator, and each propagator
operates on the same node. Likewise, the backward methods use the data in the same node, and
the messages are simply combined together and passed to the backward method of the previous
propagator. ComboProp is suitable for simple combinations of propagators; however, it can run into
problems when trying to implement more complex behaviors. Namely, the different propagators may
overwrite data stored by other propagators leading to unexpected consequences.

ChainProp. This propagator provides a more systematic way to combine propagators, so as to
overcome the sometimes unpredictable behavior of ComboProp. To rigorously define the behavior,
ChainProp internally creates its own propagation graph, connecting nodes with propagators into
a chain, and assigning a propagation manager to handle the message passing. The constituent
propagators may themselves also be of the ChainProp type. This way, propagation graphs can be
embedded into other propagation graphs, creating a hierarchy of connected propagators all handled by
their own managers. This system allows safely composing propagators to define complex behaviors.

BackPropagator. This example propagator is often composed with a base propagator using
ComboProp. In Pytorch, the torch.autograd.backward(tensors, grad_tensors) method
allows inputting lists of tensors and gradients, so that the backpropagation can be commenced at
multiple tensors at the same time using a single call. In the composition, the base propagator
produces a tensor and the gradients, and BackPropagator commences the back propagation on the
AD computation graph. Importantly, usually the config of the propagator allows determining whether
BackPropagator should be included in the combo sequence or not. This is useful, if one wants
to omit immediately backpropagating gradients in favor of grouping multiple tensors together and
initiating each backprop simultaneously with a single call.

3.4 Example Monte Carlo gradient estimator propagators

One of our main motivations for developing AP software was to enable easy implementation of
advanced MC gradient estimation methods, such as total propagation or Gaussian shaping gradients.
We provide detailed pseudo code for these propagator implementations in App. B.2. Here, we briefly
outline some of the more prominent propagator implementations.

Reparameterization. In PyTorch, RP gradients are already implemented, and it is possible to obtain
reparameterized samples from a distribution, so that the gradients automatically flow through. Al-
ternatively, the output can be detached, and the gradients passed backwards using BackPropagator.
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Likelihood ratio. Typically, LR gradients are implemented in AD software by constructing a
surrogate loss (Schulman et al., 2015) of the form log p(x; θ)f(x), and then differentiating this w.r.t.
θ to obtain the LR gradient. In Proppo, we do not need to construct such a surrogate loss. We instead
store log p(x; θ) in the node as a tensor, then during the backward pass, we set f(x) as the input
gradient, and back propagate it into log p(x; θ), using the BackPropagator in Sec. 3.3.

Total propagation. TP requires storing both data for RP and LR in its node. In addition, it requires
setting a target tensor in the AD computation graph where the variances of LR and RP will be
computed for the inverse variance weighting. We implement this by storing a pointer to the target
tensor, and use torch.autograd.grad to compute the LR and RP gradients. After computing the
gradient variances, the mixture weight can be computed, and BackPropagator from Sec. 3.3 is used
for one last back propagation with the combined gradient.

3.5 Implementation and computation speed considerations

Primarily, Proppo does not perform any major computations on its own; it merely manages the
operations performed by other computational tools (Sec. 3). This overhead is negligible for moderate
size computations as confirmed by benchmarking experiments (App. B.3) and real applications
(Anonymous, 2023). Experiments also confirmed that Proppo can scale to millions of propagation
nodes (App. B.4). The scalability could be further increased by running multiple propagation
managers on the propagation graph in parallel, and we plan to implement this in future work.

4 Chaotic net minimalistic experiments for comparing gradient estimators

In this section we show minimalistic easily reproducible experiments using the Proppo framework.
The main aim is to demonstrate that there exist situations where TP and GS gradients can improve
the gradient accuracy by multiple orders of magnitude compared to conventional gradient estimation
methods. The main result for TP is in Fig. 4, while the experiments for GS are in App. C.3.

4.1 Setup: gradient variance of a recurrent neural network with chaotic behavior

In our experiments, we estimate the gradient, g, of an expected loss Ep(x;β) [f(x)], w.r.t. a parameter
β, using various different MC gradient estimation methods. We repeat this estimation many times, and
compute the empirical variance of the gradient estimators, V̂ [g], from the set of estimates {g(k)}Kk=1.
In terms of the particular situation we consider, we were motivated by PIPPS (Parmas et al., 2018),
where they showed a situation where chaos-like properties of the dynamics caused the RP gradient
variance to explode, while LR gradients were robust. Parmas et al. (2018) considered a cart-pole
swing-up and balancing task; while this task appears simple, there is still redundant complexity as the
control policy had a high-dimensional parameter. Moreover, while the fractal input-output patterns
that they visualized are strongly suggestive that the system was chaotic, it falls short of a rigorous
proof. Therefore, we devised a similar simplified system based on a recurrent neural network (RNN).

We consider a particular 2-dimensional sigmoid recurrent neural network that was mathematically
proven to exhibit chaotic behavior by Wang (1991). Formally, the system dynamics are given by

xt+1 = Sigmoid(βWxt) + ε, (2)

where Sigmoid(y) := 1
1+exp(−y) , W =

[
−5 5
−25 25

]
, β is the inverse temperature, a variable parame-

ter of the network, ε ∼ N (0, Iσ2) is Gaussian noise added to the state at each time step,4 σ = 0.001
is the standard deviation of the added activation noise, and the initial state is x0 = [0.35; 0.55]. We
use a batch size, B = 1000, and simulate this system for H time steps. We compute a quadratic
loss at the final time step L(xH) = 1

2 (xH − 1)T(xH − 1) and estimate the influence through all
time steps to obtain the gradient w.r.t. β. Wang (1991) explained that β controls the dynamics of
the system. When β is small, the system is well-behaved, but as β is increased, the system becomes
chaotic through a period-doublings mechanism. We discuss this system in greater depth in App. C.1.

4Note that Wang (1991) did not add any noise to the system, but the system still shows similar behavior even
when such noise is added. We added this noise to be able to use LR gradients.
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(a) Variance of RP, LR and TP gradient estimators against the inverse temperature β for various horizons.
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Figure 4: Comparison of the RP, LR and TP gradient estimators on the chaotic RNN task. See Sec. 4.1
and Fig. 9 for the description of the task, and Sec. 4.2 for the discussion of the experiment. The main
result is that TP provides a large improvement at the edge of chaos regime around β ∼ 2.5.

4.2 Single path experiment: showing the advantage of total propagation

Experimental setup. We consider an experiment on the simple RNN system (Sec. 4.1). We compute
the gradient variances of RP, LR and TP gradients, and plot these against β. We considered the
horizons H ∈ {10, 25, 50, 100}. The batch size was B = 1000 for 1 gradient estimate, g (averaged
over the batch), and we performed this estimated K = 800 times. We compute the empirical gradient
variance of the K estimates, {g(k)}Kk=1. We use the percentile bootstrap method to estimate 95%
confidence intervals. The results are in Fig. 4.

Results. The gradient variances are plotted in Fig. 4a. We see that RP is much more accurate than
LR at low β, but the gradient variance of RP explodes as the system transitions to chaos around
β = 2.5. This effect is stronger as the horizon is increased. Fig. 4b shows the ratio of improvement
of TP over the best between RP and LR at each β. We see that around the edge of chaos at β = 2.5
TP improves by up to around 100 times compared to the best choice between RP and LR.

Discussion. Previously (Parmas et al., 2018) already showed an example where the RP gradient
variance explodes. They also showed that LR was robust to this issue, and demonstrated that TP
improves the performance. However, in their results, while the improvement of both TP and LR
was huge compared to RP in the chaotic regime, the improvement of TP over LR was comparatively
small, up to around a 3 times improvement. Here, on the other hand, we showed that TP can
simultaneously improve over both RP and LR by multiple orders of magnitude. We also elucidated
that the improvement may be particularly large at the edge of chaos. The simplicity of our RNN
example allowed examining the advantage of TP in greater depth with better reproducibility.

In Fig. 4b, we have additionally plotted the performance for an optimal “naïve” gradient combination
based on applying inverse variance weighting to LR and RP computed separately,5 without taking
advantage of the graph structure of the computations. Such a naïve method was first mentioned by
Parmas et al. (2018) who immediately skipped it for TP, because of its conceptual issues; however,

5Strictly speaking, we did not actually combine the gradient estimates, but only computed the variance of an
idealized version of this estimator by using the precise variances V [gRP] and V [gLR]. In practice, one also has to
estimate these variances and the mixing ratio from each batch of samples.
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later Metz et al. (2019) “followed the insight” from Parmas et al. (2018) and used the naïve method
in the context of metalearning. In Fig. 4b, we see that the naïve method performs poorly, leading to
hardly any improvement in gradient accuracy compared to the best between RP and LR.

Indeed, when combining statistical estimators, the theoretical maximum accuracy is the sum of the
accuracies of the individual estimators. If two estimators are equally good, this would maximally
lead to a doubling of the accuracy. However, in Fig. 4b we see improvements far exceeding this limit.
Such a result was possible because TP takes advantage of the graph structure of the computations. It
not only improves the accuracy of the final result, it also improves the accuracy of the intermediate
gradient computations that are propagated backwards. The improvements in the accuracy of the
intermediate calculations have a compounding effect, leading to orders of magnitude improvement of
the final result. This advantage of TP highlights that automatic propagation software such as Proppo
can produce results unattainable by standard back propagation procedures.

5 Related work

From the point of view of MC gradient estimation, the concurrent work, Storchastic (Krieken
et al., 2021) is the most closely related to ours. Storchastic is a library for MC gradient estimation
implemented in PyTorch based on the surrogate loss formalism (Schulman et al., 2015; Foerster
et al., 2018). Their user interface of using a .backward() function is similar to ours, as both were
inspired by the PyTorch interface that is the same. However, Storchastic is not an AP software, and
for instance, it does not enable implementing Total Propagation.

From a conceptual point of view, the Actor Model (Hewitt et al., 1973) is related. In the Actor
Model, everything in the program are actors and they communicate with each other via message
passing. However, practically, Proppo is not implemented as an actor system. Unlike in an actor
system, the propagators acting at the nodes can interact with outside objects directly without explicitly
implemented messaging mechanisms. From a theoretical point of view, one could consider these
interactions as “passing messages” but practically, these interactions are not implemented based on
the actor formalism. Instead, AP software aims to be pragmatic and flexible to enable interusability
with existing ML tools. A further difference is that AP automates the default messaging targets.
Prominent Actor Model implementations, such as Akka (Bonér et al., 2010) are typically used for
server and web apps, and they are not primarily meant for implementing machine learning algorithms.
Nevertheless, studying existing actor systems may inspire improvements to AP implementations.

6 Discussion & Conclusions

Recently, many impressive results were achieved by leveraging large scale data and computation
together with basic algorithms (Brown et al., 2020; Ramesh et al., 2022; Chowdhery et al., 2022). We
ask whether simple algorithms are used, simply because researchers and engineers have difficulty
with properly implementing more complicated ones? There is no guarantee that merely scaling up our
existing algorithms will be sufficient for satisfactory performance in the long term of ML research;
we must also explore algorithmic improvements. We hope that automatic propagation will enable the
proliferation of complex algorithms by providing a standard for sharing and building ML tools.

Author Contributions

Paavo Parmas invented automatic propagation software, designed and implemented most of the code
including the key parts, ran the experiments, and wrote the paper.
Takuma Seno worked part-time to help write the code and give advice on the software engineering
aspects in the early stages of the project. He also gave comments on the paper.

Acknowledgements

The project was started with funding provided by the Proof of Concept Program at the Okinawa
Institute of Science and Technology (OIST). Most of the key contributions were made during this
stage. PP finished the project while hired under the Cyborg-AI project supported by NEDO, Japan.
PP would like to thank the Neural Computation Unit at OIST for administrative support while the
project was being conducted at OIST.

10



References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,

Isard, M., et al. (2016). {TensorFlow}: A system for {Large-Scale} machine learning. In 12th
USENIX symposium on operating systems design and implementation (OSDI 16), pages 265–283.
1

Anonymous (2022). Anonymous. In Anonymous, page 0000. 1, 3.5, B.3

Barham, P. and Isard, M. (2019). Machine learning systems are stuck in a rut. In Proceedings of the
Workshop on Hot Topics in Operating Systems, pages 177–183. 1

Bauer, F. L. (1974). Computational graphs and rounding error. SIAM Journal on Numerical Analysis,
11(1):87–96. 2.1

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2018). Automatic differentiation
in machine learning: a survey. Journal of Marchine Learning Research, 18:1–43. 2.1

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations
of Python+NumPy programs. 1

Chollet, F. et al. (2015). Keras. https://keras.io. 1

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W., Sutton, C., Gehrmann, S., et al. (2022). Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311. 6

Dangel, F., Kunstner, F., and Hennig, P. (2020). BackPACK: Packing more into backprop. In
International Conference on Learning Representations. 1

Fairbank, M. (2008). Reinforcement learning by value gradients. arXiv preprint arXiv:0803.3539.
A.2

Foerster, J., Farquhar, G., Al-Shedivat, M., Rocktäschel, T., Xing, E., and Whiteson, S. (2018). Dice:
The infinitely differentiable Monte Carlo estimator. In International Conference on Machine
Learning, pages 1529–1538. 1, 5

Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic systems. Communications of
the ACM, 33(10):75–84. 2.2

Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–1530.
A.1

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2020). Dream to control: Learning behaviors by
latent imagination. In International Conference on Learning Representations. 1

Jankowiak, M. and Obermeyer, F. (2018). Pathwise derivatives beyond the reparameterization trick.
In International Conference on Machine Learning, pages 2240–2249. A.1

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114. 2.2

Krieken, E., Tomczak, J., and Ten Teije, A. (2021). Storchastic: A framework for general stochastic
automatic differentiation. Advances in Neural Information Processing Systems, 34. 1, 5

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, C. D., and Sohl-Dickstein, J. (2019). Un-
derstanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning. 4.2, C.1

Minka, T. (2019). From automatic differentiation to message passing. Slides for Presentation at
Advances and challenges in machine learning languages workshop. [Online; https://tminka.
github.io/papers/acmll2019/minka-acmll2019-slides.pdf]. 1

11

https://keras.io
https://tminka.github.io/papers/acmll2019/minka-acmll2019-slides.pdf
https://tminka.github.io/papers/acmll2019/minka-acmll2019-slides.pdf


Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020). Monte Carlo gradient estimation in
machine learning. Journal of Machine Learning Research, 21:1–62. 2.2

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z., Paul, W.,
Jordan, M. I., et al. (2018). Ray: A distributed framework for emerging {AI} applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pages 561–577.
1

Oktay, D., McGreivy, N., Aduol, J., Beatson, A., and Adams, R. P. (2020). Randomized automatic
differentiation. In International Conference on Learning Representations. 1

Owen, A. B. (2013). Monte Carlo theory, methods and examples. A.1

Parmas, P. (2018). Total stochastic gradient algorithms and applications in reinforcement learning. In
Advances in Neural Information Processing Systems, pages 10204–10214. 1, A.1, A.2, A.2, A.2,
A.2, A.2, C.3

Parmas, P. (2020). Total stochastic gradient algorithms and applications to model-based reinforcement
learning. PhD thesis, Okinawa Institute of Science and Technology Graduate University. 1, A.1

Parmas, P., Rasmussen, C. E., Peters, J., and Doya, K. (2018). PIPPS: Flexible model-based policy
search robust to the curse of chaos. In International Conference on Machine Learning, pages
4062–4071. 1, 2.2, 4.1, 4.2, A.1, A.2, A.2, C.1, 8

Parmas, P. and Sugiyama, M. (2021). A unified view of likelihood ratio and reparameterization
gradients. In International Conference on Artificial Intelligence and Statistics, pages 4078–4086.
PMLR. A.1

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32. 1

Paszke, A., Johnson, D. D., Duvenaud, D., Vytiniotis, D., Radul, A., Johnson, M. J., Ragan-Kelley, J.,
and Maclaurin, D. (2021). Getting to the point: index sets and parallelism-preserving autodiff for
pointful array programming. Proceedings of the ACM on Programming Languages, 5(ICFP):1–29.
1

Pearl, J. (1982). Reverend bayes on inference engines: a distributed hierarchical approach. In
Proceedings of the Second AAAI Conference on Artificial Intelligence, pages 133–136. 1, B.1

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125. 6

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learning, pages
1278–1286. 2.2, A.1

Rogozhnikov, A. (2021). Einops: Clear and reliable tensor manipulations with einstein-like notation.
In International Conference on Learning Representations. 1

Schulman, J., Heess, N., Weber, T., and Abbeel, P. (2015). Gradient estimation using stochastic
computation graphs. In Advances in Neural Information Processing Systems, pages 3528–3536. 1,
3.4, 5, A.1

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic
policy gradient algorithms. In International conference on machine learning, pages 387–395.
PMLR. A.2

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient methods for
reinforcement learning with function approximation. In Advances in neural information processing
systems, pages 1057–1063. A.2

12



Tokui, S., Oono, K., Hido, S., and Clayton, J. (2015). Chainer: a next-generation open source frame-
work for deep learning. In Proceedings of workshop on machine learning systems (LearningSys)
in the twenty-ninth annual conference on neural information processing systems (NIPS), volume 5,
pages 1–6. 1

Wang, X. (1991). Period-doublings to chaos in a simple neural network: An analytical proof. Complex
Systems, 5(4):425–441. 4.1, 4.1, 4, C.1, 8

Weaver, L. and Tao, N. (2001). The optimal reward baseline for gradient-based reinforcement
learning. In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence,
pages 538–545. Morgan Kaufmann Publishers Inc. A.1

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256. 2.2

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our paper

is about a framework, not a direct application.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No novel
theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] No novel theoretical
results.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] The experiments
are simple, well documented and easy to reproduce. The code is available at at
https://github.com/proppo.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] The experiments in this paper were
small scale run on a CPU that anyone can replicate.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] The used assets are well-known, e.g.,

PyTorch, so this is redundant.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We included code in Appendix. D. The code is also available at https://github.
com/proppo/proppo.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We did not use or curate data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We did not use or curate data.

5. If you used crowdsourcing or conducted research with human subjects...

13

https://github.com/proppo
https://github.com/proppo/proppo
https://github.com/proppo/proppo


(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14


	1 Introduction
	2 Preliminaries
	2.1 Automatic differentiation software
	2.2 Basics of Monte Carlo gradient estimation

	3 Proppo explanation
	3.1 Components of Proppo
	3.2 Typical program flow and usage of automatic propagation software
	3.3 Example elementary propagators
	3.4 Example Monte Carlo gradient estimator propagators
	3.5 Implementation and computation speed considerations

	4 Chaotic net minimalistic experiments for comparing gradient estimators
	4.1 Setup: gradient variance of a recurrent neural network with chaotic behavior
	4.2 Single path experiment: showing the advantage of total propagation

	5 Related work
	6 Discussion & Conclusions

