
Online Minimax Multiobjective Optimization:
Multicalibeating and Other Applications —

Supplementary Material

Daniel Lee1, Georgy Noarov1, Mallesh Pai2, Aaron Roth1

1 University of Pennsylvania, 2 Rice University
daniellee@alumni.upenn.edu, gnoarov@seas.upenn.edu,

mallesh.pai@rice.edu, aaroth@cis.upenn.edu

A Additional Related Work

Papers by Azar et al. [2014] and Kesselheim and Singla [2020] study a related problem: an online
setting with vector-valued losses, where the goal is to minimize the `∞ norm of the accumulated loss
vector (they also consider other `p-norms). However, they study an incomparable benchmark that
in our notation would be written as minx∗∈X maxj∈[d]

1
T

∑T
t=1 `j(x

∗, yt) (which is well-defined in
their setting, where loss functions `t = ` and action sets X t = X ,Yt = Y are fixed throughout the
interaction). On the one hand, this benchmark is stronger than ours in the sense that the maximum
over coordinates is taken outside the sum over time, whereas our benchmark considers a “greedy”
per-round maximum. On the other hand, in our setting the game can be different at every round, so
our benchmark allows a comparison to a different action at each round rather than a single fixed
action. In the setting of Kesselheim and Singla [2020], it is impossible to give any regret bound to
their benchmark, so they derive an algorithm obtaining a log(d) competitive ratio to this benchmark.
In contrast, our benchmark admits a regret bound. Hence, our results are quite different in kind
despite the outward similarity of the settings: none of our applications follow from their theorems
(since in all of our applications, we derive regret bounds).

A different line of work [Rakhlin et al., 2010, 2011] takes a very general minimax approach towards
deriving bounds in online learning, including regret minimization, calibration, and approachability.
Their approach is substantially more powerful than the framework we introduce here (e.g. it can
be used to derive bounds for infinite dimensional problems, and characterizes online learnability in
the sense that it can also be used to prove lower bounds). However, it is also correspondingly more
complex, and requires analyzing the continuation value of a T round dynamic program. Such analyses
are generally technically challenging; as an example, a recent line of work by Drenska and Kohn
[2020] and Kobzar et al. [2020] considers a Rakhlin et al.-style minimax formulation of the standard
experts problem, and shows how to find nonlinear PDE-based minimax solutions for the Learner
and the Adversary that can be optimal not just asymptotically in the number of experts (dimensions)
d, but also nonasymptotically for small d such as 2 or 3; their PDE approach is also conducive to
bounding not just the maximum regret across dimensions, but also more general functions of the
individual dimensions’ losses.

Overall, results derived from the Rakhlin et al. framework (with some notable exceptions, including
Rakhlin et al. [2012]) are generically nonconstructive, whereas our framework is simple and inherently
constructive, in that the algorithm derives from repeatedly solving a one-round stage zero-sum game.
Relative to this literature, we view our framework as a “user-friendly” power tool that can be used to
derive a wide variety of algorithms and bounds without much additional work — at the cost of not
being universally expressive.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

B The General Framework with Extensions to Probabilistic and
Approximate Learners: Full Proofs and Algorithms

B.1 Omitted Proofs from Section 2

Proof of Lemma 2.1. After taking the log and dividing by η, this lemma follows from the following
chain:

exp
(
ηRT

)
= exp

(
ηmax
j∈[d]

RTj

)
= exp

(
max
j∈[d]

ηRTj

)
= max

j∈[d]
exp

(
ηRTj

)
≤
∑
j∈[d]

exp
(
ηRTj

)
= LT .

Proof of Lemma 2.2. By definition of the surrogate loss,we have:

Lt − Lt−1 =
∑
j∈[d]

exp
(
ηRtj

)
−
∑
j∈[d]

exp
(
ηRt−1

j

)
,

=
∑
j∈[d]

exp
(
ηRt−1

j + η
(
`tj
(
xt, yt

)
− wtA

))
−
∑
j∈[d]

exp
(
ηRt−1

j

)
,

=
∑
j∈[d]

exp
(
ηRt−1

j

) (
exp

(
η
(
`tj
(
xt, yt

)
− wtA

))
− 1
)
.

Using the fact that exp(x)− 1 ≤ x+ x2 for |x| ≤ 1, we have, for η · 2C ≤ 1,

≤
∑
j∈[d]

exp
(
ηRt−1

j

) (
η
(
`tj(x

t, yt)− wtA
)

+ η2
(
`tj(x

t, yt)− wtA
)2)

,

≤ η
∑
j∈[d]

exp
(
ηRt−1

j

) (
`tj
(
xt, yt

)
− wtA

)
+ η2(2C)2Lt−1.

Proof of Lemma 2.3. We begin by recalling that L0 = d. Thus, the desired bound on LT follows via
Lemma 2.2 and a telescoping argument, if only we can show that for every t ∈ [T] the Learner has
an action xt ∈ X t which guarantees that for any yt ∈ Yt,

η
∑
j∈[d]

exp
(
ηRt−1

j

) (
`tj(x

t, yt)− wtA
)
≤ 0.

To this end, we define a zero-sum game between the Learner and the Adversary, with action space
X t for the Learner and Yt for the Adversary, and with the objective function (which the Adversary
wants to maximize and the Learner wants to minimize):

ut(x, y) :=
∑
j∈[d]

exp
(
ηRt−1

j

) (
`tj(x, y)− wtA

)
, for all x ∈ X t, y ∈ Yt.

Recall from the definition of our framework that X t,Yt are convex, compact and finite-dimensional,
as well as that each `tj is continuous, convex in the first argument, and concave in the second
argument. Since ut is defined as an affine function of the individual coordinate functions `tj , u

t is
also convex-concave and continuous. This means that we may invoke Sion’s Minimax Theorem:

Fact 1 (Sion’s Minimax Theorem). Given finite-dimensional convex compact sets X ,Y , and a
continuous function f : X × Y → R which is convex in the first argument and concave in the second
argument, it holds that

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

2

Using Sion’s Theorem to switch the order of play (so that the Adversary is compelled to move first),
and then recalling the definition of wtA (the value of the maximum coordinate value of `t that the
Learner can obtain when the Adversary is compelled to move first), we obtain:B.1

min
xt∈X t

max
yt∈Yt

ut
(
xt, yt

)
= max
yt∈Yt

min
xt∈X t

ut
(
xt, yt

)
= max
yt∈Yt

min
xt∈X t

∑
j′∈[d]

exp
(
ηRt−1

j′

)
·
(
`tj′
(
xt, yt

)
− wtA

)
,

≤ sup
yt∈Yt

min
xt∈X t

∑
j′∈[d]

exp
(
ηRt−1

j′

)
·max
j∈[d]

(
`tj
(
xt, yt

)
− wtA

)
,

=
∑
j′∈[d]

exp
(
ηRt−1

j′

)
· sup
yt∈Yt

min
xt∈X t

max
j∈[d]

(
`tj
(
xt, yt

)
− wtA

)
,

=
∑
j′∈[d]

exp
(
ηRt−1

j′

)
·
(
wtA − wtA

)
,

= 0.

Thus, the Learner can ensure that Lt ≤
(
4η2C2 + 1

)
Lt−1 by playing at every round t:

xt ∈ argmin
x∈X t

max
y∈Yt

ut(x, y).

This concludes the proof.

An equivalent description of Learner’s space of minimax optimal strategies at each round t
We observe that the Learner’s optimal action at each round, derived in the proof, can be expressed
without any reference to the quantities wtA:

xt ∈ argmin
x∈X t

max
y∈Yt

∑
j∈[d]

exp(ηRt−1
j)(`tj(x, y)− wtA),

= argmin
x∈X t

max
y∈Yt

∑
j∈[d]

exp(ηRt−1
j)`tj(x, y),

= argmin
x∈X t

max
y∈Yt

∑
j∈[d]

exp
(
η
∑t−1
s=1 `

s
j(x

s, ys)
)
`tj(x, y)

exp
(
η
∑t−1
s=1 w

s
A

) ,

= argmin
x∈X t

max
y∈Yt

∑
j∈[d]

exp

(
η

t−1∑
s=1

`sj(x
s, ys)

)
`tj(x, y),

= argmin
x∈X t

max
y∈Yt

∑
j∈[d]

exp
(
η
∑t−1
s=1 `

s
j(x

s, ys)
)

∑
i∈[d] exp

(
η
∑t−1
s=1 `

s
i (x

s, ys)
)`tj(x, y).

The weights placed on the loss coordinates `sj(x
t, yt) in the final expression form a probability

distribution which should remind the reader of the well known Exponential Weights distribution.

B.2 Extensions

Before presenting applications of our framework, we pause to discuss two natural extensions that
are called for in some of our applications. Both extensions only require very minimal changes to the
notation in Section 2.1 and to the general algorithmic framework in Section 2.2.

We begin by discussing, in Section B.2.1, how to adapt our framework to the setting where the
Learner is allowed to randomize at each round amongst a finite set of actions, and wishes to obtain

B.1Note that in the third step, maxyt∈Yt turns into supyt∈Yt . This is because after each
(
`tj′

(
xt, yt

)
− wt

A

)
is replaced with maxj

(
`tj

(
xt, yt

)
− wt

A

)
, the maximum over y generally becomes unachievable (recall Foot-

note 1).

3

probabilistic guarantees for her AMF regret with respect to her randomness. This will be useful in all
three of our applications.

We then proceed to show, in Section B.2.2, that our AMF regret bounds are robust to the case in
which at each round, the Learner, who is playing according to the general Algorithm 1 given above,
computes and plays according to an approximate (rather than exact) minimax strategy. This is
useful for settings where it may be desirable (for computational or other reasons) to implement our
algorithmic framework approximately, rather than exactly. In particular, in one of our applications —
mean multicalibration, which is discussed in Section 4.1 — we will illustrate this point by deriving a
multicalibration algorithm that has the Learner play only extremely (computationally and structurally)
simple strategies, at the cost of adding an arbitrarily small term to the multicalibration bounds,
compared to the Learner that plays the exact minimax equilibrium.

B.2.1 Performance Bounds for a Probabilistic Learner

So far, we have described the interaction between the Learner and the Adversary as deterministic. In
many applications, however, the convex action space for the Learner is the simplex over some finite
set of base actions, representing probability distributions over actions. In this case, the Adversary
chooses his action in response to the probability distribution over base actions chosen by the Learner,
at which point the Learner samples a single base action from her chosen distribution.

We will use the following notation. The Learner’s pure action set at time t is denoted by At. Before
each round t, the Adversary reveals a vector valued loss function `t : At × Yt → [−C,C]d. At the
beginning of round t, the Learner chooses a probabilistic mixture over her action set At, which we
will usually denote as xt ∈ ∆At; after the Adversary has made his move, the Learner samples her
pure action at for the round, which is recorded into the transcript of the interaction.

The redefined vector valued losses `t now take as their first argument a pure action a ∈ At. We
extend this to X t := ∆At as `t(xt, yt) := Eat∼xt [`t(at, yt)] for any xt ∈ ∆At. In this notation,
holding the second argument fixed, the loss function is linear (hence convex and continuous) and has
a convex, compact domain (the simplex ∆At). Using this extended notation, it is now easy to see
how to define the probabilistic analog of the AMF value.

Definition B.1 (Probabilistic AMF Value).

wtA := sup
yt∈Yt

min
xt∈X t

max
j∈[d]

`tj(x
t, yt) = sup

yt∈Yt
min

xt∈∆At
max
j∈[d]

E
at∼xt

[
`tj(a

t, yt)
]
.

For a more detailed discussion of the probabilistic setting, please refer to Appendix B.3.

Adapting the algorithm to the probabilistic Learner setting Above, Algorithm 1 was given for
the deterministic case of our framework. In the probabilistic setting, when computing the probability
distribution for the current round, the Learner should take into account the realized losses from the
past rounds. We present the modified algorithm below.

Algorithm B.1: General Algorithm for the Probabilistic Learner
for rounds t = 1, . . . , T do

Learn adversarially chosen At,Yt, and vector loss function `t(·, ·) : At × Yt → [−C,C]d.
Let

χtj :=
exp

(
η
∑t−1
s=1 `

s
j(a

s, ys)
)

∑
i∈[d] exp

(
η
∑t−1
s=1 `

s
i (a

s, ys)
) for j ∈ [d].

Select a mixed action xt ∈ ∆At, where

xt ∈ argmin
x∈∆At

max
y∈Yt

∑
j∈[d]

χtj · `tj(x, y).

Observe the Adversary’s selection of yt ∈ Yt.
Sample pure action at ∼ xt.

4

Probabilistic performance guarantees Algorithm B.1 provides two crucial blackbox guarantees
to the probabilistic Learner. First, the guarantees on Algorithm 1 from Theorem 2.1 almost immedi-
ately translate into a bound on the expected AMF regret of the Learner who uses Algorithm B.1, over
the randomness in her actions. Second, a high-probability AMF regret bound, also over the Learner’s
randomness, can be derived in a straightforward way.

Theorem B.1 (In-Expectation Bound). Given T ≥ ln d, Algorithm B.1 with learning rate η =√
ln d

4TC2 guarantees that ex-ante, with respect to the randomness in the Learner’s realized outcomes,
the expected AMF regret is bounded as:

E
[
RT
]
≤ 4C

√
T ln d.

Proof Sketch. Using Jensen’s inequality to switch expectations and exponentials, it is easy to modify
the proof of Lemma 2.1 to obtain the following in-expectation bound:

E
[
RT
]
≤

lnE
[
LT
]

η
.

The rest of the proof is similar to the proofs of Lemma 2.2 and Lemma 2.3.

Theorem B.2 (High-Probability Bound). Fix any δ ∈ (0, 1). Given T ≥ ln d, Algorithm B.1 with

learning rate η =
√

ln d
4TC2 guarantees that the AMF regret will satisfy, with ex-ante probability 1− δ

over the randomness in the Learner’s realized outcomes,

RT ≤ 8C

√
T ln

(
d

δ

)
.

Proof Sketch. The proof proceeds by constructing a martingale with bounded increments that tracks
the increase in the surrogate loss LT , and then using Azuma’s inequality to conclude that the final
surrogate loss (and hence the AMF regret) is bounded above with high probability. For a detailed
proof, see Appendix B.3.

B.2.2 Performance Bounds for a Suboptimal Learner

Our general Algorithms 1 and B.1 involve the Learner solving a convex program at each round in
order to identify her minimax optimal strategy. However, in some applications of our framework it
may be necessary or desirable for the Learner to restrict herself to playing approximately minimax
optimal strategies instead of exactly optimal ones. This can happen for a variety of reasons:

1. Computational efficiency. While the convex program that the Learner must solve at each
round is polynomial-sized in the description of the environment, one may wish for a better
running time dependence — e.g. in settings in which the action space for the Learner is
exponential in some other relevant parameter of the problem. In such cases, we will want to
trade off run-time for approximation error in the minimax equilibrium computation at each
round.

2. Structural simplicity of strategies. One may wish to restrict the Learner to only playing
“simple” strategies (for example, distributions over actions with small support), or more
generally, strategies belonging to a certain predefined strict subset of the Learner’s strategy
space. This subset may only contain approximately optimal minimax strategies.

3. Numerical precision. As the convex programs solved by the Learner at each round generally
have irrational coefficients (due to the exponents), using finite-precision arithmetic to solve
these programs will lead to a corresponding precision error in the solution, making the
computed strategy only approximately minimax optimal for the Learner. This kind of
approximation error can generally be driven to be arbitrarily small, but still necessitates
being able to reason about approximate solutions.

Given a suboptimal instantiation of Algorithm 1 or B.1, we thus want to know: how much worse
will its achieved regret bound be, compared to the existential guarantee? We will now address this

5

question for both the deterministic setting of Sections 2.1 and 2.2, and the probabilistic setting of
Section B.2.1.

Recall that at each round t ∈ [T], both Algorithm 1 and Algorithm B.1 (with the weights χtj defined
accordingly) have the Learner solve for the minimizer x of the function ψt : X t → [−C,C] defined
as:

ψt(x) := max
y∈Yt

∑
j∈[d]

χtj · `tj(x, y).

The range of ψt is [−C,C] as indicated, since it is a linear combination of loss coordinates `tj(x, y) ∈
[−C,C], where the weights (χt1, . . . , χ

t
d) form a probability distribution over [d].

Now suppose the Learner ends up playing actions x1, . . . , xT which do not necessarily minimize the
respective objectives ψt(·). The following definition helps capture the degree of suboptimality in the
Learner’s play at each round.

Definition B.2 (Achieved AMF Value Bound). Consider any round t ∈ [T], and suppose the Learner
plays action xt ∈ X t at round t. Then, any number

wtbd ∈
[
ψt(xt), C

]
is called an achieved AMF value bound for round t.

This definition has two aspects. Most importantly, wtbd upper bounds the Learner’s achieved objective
function value at round t. Furthermore, we restrict wtbd to be ≤ C — otherwise it would be a
meaningless bound as the Learner gets objective value ≤ C no matter what xt she plays.

We now formulate the desired bounds on the performance of a suboptimal Learner. The upshot is that
for a suboptimal Learner, the bounds of Theorems 2.1, B.1, B.2 hold with each wtA replaced with the
corresponding achieved AMF bound wtbd.

Theorem B.3 (Bounds for a Suboptimal Learner). Consider a Learner who does not necessarily
play optimally at all rounds, and a sequence w1

bd, . . . , w
T
bd of achieved AMF value bounds.

In the deterministic setting, the Learner achieves the following regret bound analogous to Theo-
rem 2.1:

max
j∈[d]

T∑
t=1

`tj(x
t, yt) ≤

T∑
t=1

wtbd + 4C
√
T ln d.

In the probabilistic setting, the Learner achieves the following in-expectation regret bound analogous
to Theorem B.1:

E

[
max
j∈[d]

T∑
t=1

`tj(a
t, yt)

]
≤

T∑
t=1

wtbd + 4C
√
T ln d,

and the following high-probability bound analogous to Theorem B.2:

max
j∈[d]

T∑
t=1

`tj(a
t, yt) ≤

T∑
t=1

wtbd + 8C

√
T ln

(
d

δ

)
with probability ≥ 1− δ, for any δ ∈ (0, 1).

Proof Sketch. We use the deterministic case for illustration. The main idea is to redefine
the Learner’s regret to be relative to her achieved AMF value bounds (wtbd)t∈[T] rather than
the AMF values (wtA)t∈[T]. Namely, we let Rtbd := maxj∈[d] (Rtbd)j , where (Rtbd)j :=∑t
s=1 `

s
j(x

s, ys) −
∑t
s=1 w

s
bd. The surrogate loss is defined in the same way as before, namely

Ltbd :=
∑
j∈[d] exp

(
η · (Rtbd)j

)
.

First, Lemma 2.1 still holds: RTbd ≤
(
lnLTbd

)
/η, with the same proof. Lemma 2.2 also holds after

replacing each wtA with wtbd: namely, Ltbd ≤
(
4η2C2 + 1

)
Lt−1

bd + η
∑
j∈[d] exp

(
η
(
Rt−1

bd

)
j

)
·(

`tj (xt, yt)− wtbd

)
. The proof is almost the same: we formerly used wtA ≤ C, and now use that

wtbd ≤ C by Definition B.2.

6

Now, following the proofs of Lemma 2.3 and Theorem 2.1, to obtain the declared regret bound
it suffices to show for t ∈ [T] that the Learner’s action xt guarantees

∑
j∈[d] exp

(
η
(
Rt−1

bd

)
j

)
·(

`tj (xt, yt)−wtbd

)
≤ 0, no matter what yt is played by the Adversary. For any yt ∈ Yt, we can

rewrite this objective as:

∑
j∈[d]

exp
(
η
(
Rtbd

)
j

)
·
(
`tj
(
xt, yt

)
− wtbd

)
=

∑
i∈[d] exp

(
η
∑t−1
s=1 `

s
i (x

s, ys)
)

exp
(∑t−1

s=1 w
s
bd

) ∑
j∈[d]

χtj ·
(
`tj(x

t, yt)− wtbd

)
.

It now follows that action xt achieves
∑
j∈[d]

exp
(
η
(
Rt−1

bd

)
j

)
·
(
`tj (xt, yt)−wtbd

)
≤ 0, from observing

that: ∑
j∈[d]

χtj ·
(
`tj(x

t, yt)− wtbd

)
=
∑
j∈[d]

χtj · `tj(xt, yt)− wtbd ≤ ψt(xt)− wtbd ≤ 0,

where the final inequality holds since the Learner achieves AMF value bound wtbd at round t.

B.3 Omitted Proofs and Details from Section B.2.1: Bounds for the Probabilistic Learner

First, we define our probabilistic setting, emphasizing the differences to the deterministic protocol.
At each round t ∈ [T], the interaction between the Learner and the Adversary proceeds as follows:

1. At the beginning of each round t, the Adversary selects an environment consisting of the
following, and reveals it to the Learner:

(a) The Learner’s simplex action set X t = ∆At, where At is a finite set of pure actions;
(b) The Adversary’s convex compact action set Yt, embedded in a finite-dimensional

Euclidean space;
(c) A vector valued loss function `t(·, ·) : At × Yt → [−C,C]d. Every dimension

`tj(·, ·) : At × Yt → [−C,C] (where j ∈ [d]) of the loss function is continuous and
concave in the second argument.

2. The Learner selects some xt ∈ X t;
3. The Adversary observes the Learner’s selection xt, and chooses some action yt ∈ Yt in

response;

4. The Learner’s action xt ∈ ∆At is interpreted as a mixture over the pure actions in At, and
an outcome at ∈ At is sampled from it; that is, at ∼ xt.

5. The Learner suffers (and observes) `t(at, yt), the loss vector with respect to the outcome at.

Thus, the probabilistic setting is simply a specialization of our framework to the case of the Learner’s
action set being a simplex at each round.

Unlike in the above deterministic setting, where the transcript through any round t was defined as
{(xt, yt)}ts=1, in the present case we define the transcript through round t as

πt := {(a1, y1), . . . , (at, yt)},

that is, the transcript now records the Learner’s realized outcomes rather than her chosen mixtures at
all rounds. Furthermore, we will denote by Πt the set of transcripts through round t, for t ∈ [T].

Now, let us fix any Adversary Adv (that is, all of the Adversary’s decisions through round T).
With respect to this fixed Adversary, any algorithm for the Learner (defined as the collection of the
Learner’s decision mappings {πt−1 → ∆At}t∈[T] for all rounds) induces an ex-ante distribution
PAdv over the set of transcripts ΠT .

Now, we give two types of probabilistic guarantees on the performance of Algorithm B.1, namely,
an in-expectation bound and a high-probability bound. Both bounds hold for any choice of Adver-
sary Adv, and are ex-ante with respect to the algorithm-induced distribution PAdv over the final
transcripts.

7

Theorem B.1 (In-Expectation Bound). Given T ≥ ln d, Algorithm B.1 with learning rate η =√
ln d

4TC2 guarantees that ex-ante, with respect to the randomness in the Learner’s realized outcomes,
the expected AMF regret is bounded as:

E
[
RT
]
≤ 4C

√
T ln d.

As mentioned in Section B.2.1, the proof of Theorem B.1 is much the same as the proofs of
Theorem 2.1 and the helper Lemmas 2.1, 2.2, 2.3, with the exception of using Jensen’s inequality to
switch the order of taking expectations when necessary. We omit further details.
Theorem B.2 (High-Probability Bound). Fix any δ ∈ (0, 1). Given T ≥ ln d, Algorithm B.1 with

learning rate η =
√

ln d
4TC2 guarantees that the AMF regret will satisfy, with ex-ante probability 1− δ

over the randomness in the Learner’s realized outcomes,

RT ≤ 8C

√
T ln

(
d

δ

)
.

Proof. Throughout this proof, we put tildes over random variables to distinguish them from their
realized values. For instance, π̃t is the random transcript through round t, while πt is a realization of
π̃t. Also, we explicitly specify the dependence of the surrogate loss Lt on the (random or realized)
transcript.

Consider the following random process {Z̃t}, defined recursively for t = 0, 1, . . . , T and adapted to
the sequence of random variables π̃1, . . . , π̃T . We let Z̃0 := 0 deterministically, and for t ∈ [T] we
let

Z̃t := Z̃t−1 + lnLt
(
π̃t
)
− E
π̃t

[
lnLt

(
π̃t
)
|π̃t−1

]
.

It is easy to see that for all t ∈ [T], we have E
π̃t

[
Z̃t|π̃t−1

]
= Z̃t−1, and thus {Z̃t} is a martingale.

We next show that this martingale has bounded increments. In brief, this follows from {Z̃t} being
defined in terms of the logarithm of the surrogate loss.

Lemma B.1. The martingale {Z̃t} has bounded increments: |Z̃t − Z̃t−1| ≤ 4ηC for all t ∈ [T].

Proof. It suffices to establish the bounded increments property for an arbitrary realization of the
process. Towards this, fix the full transcript πT of the interaction, and consider any round t ∈ [T].

Recall from the definition of the surrogate loss that

Lt(πt) =
∑
j∈[d]

exp
(
ηRt−1

j

(
πt−1

))
· exp

(
η
(
`tj(a

t, yt)− wtA
))
.

Thus, noting that
∣∣`tj(at, yt)− wtA∣∣ ≤ 2C for all j ∈ [d], we have

Lt(πt)

Lt−1(πt−1)
=

Lt(πt)∑
j∈[d] exp(ηRt−1

j (πt−1))
∈ [exp (−η · 2C) , exp (η · 2C)] .

Taking the logarithm yields ∣∣lnLt (πt)− lnLt−1(πt−1)
∣∣ ≤ 2ηC.

In fact, this argument shows that
∣∣lnLt(πt′)− lnLt−1(πt−1)

∣∣ ≤ 2ηC for any transcript πt′ that
equals πt−1 on the first t− 1 rounds. Hence, taking the expectation over π̃t conditioned on πt−1, we
obtain: ∣∣E [lnLt (π̃t) |πt−1

]
− lnLt−1(πt−1)

∣∣ ≤ 2ηC.

To conclude the proof, it now suffices to observe that:

|Zt − Zt−1| =
∣∣lnLt (πt)− E[lnLt

(
π̃t
)
|πt−1]

∣∣
≤
∣∣lnLt(πt)− lnLt−1

(
πt−1

)∣∣+
∣∣lnLt−1

(
πt−1

)
− E

[
lnLt

(
π̃t
)
|πt−1

]∣∣
≤ 2ηC + 2ηC = 4ηC.

8

Having established that {Z̃t} is a martingale with bounded increments, we can now apply the
following concentration bound (see e.g. Dubhashi and Panconesi [2009]).

Fact 2 (Azuma’s Inequality). Fix ε>0. For any martingale {Z̃t}Tt=0 with |Z̃t−Z̃t−1|≤ξ for t∈ [T],

Pr
[
Z̃T − Z̃0 ≥ ε

]
≤ exp

(
− ε2

2ξ2T

)
.

We instantiate this bound for our martingale with Z̃0 = 0, ξ = 4ηC, and ε = ξ
√

2T ln 1
δ =

4ηC
√

2T ln 1
δ , and obtain that for any δ ∈ (0, 1),

Z̃T ≤ 4ηC

√
2T ln

1

δ
with prob. 1− δ. (1)

At this point, let us express Z̃T as follows:

Z̃T =

T∑
t=1

(
lnLt

(
π̃t
)
−E
π̃t

[
lnLt

(
π̃t
)
|π̃t−1

])
= lnLT

(
π̃T
)
−lnL0−

T∑
t=1

(
E
π̃t

[
lnLt

(
π̃t
)
|π̃t−1

]
−lnLt−1

(
π̃t−1

))
.

Now, with an eye toward bounding the latter sum, observe that for t ∈ [T],

E
π̃t

[
lnLt(π̃t)|π̃t−1

]
− lnLt−1(π̃t−1) ≤ ln E

π̃t

[
Lt(π̃t)|π̃t−1

]
− lnLt−1

(
π̃t−1

)
≤ ln

((
4η2C2 + 1

)
Lt−1

(
π̃t−1

))
− lnLt−1(π̃t−1)

= ln(4η2C2 + 1)

≤ 4η2C2.

Here, the first step is via Jensen’s inequality and the last step is via ln(1 + x) ≤ x for x > −1. The
second step holds since we can show (via reasoning similar to Lemma 2.3) that for any T ≥ ln d, at

each round t ∈ [T] Algorithm B.1 with learning rate η =
√

ln d
4TC2 achieves:

E
π̃t

[
Lt(π̃t)|π̃t−1

]
≤ (4η2C2 + 1)Lt−1(π̃t−1).

Combining the above observations with Bound 1 and recalling L0=d yields, with probability≥1−δ,

Z̃T ≤ 4ηC

√
2T ln

1

δ
⇐⇒lnLT (π̃T)− ln d−

T∑
t=1

(
E
π̃t

[lnLt(π̃t)|π̃t−1]− lnLt−1(π̃t−1)

)
≤ 4ηC

√
2T ln

1

δ

⇐⇒lnLT (π̃T) ≤ ln d+

T∑
t=1

(
E
π̃t

[lnLt(π̃t)|π̃t−1]− lnLt−1(π̃t−1)

)
+ 4ηC

√
2T ln

1

δ

=⇒ lnLT (π̃T) ≤ ln d+ 4η2C2T + 4ηC

√
2T ln

1

δ
.

Using the last inequality, with η =
√

ln d
4TC2 , and the fact that RT

(
π̃T
)
≤ LT (π̃T)

η (which is easy to
deduce via Lemma 2.1), we thus obtain the desired high-probability AMF regret bound. Specifically,
with probability 1− δ we have:

RT
(
π̃T
)
≤
LT
(
π̃T
)

η
≤ ln d

η
+ 4ηC2T + 4C

√
2T ln

1

δ
= 2
√

4C2T ln d+ 4C

√
2T ln

1

δ

= 4C
√
T

(
√

ln d+

√
2 ln

1

δ

)
≤ 4C

√
T ·
√

2 ·
√

ln d+ 2 ln
1

δ
≤ 8C

√
T ln

d

δ
.

In the last line, we used that
√
x+
√
y ≤
√

2
√
x+ y for x, y ≥ 0.

9

C No-X-Regret: Definitions, Examples, Algorithms, and Proofs

As a warmup, we begin this subsection by carefully demonstrating how to use our framework to
derive bounds and algorithms for the very fundamental external regret setting. Then, we derive
the same types of existential guarantees in the much more general subsequence regret setting. We
then specialize these subsequence regret bounds into tight bounds for various existing regret notions
(such as internal, adaptive, sleeping experts, and multigroup regret). We conclude this subsection by
deriving a general no-subsequence-regret algorithm which in turn specializes to an efficient algorithm
in all of our applications.

C.1 Simple Learning From Expert Advice: External Regret

In the classical experts learning setting Littlestone and Warmuth [1994], the Learner has a set of pure
actions (“experts”) A. At the outset of each round t ∈ [T], the Learner chooses a distribution over
experts xt ∈ ∆A. The Adversary then comes up with a vector of losses rt = (rta)a∈A ∈ [0, 1]A

corresponding to each expert. Next, the Learner samples at ∼ xt, and experiences loss corresponding
to the expert she chose: rtat . The Learner also gets to observe the entire vector of losses rt for
that round. The goal of the Learner is to achieve sublinear external regret — that is, to ensure that
the difference between her cumulative loss and the loss of the best fixed expert in hindsight grows
sublinearly with T :

RText(π
T) :=

∑
t∈[T]

rtat −min
j∈A

∑
t∈[T]

rtj = o(T).

Theorem C.1. Fix a finite pure action set A for the Learner and a time horizon T ≥ ln |A|. Then,
Algorithm B.1 can be instantiated to guarantee that the Learner’s expected external regret is bounded
as

E
πT

[
RText

(
πT
)]
≤ 4
√
T ln |A|,

and furthermore that for any δ ∈ (0, 1), with ex-ante probability 1−δ over the Learner’s randomness,

RText

(
πT
)
≤ 8

√
T ln

|A|
δ
.

Proof. We instantiate our probabilistic framework (see Section B.2.1).

Defining the strategy spaces. We define the Learner’s pure action set at each round to be the set
A, and the Adversary’s strategy space to be the convex and compact set [0, 1]|A|, from which the
Adversary chooses each round’s collection (rta)a∈A of all actions’ losses.

Defining the loss functions. For d = |A|, we define a d-dimensional vector valued loss function
`t = (`tj)j∈A, where for every action j ∈ A, the corresponding coordinate `tj : A × [0, 1]|A| →
[−1, 1] is given by

`tj(a, r
t) = rta − rtj , for a ∈ A, rt ∈ [0, 1]|A|.

It is easy to see that `tj(a, ·) is continuous and concave — in fact, linear — in the second argument
for all j, a ∈ A and t ∈ [T]. Furthermore, its range is [−C,C], for C = 1. This verifies the technical
conditions imposed by our framework on the loss functions.

Applying AMF regret bounds. We may now invoke Theorem B.1, which implies the following
in-expectation AMF regret bound after round T for the instantiation of Algorithm B.1 with the just
defined vector losses (`t)t∈[T]:

E

max
j∈A

∑
t∈[T]

`tj(a
t, rt)−

∑
t∈[T]

wtA

 ≤ 4C
√
T ln d = 4

√
T ln |A|,

10

where recall that wtA is the Adversary-Moves-First (AMF) value at round t. Connecting the instanti-
ated AMF regret to the Learner’s external regret, we get:

E
[
RText

]
= E

max
j∈A

∑
t∈[T]

rtat − rtj

 = E

max
j∈A

∑
t∈[T]

`tj(a
t, rt)

 ≤ 4
√
T ln |A|+

∑
t∈[T]

wtA.

Bounding the Adversary-Moves-First value. To obtain the claimed in-expectation external regret
bound, it suffices to show that the AMF value at each round t ∈ [T] satisfies wtA ≤ 0. Intuitively,
this holds because if at some round the Learner knew the Adversary’s choice of losses (rta)a∈A in
advance, then she could guarantee herself no added loss in that round by picking the action a ∈ A
with the smallest loss rta.

Formally, for any vector of actions’ losses rt, define a∗rt := argmina∈A r
t
a, and notice that

min
a∈A

max
j∈A

`tj(a, r
t) ≤ max

j∈A
`tj
(
a∗rt , r

t
)

= max
j∈A

(
rta∗
rt
− rtj

)
= min

a∈A
rta −min

j∈A
rtj = 0.

The third step follows by definition of a∗rt . Hence, the AMF value is indeed nonpositive at each
round:

wtA = sup
rt∈[0,1]|A|

min
a∈A

max
j∈A

`tj(a, r
t) ≤ 0.

This completes the proof of the in-expectation external regret bound. The high-probability external
regret bound follows in the same way from Theorem B.2 of Section B.2.1.

A bound of
√
T ln |A| is optimal for external regret in the experts learning setting, and so serves to

witness the optimality of Theorem 2.1.

In fact, it is easy to demonstrate that in the external regret setting, the generic probabilistic Al-
gorithm B.1 amounts to the well known Exponential Weights algorithm (Algorithm C.1 below)
Littlestone and Warmuth [1994]. To see this, note that Algorithm B.1, when instantiated with the
above defined loss functions, has the Learner solve the following problem at each round:

xt ∈ argmin
x∈∆A

max
rt∈[0,1]|A|

∑
j∈A

exp
(
η
∑t−1
s=1(rsas − rsj)

)
∑
i∈A exp

(
η
∑t−1
s=1(rsas − rsi)

) E
a∼x

[rta − rtj],

= argmin
x∈∆A

max
rt∈[0,1]|A|

∑
j∈A

exp
(
−η
∑t−1
s=1 r

s
j

)
∑
i∈A exp

(
−η
∑t−1
s=1 r

s
i

) E
a∼x

[rta − rtj],

= argmin
x∈∆A

max
rt∈[0,1]|A|

E
a∼x,j∼EWη(πt−1)

[rta − rtj],

where we denoted the exponential weights distribution as

EWη(πt−1) :=

 exp
(
−η
∑t−1
s=1 r

s
j

)
∑
i∈A exp

(
−η
∑t−1
s=1 r

s
i

)

j∈A

∈ ∆A.

For any choice of rt by the Adversary, the quantity inside the expectation, `tj(a, r
t) = rta − rtj , is

antisymmetric in a and j: that is, `tj(a, r
t) = −`ta(j, rt). Due to this antisymmetry, no matter which

rt gets selected by the Adversary, by playing a ∼ EWη(πt−1) the Learner obtains

E
a,j∼EWη(πt−1)

[
rta − rtj

]
= 0,

thus achieving the value of the game. It is also easy to see that xt = EWη(πt−1) is the unique choice
of xt that guarantees nonnegative value, hence Algorithm B.1, when specialized to the external regret
setting, is equivalent to the Exponential Weights Algorithm C.1.

Algorithm C.1: The Exponential Weights Algorithm with Learning Rate η
for t = 1, . . . , T do

Sample at such that at = j with probability proportional to exp
(
−η
∑t−1
s=1 r

s
j

)
, for j ∈ A.

11

C.2 Generalization to Subsequence Regret

Here, we present a generalization of the experts learning framework from which we will be able
to derive our other applications to no-regret learning problems. There is again a Learner and an
Adversary playing over the course of rounds t ∈ [T]. Initially, the Learner is endowed with a finite
set of pure actions A. At each round t, the Adversary restricts the Learner’s set of available actions
for that round to some subset At ⊆ A. The Learner plays a mixture xt ∈ ∆At over the available
actions. The Adversary responds by selecting a vector of losses (rta)a∈A ∈ [0, 1]|A| associated with
the Learner’s pure actions. Next, the Learner samples a pure action at ∼ xt.
Unlike in the standard setting, the Learner’s regret will now be measured not just on the entire sequence
of rounds 1, 2, . . . , T , but more generally on an arbitrary collection F of weighted subsequences
f : [T]×A → [0, 1]. The understanding is that for any f ∈ F , t ∈ [T], a ∈ At, the quantity f(t, a)
is the “weight” with which round t will be included in the subsequence if the Learner’s sampled
action is a at that round. The Learner does not need to know the subsequences ahead of time; instead
the Adversary may announce the values {f(t, a)}a∈At,f∈F to the Learner before the corresponding
round t ∈ [T].

Definition C.1 (Subsequence Regret). Given a family of functionsF , where each f ∈ F is a mapping
f : [T]×A → [0, 1], chosen adaptively by the Adversary, and a set of finitely many pure actions A
for the Learner, consider a collection of action-subsequence pairsH ⊆ A×F .

The Learner’s subsequence regret after round T with respect to the collectionH is defined by

RTH(πT) := max
(j,f)∈H

∑
t∈[T]

f(t, at)
(
rtat − rtj

)
,

where πT = {(at, rt)}t∈[T] is the transcript of the interaction.

For intuition, suppose F = {1}, where 1 : [T]×A → [0, 1] satisfies 1(t, a) = 1 for all t, a. That is,
the only relevant subsequence is the entire sequence of rounds 1, 2, . . . , T . If we then setH = A×F ,
subsequence regret specializes to the classical notion of (external) regret which was discussed above.

Moreover, we shall require the following condition onH and the action sets {At}t∈[T], which simply
asks that at each round, the Learner be responsible for regret only to currently available actions.

Definition C.2 (No regret to unavailable actions). A collection of action-subsequence pairsH, paired
with action sets {At}t∈[T], satisfy the no-regret-to-unavailable-actions property if at each round
t ∈ [T], for every f ∈ F such that (j, f) ∈ H for some j 6∈ At, it holds that f(t, a) = 0 for all
a ∈ At.

It is worth noting that this condition is trivially satisfied whenever the Learner’s action set is invariant
across rounds (At = A for all t).

Theorem C.2. Consider a sequence of action sets {At}t∈[T] for the Learner, a collection H of
action-subsequence pairs, and a time horizon T ≥ ln |H|. IfH and {At}t∈[T] satisfy no-regret-to-
unavailable-actions, then an appropriate instantiation of Algorithm B.1 guarantees that the Learner’s
expected subsequence regret is bounded as

E
πT

[
RTH

(
πT
)]
≤ 4
√
T ln |H|,

and furthermore, for any δ ∈ (0, 1), that with ex-ante probability 1−δ over the Learner’s randomness,

RTH
(
πT
)
≤ 8

√
T ln

|H|
δ
.

Proof. We instantiate our probabilistic framework of Section B.2.1.

Defining the strategy spaces. At each round t, the Learner’s pure strategy set will be At, and the
Adversary’s strategy space will be the convex and compact set [0, 1]|A|.

12

Defining the loss functions. For all action-subsequence pairs (j, f) ∈ H, we define the correspond-
ing loss `t(j,f) : At × [0, 1]|A| → [−1, 1] as

`t(j,f)(a, r
t) = f(t, a)(rta − rtj), for a ∈ At, rt ∈ [0, 1]|A|.

It is easy to see that for all (j, f) ∈ H and each a ∈ At, the function `t(j,f)(a, ·) is continuous and
concave — in fact, linear — in the second argument, as well as bounded within [−C,C] for C = 1.
Therefore, the technical conditions imposed by our framework on the loss functions are met.

Bounding the Adversary-Moves-First value. At each round t, the AMF value wtA = 0. Trivially,
wtA ≥ 0, as the Adversary can always set rta = 0 for all a. Conversely, wtA ≤ 0 as an easy
consequence of the no-regret-to-unavailable-actions property. To see this, for any vector of actions’
losses rt, define

a∗rt := argmin
a∈At

rta,

and notice that

wtA = sup
rt∈[0,1]|A|

min
a∈At

(
max

(j,f)∈H
`t(j,f)(a, r

t)

)
,

= sup
rt∈[0,1]|A|

min
a∈At

max

(
max

(j,f)∈H:j∈At
`t(j,f)(a, r

t), 0

)
, (no regret to unavailable actions)

≤ sup
rt∈[0,1]|A|

max

(
max

(j,f)∈H:j∈At
`t(j,f)(a

∗
rt , r

t), 0

)
,

= sup
rt∈[0,1]|A|

max

(
max

(j,f)∈H:j∈At
f(t, a∗rt)(r

t
a∗
rt
− rtj), 0

)
,

≤ sup
rt∈[0,1]|A|

max

(
max

(j,f)∈H:j∈At
f(t, a∗rt)(r

t
j − rtj), 0

)
, (by definition of a∗rt)

= sup
rt∈[0,1]|A|

max (0, 0) ,

= 0.

We thus conclude that Theorems B.1 and B.2 apply (with C = 1 and all wtA = 0) to the subsequence
regret setting, yielding the claimed in-expectation and high-probability regret bounds.

We now instantiate subsequence regret with various choices of subsequence families, in order to
get bounds and efficient algorithms for several standard notions of regret from the literature. For
brevity, for each notion of regret considered below we only exhibit the existential in-expectation
guarantee for that type of regret, and omit the corresponding high-probability bounds (which are all
easily derivable from Theorem B.2). We also point out that all in-expectation bounds cited below
are efficiently achievable by instantiating, with appropriate loss functions, the no-subsequence regret
Algorithms C.2 and C.3 derived in the following Section C.3.

In all no-regret settings discussed below, except for Sleeping Experts, the Learner has a pure and
finite action set A at every round t ∈ [T]; furthermore — as usual — the Adversary’s role at each
round consists in selecting the vector of per-action losses (rta)a∈A ∈ [0, 1]|A|.

Internal and Swap Regret To introduce the notion of internal regret [Foster and Vohra, 1998],
consider the following collectionMint ⊂ AA of mappings from the action set A to itself. Mint

consists of the identity map µid (such that µid(a) = a for all a ∈ A), together with all |A|(|A| − 1)
maps µi→j that pair two particular actions: i.e., µi→j(i) = j, and µi→j(a) = a for a 6= i. The
Learner’s internal regret is then defined as

RTint := max
µ∈Mint

∑
t∈[T]

rtat − rtµ(at).

13

In other words, the Learner’s total loss is being compared to all possible counterfactual worlds, for
i, j ∈ A, in which whenever the Learner played some action i, it got replaced with action j (and
other actions remain fixed).

We can reduce the problem of obtaining no-internal-regret to the problem of obtaining no subsequence
regret for a simple choice of subsequences. Let us define the following set of subsequences: F :=
{fi : i ∈ A}, where each fi is defined to be the indicator of the subsequence where the Learner
played action i — that is, for all t ∈ [T], we let fi(t, a) = 1a=i. Then, we letH := A×F . By the
in-expectation no-subsequence-regret guarantee, we then have

E

 max
(j,f)∈H

∑
t∈[T]

f(t, at)
(
rtat − rtj

) ≤ 4
√
T ln |H| = 4

√
2T ln |A|,

since |H| = |A| · |F| = |A|2.

But observe that the Learner’s internal regret precisely coincides with the just defined instance of
subsequence regret:

RTint = max
µ∈Mint

∑
t∈[T]

rtat − rtµ(at) = max
i,j∈A

∑
t∈[T]:at=i

rti − rtj = max
j∈A

max
fi:i∈A

∑
t∈[T]

fi(t, a
t)(rtat − rtj)

= max
(j,f)∈H

∑
t∈[T]

f(t, at)(rtat − rtj).

Therefore, we have established the following existential in-expectation internal regret bound:

E
[
RTint

]
≤ 4
√

2T ln |A|,

which is optimal.

The notion of swap regret, introduced in Blum and Mansour [2007], is strictly more demanding than
internal regret in that it considers strategy modification rules µ that can perform more than one action
swap at a time. Consider the setMswap of all |A||A| swapping rules µ : A → A. The Learner’s
swap regret is defined to be the maximum of her regret to all swapping rules:

RTswap := max
µ∈Mswap

∑
t∈[T]

rtat − rtµ(at).

The interpretation is that the Learner’s total loss is being compared to the total loss of any remapping
of her action sequence.

An easy reduction shows that the swap regret is upper-bounded by |A| times the internal regret. For
completeness, we provide the details of this reduction in Appendix C.4. The reduction implies an
in-expectation bound of 4|A|

√
2T ln |A| on swap regret, which, compared to the optimal bound of

O(
√
T |A| ln |A|) (see Blum and Mansour [2007]), has suboptimal dependence on |A|.

Adaptive Regret In this setting, consider all contiguous time intervals within rounds 1, . . . , T ,
namely, all intervals [t1, t2], where t1, t2 are integers such that 1 ≤ t1 ≤ t2 ≤ T . The Learner’s
regret on each interval [t1, t2] is defined as her total loss over the rounds t ∈ [t1, t2], minus the loss
of the best action for that interval in hindsight. The Learner’s adaptive regret is then defined to be her
maximum regret over all contiguous time intervals:

RTadaptive := max
[t1,t2]:1≤t1≤t2≤T

max
j∈A

t2∑
t=t1

rtat − rtj .

We observe that adaptive regret corresponds to subsequence regret with respect to H := A × F ,
where F := {f[t1,t2] : 1 ≤ t1 ≤ t2 ≤ T} is the collection of subinterval indicator subsequences —
that is, f[t1,t2](t, a) := 1t1≤t≤t2 for all t ∈ [T] and a ∈ A. Observe that |F| ≤ T 2, and therefore, the
expected regret upper bound for subsequence regret specializes to the following expected adaptive
regret bound:

E
[
RTadaptive

]
≤ 4
√
T ln(|A||F|) ≤ 4

√
T (ln |A|+ 2 lnT).

14

Sleeping Experts Following Blum and Mansour [2007], we define the sleeping experts setting as
follows. Suppose that the Learner is initially given a set of pure actions A, and before each round t,
the Adversary chooses a subset of pure actionsAt ⊆ A available to the Learner at that round — these
are known as the “awake experts”, and the rest of the experts are the “sleeping experts” at that round.

The Learner’s regret to each action j ∈ A is defined to be the excess total loss of the Learner during
rounds where j was “awake”, compared to the total loss of j over those rounds. Formally, the
Learner’s sleeping experts regret after round T is defined to be

RTsleeping := max
j∈A

∑
t∈[T]:j∈At

rtat − rtj .

This is clearly an instance of subsequence regret — indeed, we may consider the family of subse-
quences F := {fj : j ∈ A}, where fj(t, a) := 1j∈At for all j, a, t, and letH := {(j, fj)}j∈A. It is
easy to verify that the no-regret-to-unavailable-actions property holds, and thus the guarantees of
the subsequence regret setting carry over to this sleeping experts setting. In particular, the following
existential in-expectation sleeping experts regret bound holds:

E
[
RTsleeping

]
≤ 4
√
T ln |A|,

which is also optimal in this setting.

Multi-Group Regret We imagine that before each round, the Adversary selects and reveals to
the Learner some context θt from an underlying feature space Θ. The interpretation is that the
Learner’s decision at round t will pertain to an individual with features θt. Additionally, there is a
fixed collection G ⊂ 2Θ, where each g ∈ G is interpreted as a (demographic) group of individuals
within the population Θ. Here G may be large and may consist of overlapping groups. The Learner’s
goal is to minimize regret to each action a ∈ A not just over the entire population, but also separately
for each population group g ∈ G. Explicitly, the Learner’s multi-group regret after round T is defined
to be

RTmulti := max
g∈G

max
j∈A

∑
t∈[T]:θt∈g

rtat − rtj .

It is easy to see that multi-group regret corresponds to subsequence regret withH := A×F , where
F := {fg : g ∈ G} is the collection of group indicator subsequences — that is, fg(t, a) := 1θt∈g
for all t, a. Here we are taking advantage of the fact that the functions f on which subsequences are
defined need not be known to the algorithm ahead of time, and can be revealed sequentially by the
Adversary, allowing us to model adversarially chosen contexts. Therefore, multi-group regret inherits
subsequence regret guarantees, and in particular, we obtain the following existential in-expectation
multi-group regret bound:

E
[
RTmulti

]
≤ 4
√
T ln(|A||G|).

Observe that this bound scales only as
√

ln |G| with respect to the number of population groups,
which we can therefore take to be exponentially large in the parameters of the problem.

C.3 Deriving No-Subsequence-Regret Algorithms

We now present a way to specialize Algorithm B.1 to the setting of subsequence regret with no-regret-
to-unavailable-actions. At each round, instead of solving a convex-concave problem, the specialized
algorithm will only need to solve a polynomial-sized linear program.

Algorithm C.2: Efficient No Subsequence Regret Algorithm for the Learner
for t = 1, . . . , T do

Learn the current set of feasible actions At (potentially selected by an Adversary).
Learn the values f(t, a) for every a ∈ At and f ∈ F (potentially selected by an Adversary).
Solve for xt = (xta)a∈At ∈ ∆At defined by the following linear inequalities for all a ∈ At:

xta
∑

(j,f)∈H

exp

(
η

t−1∑
s=1

`s(j,f)(a
s, rs)

)
f(t, a)−

∑
j∈At

xtj
∑

f :(a,f)∈H

exp

(
η

t−1∑
s=1

`s(a,f)(a
s, rs)

)
f(t, j) ≤ 0

Sample at ∼ xt.

15

Theorem C.3. Algorithm C.2 implements Algorithm B.1 in the subsequence regret setting, and
achieves the same guarantees.

Proof. In parallel to the notation of Algorithm B.1, we define the following set of weights at round
t ∈ [T]:

χt(j,f) :=
1

Zt
exp

(
η

t−1∑
s=1

`s(j,f)(a
s, rs)

)
,

where

Zt :=
∑

(j,f)∈H

exp

(
η

t−1∑
s=1

`s(j,f)(a
s, rs)

)
.

When instantiated with our current set of loss functions, Algorithm B.1 solves the following zero-sum
game at round t ∈ [T], where we denote `t(j,f)(x, r

t) := Ea∼x[`t(j,f)(a, r
t)]:

xt ∈ argmin
x∈∆At

max
rt∈[0,1]|A|

∑
(j,f)∈H

χt(j,f) · `
t
(j,f)

(
x, rt

)
.

By definition of the loss functions in the subsequence regret setting, the objective function is linear in
the Adversary’s choice of rt. Thus, let us rewrite the objective as a linear combination of (rta)a∈At :∑

(j,f)∈H

χt(j,f) · `
t
(j,f)(x, r

t),

=
∑

(j,f)∈H

χt(j,f)

∑
a∈At

xa · f(t, a) · (rta − rtj),

=
∑

(j,f)∈H

∑
a∈At

rta · xa · f(t, a) · χt(j,f) −
∑

(j,f)∈H

∑
a∈At

rtj · xa · f(t, a) · χt(j,f),

which, by the no-regret-to-unavailable actions property,

=
∑
a∈At

rta · xa
∑

(j,f)∈H

f(t, a) · χt(j,f) −
∑
j∈At

rtj
∑
a∈At

xa
∑

f :(j,f)∈H

f(t, a) · χt(j,f),

and now, swapping j and a in the second summation,

=
∑
a∈At

rta · xa
∑

(j,f)∈H

f(t, a) · χt(j,f) −
∑
a∈At

rta
∑
j∈At

xj
∑

f :(a,f)∈H

f(t, j) · χt(a,f),

=
∑
a∈At

rta

xa
∑

(j,f)∈H

f(t, a) · χt(j,f) −
∑
j∈At

xj
∑

f :(a,f)∈H

f(t, j) · χt(a,f)︸ ︷︷ ︸
:=ca(x)

 .

Thus, the zero-sum game played at round t has objective function
∑
a∈At

ca(xt) · rta, where the

coefficients ca(xt) do not depend on the Adversary’s action rt. Recall that this game has value at
most wtA = 0. Hence, maxa∈At ca(xt) ≤ 0 for any minimax optimal strategy xt for the Learner —
since otherwise, if some ca′(xt) > 0, the Adversary would get value ca′(xt) > 0 by setting rta′ = 1
and rta = 0 for a 6= a′. Conversely, by playing xt such that max

a∈At
ca(xt) ≤ 0, the Learner gets value

≤ 0, as rta ≥ 0 for all a.

Therefore, the Learner’s choice of xt is minimax optimal if and only if for all a ∈ At,
ca(xt) ≤ 0 ⇐⇒ Zt · ca(xt) ≤ 0 ⇐⇒

xta
∑

(j,f)∈H

f(t, a) exp

(
η

t−1∑
s=1

`s(j,f)(a
s, rs)

)
−
∑
j∈At

xtj
∑

f :(a,f)∈H

f(t, j) exp

(
η

t−1∑
s=1

`s(a,f)(a
s, rs)

)
≤ 0.

This recovers Algorithm C.2, concluding the proof.

16

Simplification for Action Independent Subsequences The above Algorithm C.2 requires solving
a linear feasibility problem. This mirrors how existing algorithms for the special case of minimizing
internal regret operate (Blum and Mansour [2007]); recall that internal regret corresponds to subse-
quence regret for a certain collection of |A| subsequences that depend on the Learner’s action in the
current round t.

By contrast, if all of our subsequence indicators f ∈ F are action independent, that is, satisfy
f(t, a) = f(t, a′) for all a, a′ ∈ A and t ∈ [T], then it turns out that we can avoid solving a system
of linear inequalities: our equilibrium has a closed form. In what follows, we abuse notation and
simply write f(t) for the value of the subsequence f at round t.

Observe that if each f ∈ F is action independent, then we can rewrite our equilibrium characterization
in Algorithm C.2 as the requirement that the Learner’s chosen distribution xt ∈ ∆At must satisfy,
for each a ∈ At (provided that f(t) 6= 0 for at least some f ∈ F), the following inequality:

xta ≤

∑
j∈At x

t
j

∑
f :(a,f)∈H f(t) exp

(
η
∑t−1
s=1 `

s
(a,f)(a

s, rs)
)

∑
(j,f)∈H f(t) exp

(
η
∑t−1
s=1 `

s
(j,f)(a

s, rs)
) ,

=

∑
f :(a,f)∈H f(t) exp

(
η
∑t−1
s=1 `

s
(a,f)(a

s, rs)
)

∑
(j,f)∈H f(t) exp

(
η
∑t−1
s=1 `

s
(j,f)(a

s, rs)
) .

Here the equality follows because xt ∈ ∆At is a probability distribution.

We now observe that setting each xta to be its upper bound, for a ∈ At, yields a probability distribution
over At, which is consequently the unique feasible solution to the above system. Hence, for action
independent subsequences, we have a closed-form implementation of Algorithm C.2 that does not
require solving a linear feasibility problem:

Algorithm C.3: An Efficient Learner for Action Independent Subsequences
for t = 1, . . . , T do

Learn the current set of feasible actions At and the values f(t) for every f ∈ F (potentially
selected by an Adversary).
Sample at ∼ xt, where for all a ∈ At,

xta =

∑
f :(a,f)∈H f(t) exp

(
η
∑t−1
s=1 `

s
(a,f)(a

s, rs)
)

∑
(j,f)∈H f(t) exp

(
η
∑t−1
s=1 `

s
(j,f)(a

s, rs)
) .

C.4 Omitted Reductions between Different Notions of Regret

Reducing swap regret to internal regret We can upper bound the swap regret by reusing the
instance of subsequence regret that we defined to capture internal regret. Recall that it was defined
as follows. We let F := {fi : i ∈ A}, where each fi is the indicator of the subsequence of rounds
where the Learner played action i — that is, for all t ∈ [T], we let f(t, a) = 1a=i. Then, we let
H := A×F . We then obtained the in-expectation regret guarantee

E

 max
(j,f)∈H

∑
t∈[T]

f(t, at)
(
rtat − rtj

) ≤ 4
√

2T ln |A|.

17

Returning to swap regret, note that for any fixed swapping rule µ : A → A, we have∑
t∈[T]

rtat − rtµ(at) =
∑
i∈A

∑
t∈[T]:at=i

rtat − rtµ(i)

≤
∑
i∈A

max
j∈A

∑
t∈[T]:at=i

rtat − rtj

≤ |A|max
i∈A

max
j∈A

∑
t∈[T]:at=i

rtat − rtj

= |A| max
(j,f)∈H

∑
t∈[T]

f(t, at)
(
rtat − rtj

)
,

where in the last line we simply reparametrized the maximum over i ∈ A as the maximum over all
f ∈ F . Since the above holds for any µ ∈Mswap, we have

Rtswap = max
µ∈Mswap

∑
t∈[T]

rtat − rtµ(at) ≤ |A| max
(j,f)∈H

∑
t∈[T]

f(t, at)
(
rtat − rtj

)
,

and therefore, we conclude that there exists an efficient algorithm that achieves expected swap regret

E
[
RTswap

]
≤ 4|A|

√
2T ln |A|.

Wide-range regret and its connection to subsequence regret The wide-range regret setting was
first introduced in Lehrer [2003] and then studied, in particular, in Blum and Mansour [2007]
and Greenwald and Jafari [2003]. It is quite general, and is in fact equivalent to the subsequence
regret setting, up to a reparametrization.

Just as in the subsequence regret setting, imagine there is a finite family of subsequences F , where
each f ∈ F has the form f : [T] × A → [0, 1]. Moreover, suppose there is a finite familyM of
modification rules. Each modification rule µ ∈ M is defined as a mapping µ : [T] × A → A,
which has the interpretation that if at time t, the Learner plays action at, then the modification rule
modifies this action into another action µ(t, at) ∈ A. Now, consider a collection of modification
rule-subsequence pairsH ⊆M×F . The Learner’s wide-range regret with respect toH is defined as

RTwide := max
(µ,f)∈H

∑
t∈[T]

f(t, at)
(
rtat − rtµ(t,at)

)
.

It is evident that wide-range regret has subsequence regret (when the Learner’s action set At = A for
all t ∈ [T]) as a special case, where each modification rule µ ∈M always outputs the same action:
that is, for all t, at, we have µ(t, at) = j for some j ∈ A.

It is also not hard to establish the converse. Indeed, suppose we have an instance of no-wide-range-
regret learning withH ⊆M×F , whereM is a family of modification rules and F is a family of
subsequences. Fix any pair (µ, f) ∈ H. Then, let us define, for all j ∈ A, the subsequence

φ
(µ,f)
j : [T]×A → [0, 1] such that φ(µ,f)

j (t, a) := f(t, a) · 1µ(t,a)=j for all t ∈ [T], a ∈ A.

Now, let us instantiate our subsequence regret setting with

Hwide :=
⋃

(µ,f)∈H

⋃
j∈A

(
j, φ

(µ,f)
j

)
.

Observe in particular that |Hwide| = |A| · |H|.
Computing the subsequence regret of this familyHwide, we have

RTHwide
= max

(µ,f)∈H
max
j∈A

∑
t∈[T]:µ(t,at)=j

f(t, at)(rtat − rtj).

18

Now, we have the following upper bound on the wide-range regret:

RTwide = max
(µ,f)∈H

∑
t∈[T]

f(t, at)
(
rtat − rtµ(t,at)

)
= max

(µ,f)∈H

∑
j∈A

∑
t∈[T]:µ(t,at)=j

f(t, at)
(
rtat − rtj

)
≤ max

(µ,f)∈H
|A| max

j∈A

∑
t∈[T]:µ(t,at)=j

f(t, at)
(
rtat − rtj

)
= |A|RTHwide

.

Since our subsequence regret results imply the existence of an algorithm such that E
[
RTHwide

]
≤

4
√
T ln |H ′| = 4

√
T (ln |A|+ ln |H|), we have the following expected wide-range regret bound:

E
[
RTwide

]
≤ 4|A|

√
T (ln |A|+ ln |H|).

D Multicalibration: The Algorithm and Full Proofs

A simple and efficient algorithm for the Learner As mentioned in the proof sketch of Theo-
rem 4.1, in the setting of multicalibration, our framework’s general Algorithm B.1 has a particularly
simple approximate version (originally derived in Gupta et al. [2022]) that lets the Learner (almost)
match the above bounds on the multicalibration constant α. This approximate algorithm is very
efficient and has “low” randomization: namely, at each round the Learner plays an explicitly given
distribution which randomizes over at most two points in Ar.

Algorithm D.1: Simple Multicalibrated Learner
for t = 1, . . . , T do

Observe θt.
For each i ∈ [n], compute:

Cit−1 :=
∑

g∈G: θt∈g

exp

(
η

t−1∑
s=1

`si,g,+1 (as, bs)

)
− exp

(
−η

t−1∑
s=1

`si,g,+1 (as, bs)

)
.

if Cit−1 > 0 for all i ∈ [n] then
Predict at = 1.

else if Cit−1 < 0 for all i ∈ [n] then
Predict at = 0.

else
Find j ∈ [n− 1] such that Cjt−1 · C

j+1
t−1 ≤ 0.

Define qt ∈ [0, 1] as follows (using the convention that 0/0 = 1):

qt :=
∣∣∣Cj+1
t−1

∣∣∣ /(∣∣∣Cj+1
t−1

∣∣∣+
∣∣∣Cjt−1

∣∣∣) .
Sample at = j

n −
1
rn with probability qt and at = j

n with probability 1− qt.

Theorem D.1. Algorithm D.1 achieves the multicalibration guarantees of Theorem 4.1.

Proof. Let us instantiate the generic probabilistic Algorithm B.1 with our current set of loss functions.
In parallel with the notation of Algorithm B.1, for any bucket i, group g and σ ∈ {−1,+1}, we
define

χti,g,σ :=
1

Zt
exp

(
η

t−1∑
s=1

`si,g,σ(as, bs)

)
,

where

Zt :=
∑

i′∈[n],g′∈G,σ′=±1

exp

(
η

t−1∑
s=1

`si′,g′,σ′(a
s, bs)

)
.

19

In this notation, at each round t ∈ [T], the Learner has to solve the following zero-sum game:

xt ∈ argmin
x∈∆Ar

max
b∈[0,1]

E
a∼x

[
ξt (a, b)

]
,

where we define
ξt(a, b) :=

∑
i∈[n],g∈G,σ∈{−1,1}

χti,g,σ · `ti,g,σ(a, b) for a ∈ Ar, b ∈ [0, 1].

For any a, let ia denote the unique bucket index i ∈ [n] such that a ∈ Bin. Substituting
`ti,g,σ(a, b) = σ · 1θt∈g · 1a∈Bin · (b− a),

we see that most terms in the summation disappear, and what remains is precisely

ξt(a, b) =
∑

g∈G: θt∈g

∑
σ∈{−1,1}

χtia,g,σ · σ(b− a) = (b− a) ·
Ciat−1

Zt
,

where Ciat−1 = Zt
∑

g∈G:θt∈g
χtia,g,+1 − χtia,g,−1 is as defined in the pseudocode for Algorithm D.1.

Crucially, for any distribution x chosen by the Learner, her attained utility after the Adversary
best-responds has a simple closed form. Namely, given any x played by the Learner, we have

max
b∈[0,1]

E
a∼x

[
ξt (a, b)

]
=

1

Zt

(
max
b∈[0,1]

(
b · E

a∼x

[
Ciat−1

])
− E
a∼x

[
a · Ciat−1

])
,

=
1

Zt

(
max

(
E
a∼x

[
Ciat−1

]
, 0

)
− E
a∼x

[
a · Ciat−1

])
.

With this in mind, the Learner can easily achieve value 0 in the following two cases. When Cit−1 > 0

for all i ∈ [n], playing a = 1 deterministically gives: max

(
E
a∼x

[
Ciat−1

]
, 0

)
− E
a∼x

[
a · Ciat−1

]
=

E
a∼x

[
Ciat−1

]
− E
a∼x

[
Ciat−1

]
= 0. When Cit−1 < 0 for all i ∈ [n], she can play a = 0 deterministically,

ensuring that max

(
E
a∼x

[
Ciat−1

]
, 0

)
− E
a∼x

[
a · Ciat−1

]
= 0− 0 = 0.

In the final case, when there are nonpositive and nonnegative quantities among {Cit−1}i∈[n], note that
there exists an intermediate index j ∈ [n− 1] such that Cjt−1 · C

j+1
t−1 ≤ 0. Then, it is easy to check

that qt, as defined in Algorithm D.1, satisfies

qtCjt−1 + (1− qt)Cj+1
t−1 = 0.

Using this relation, we obtain that when the Learner plays at = j
n −

1
rn with probability qt and

at = j
n with probability 1− qt, she accomplishes value

max
b∈[0,1]

E
at

[
ξt
(
at, b

)]
=

1

Zt

(
max

(
E
[
C
iat
t−1

]
, 0
)
− E

[
at · Ciatt−1

])
=

1

Zt

(
max

(
qt · Cjt−1 + (1− qt)Cj+1

t−1 , 0
)
−
(
qt
(
j
n −

1
rn

)
Cjt−1 + (1− qt) jnC

j+1
s

))
=

1

Zt
· 1

rn
Cjt−1,

and thus, recalling that Ct−1
j = Zt

∑
g∈G:θt∈g χ

t
j,g,+1 − χtj,g,−1, we obtain

max
b∈[0,1]

E
at

[
ξt
(
at, b

)]
=

1

rn

∑
g∈G:θt∈g

χtj,g,+1 − χtj,g,−1 ≤
1

rn

∑
i∈[n],g∈G,σ=±1

χti,g,σ =
1

rn
,

where the last line is due to the quantities χi,g,σ forming a probability distribution.

Therefore, in the language of Section B.2.2, the Learner who uses Algorithm D.1 guarantees herself
achieved AMF value bounds

wtbd =
1

rn
for t ∈ [T].

Hence, by Theorem B.3, our (suboptimal) Learner achieves the claimed multicalibration bounds.

20

E Multicalibeating: Full Statements and Proofs

E.1 Calibeating a Single Forecaster: Proof of Theorem 4.2

Proof of Theorem 4.2. For the exposition of this full proof, we will employ some probabilistic
notation that we have not seen in the main Section 4.2. We briefly define it here.

For any subsequence S ⊆ [T] of rounds, t ∼ S denotes a uniformly random round in S. We denote the
empirical distributions of the values of f , a, (f, a) on S ⊆ [T] byDf (S),Da(S),Df×a(S) (or simply
Df ,Da,Df×a when S = [T]). In this notation, we e.g. haveRf (πT) = Ed∼Df [Vart∼Sd [bt]].

Our quantity of interest, the Brier score Ba of the Learner’s predictions a, is inconvenient to han-
dle: indeed, the calibration-refinement decomposition of Ba is of little utility since the Learner’s
predictions can take arbitrary real values (in particular, they might all be distinct, in which case the
refinement score would be 0, and all of the Brier score would be contained in the calibration error).
Instead, we define a convenient surrogate notion of bucketed Brier/calibration/refinement score.

Kan(πT) :=
1

T

∑
i∈[n]

|Si|(ā(Si)− b̄(Si))2.

Ran(πT) :=
1

T

∑
i∈[n]

∑
t∈Si

(bt − b̄(Si))2 =
1

T

∑
i∈[n]

|Si|Var
t∈Si

[bt] = E
i∼Di

[Var
t∼Si

[bt]].

Ban(πT) := Kan(πT) +Ran(πT).

The following lemma shows that as long as n is large enough, the surrogate Brier score is a good
estimate of the true Brier score of our predictions (i.e. our squared error).

Lemma E.1. Ba ≤ Ban + 1
n .

Proof. We first compute that the original Brier score Ba equals

Ba :=
1

T

T∑
t=1

(at − bt)2 =
1

T

n∑
i=1

∑
t∈Si

(at − bt)2 =
1

T

n∑
i=1

|Si|
∑
t∈Si

1

|Si|
(at − bt)2.

The inner sum is the expectation, over the transcript, of (at − bt)2 conditioned on at ∈ Bin, so we
can write:

Ba =
1

T

n∑
i=1

|Si| E
t∼Si

[(at − bt)2].

We can decompose the expected value as:

E
t∼Si

[(at − bt)2] = (E
t∼Si

[at − bt])2 + Var
t∼Si

[at − bt].

By linearity of expectation, the expectation-squared term satisfies:

(E
t∼Si

[at − bt])2 = (ā(Si)− b̄(Si))2.

Meanwhile, the variance term can be upper bounded using the following fact:

Fact 3. For any random variables X,Y :

Var[X + Y] = Var[X] + Var[Y] + 2Cov(X,Y) ≤ Var[X] + Var[Y] + 2
√

Var[X] Var[Y].

where the inequality follows from an application of Cauchy-Schwartz.

Instantiating X = at and Y = −bt, and upper bounding
√

Var[X] ≤ 1
2n ,
√

Var[Y] ≤ 1
2 , we get:

Var
t∼Si

[at − bt] ≤ Var
t∼Si

[at] + Var
t∼Si

[bt] + 2
√

Var
t∼Si

[at] Var
t∼Si

[bt],

≤ 1

(2n)2
+ Var
t∼Si

[bt] +
1

2n
,

≤ Var
t∼Si

[bt] +
1

n
.

21

Putting the above back together gives the desired bound on the difference of Ba and Ban:

Ba =
1

T

n∑
i=1

|Si| E
t∼Si

[(at − bt)2],

≤ 1

T

n∑
i=1

|Si|
(

(ā(Si)− b̄(Si))2 + Var
t∼Si

[bt] +
1

n

)
,

=
1

T

n∑
i=1

|Si|(ā(Si)− b̄(Si))2 +
1

T

n∑
i=1

|Si| Var
t∼Si

[bt] +
1

n
,

= Kan +Ran +
1

n
.

Having shown that the surrogate Brier score Ban closely approximates the Learner’s original score Ba,
we can now focus on bounding the calibration and refinement scores associated with Ban.

Calibration: Our multicalibration condition on Θ implies that |Si|T |b̄(Si)− ā(Si)| ≤ α for i ∈ [n].
The calibration score bound then follows directly.

Kan =
1

T

∑
i∈[n]

|Si|(b̄(Si)− ā(Si))
2 ≤ 1

T

∑
i∈[n]

|Si||b̄(Si)− ā(Si)| ≤
∑
i∈[n]

α = αn.

Refinement: We claim that the Learner’s surrogate refinement score relates to the refinement score of
the forecaster f as follows:

Ran ≤ Rf + αn(|Df |+ 1) +
1

n
.

The proof proceeds in two steps, connectingRf andRa via a quantity we callRf×a.

Definition E.1 (Joint Refinement Score).

Rf×a := E
d,i∼Df×a

[Var
t∼Sdi

[bt]] =
1

T

∑
d∈Df ,i∈[n]

|Sdi | Var
t∼Sdi

[bt].

Recall that refinement score, although we defined it for a forecaster, is really a property of a partition
of the days. It’s equally well defined if, instead of partitioning by days on which a forecaster makes a
certain forecast, we partition on say, even and odd days, or sunny vs cloudy vs rainy vs snowy days.
Or, in the case of Definition E.1, the partition {Sdi }i∈[n],d∈D.

First, note that the joint refinement score of a and f is no worse than the refinement score of f .

Observation 1. Rf ≥ Rf×a.

Intuitively this should make sense, since {Sdi } is a refinement of f ’s level sets by a’s level sets. If a
is “useful”, then this inequality would be strict, as combining with a would explain away more of the
variance. Refining by a cannot decrease the amount of variance captured by the partition.

Reversing our perspective, we can think of {Sdi } as a refinement of a’s level sets by f ’s level sets.
The key idea is to use multicalibration to show that refining by f is not “useful." Multicalibration
ensures us that almost all of f ’s explanatory power is captured by a.

Observation 2. Ran = Rf×a + Ei∼Da [Vard∼Df (Si)[b̄(S
d
i)]].

Observation 3. The extra error term is small: Ei∼Da [Vard∼Df (Si)[b̄(S
d
i)]] ≤ αn(|D|+ 1) + 1

n .

Combining these three observations will give us our desired refinement score bound:

Ran(b) ≤ Rf + αn(|D|+ 1) +
1

n
.

We therefore now prove these observations one by one.

22

Proof of Observation 1. We recall the following fact from probability:

Fact 4 (Law of Total Variance). For any random variables W,Z : Ω→ R in a probability space,

Var[Z] = E[Var[Z|W]] + Var[E[Z|W]].

In particular, since variance is always non-negative:

Var[Z] ≥ E[Var[Z|W]].

For each fixed d, we instantiate this fact with Ω = Sd (equipped with the discrete σ-algebra and
uniform distribution). Z(t) := bt and W (t) := iat , the unique i s.t. at ∈ Bin. This gives us:

Var
t∼Sd

[bt] ≥ E
i∼Da(Sd)

[Var
t∼Sd

[bt|at ∈ Bin]] = E
i∼Da(Sd)

[Var
t∼Sdi

[bt]].

Since this is true for all d, the inequality continues to hold in expectation over the d’s:

Rf = E
d∼Df

[Var
t∼Sd

[bt]] ≥ E
d,i∼Df×a

[Var
t∼Sdi

[bt]] = Rf×a.

Proof of Observation 2. Recall the definition of bucketed refinement:

Ran = E
i∼Da

[Var
t∼Si

[bt]].

To relate this back toRf×a, we instantiate Fact 5 again, but flipping the roles of f and a: we take the
underlying spaces to be the sequences Si defined by calibrated buckets, and let W , the variable we
condition on, be the level sets of f .

For any fixed i representing a level set of a, Fact 5 tells us:

Var
t∼Si

[bt] = E
d∼Df (Si)

[Var
t∼Si

[bt|f t = d]]+ Var
d∼Df (Si)

[E
t∼Si

[bt|f t = d]] = E
d∼Df (Si)

[Var
t∼Sdi

[bt]]+ Var
d∼Df (Si)

[b̄(Sdi)].

Like before, we take the expectation over all i ∈ [n], giving us the desired result:

Ran = E
i∼Da

[Var
t∼Si

[bt]] = E
d,i∼Df×a

[Var
t∼Sdi

[bt]]+ E
i∼Da

[Var
d∼Df (Si)

[b̄(Sdi)]] = Rf×a+ E
i∼Da

[Var
d∼Df (Si)

[b̄(Sdi)]].

Proof of Observation 3. We have to bound the extra error term:

E
i∼Da

[Var
d∼Df (Si)

[b̄(Sdi)]].

In words, this is the expected variance of the true averages on Sdi , conditioned on the buckets i.
Intuitively, if these true averages vary a lot, then the calibration error on the Sdi s must be large since
the prediction on each of the Sdi s is (close to) i/n; in particular, they are almost constant across d.

23

Conversely, if multicalibration error is low, then the variance must be low as well. Formally,

E
i∼Da

[Var
d∼Df (Si)

[b̄(Sdi)]] =
∑
i∈[n]

|Si|
T

(Var
d

[E
t∼Sdi

[bt]]),

=
∑
i∈[n]

|Si|
T

(
∑
d∈D

|Sdi |
|Si|

(b̄(Sdi)− b̄(Si))2),

=
∑
i,d

|Sdi |
T

(b̄(Sdi)− b̄(Si))2,

≤
∑
i,d

|Sdi |
T
|b̄(Sdi)− b̄(Si)|,

≤
∑
i,d

|Sdi |
T

(|b̄(Sdi)− ā(Sdi)|+ |ā(Sdi)− ā(Si)|+ |ā(Si)− b̄(Si)|),

≤
∑
i,d

|Sdi |
T

(Tα/|Sdi |+
1

n
+ Tα/|Si|),

≤ 1

n
+
∑
i

α+
∑
i,d

α,

=
1

n
+ αn(|D|+ 1).

The first line is just expanding out the definition. In the third line, we upperbound square with
absolute value, since all values are at most 1. In the forth line, we break apart the error term into the
difference between our average prediction on Sdi and the true average (upperbounded by Tα/|Sdi |,
by calibration guarantees w.r.t S(f)), the difference between our prediction on Sdi and our average
prediction on Si (which is upper bounded by 1/n, the size of our bucketing), and the difference
between our average prediction on Si and the true average (upperbounded by Tα/|Si|).

We have shown that Kan ≤ αn, and our three observations have given us that Ran(b) ≤ Rf +
αn(|D| + 1) + 1

n . Combining these results and Lemma E.1, we obtain the desired bound: Ba ≤
Rf + αn(|D|+ 2) + 2

n . This concludes the proof of Theorem 4.2.

E.2 Applying Theorem 4.2: Explicit Rates and Multiple Forecasters

First, we show how to instantiate Theorem 4.2 with our efficiently achievable multicalibration
guarantees on α of Theorem 4.1.
Corollary E.1. When run with parameters r, n ≥ 1 on the collection G′ := S(f) ∪ {Θ}, the
multicalibration algorithm (Algorithm D.1) τ -calibeats f , where

E[τ] ≤ 2

n
+ n(|Df |+ 2)

(
1

rn
+ 4

√
ln(2(|Df |+ 1)n)

T

)
,

and for any δ ∈ (0, 1), with probability 1− δ,

τ ≤ 2

n
+ n(|Df |+ 2)

(
1

rn
+ 8

√
1

T
ln

(
2(|Df |+ 1)n

δ

))
.

The calibration error overall of the algorithm is bounded, for any δ ∈ (0, 1), as:

E[Kan] ≤ 1

r
+4n

√
ln(2(|Df |+ 1)n)

T
and Kan ≤

1

r
+8n

√
1

T
ln

(
2(|Df |+ 1)n

δ

)
w. prob. 1−δ.

Proof. Using our online multicalibration guarantees, we get (by Theorem D.1):

E[α] ≤ 1

rn
+ 4

√
ln(2(|Df |+ 1)n)

T
,

24

and, for any δ ∈ (0, 1), with probability 1− δ:

α ≤ 1

rn
+ 8

√
1

T
ln

(
2(|Df |+ 1)n

δ

)
,

Plugging this into the result from Theorem 4.2:

Ba −Rf ≤ αn(|D|+ 2) +
2

n
,

we obtain the desired in-expectation bound on τ :

E[τ] ≤ 2

n
+ n(|Df |+ 2)E[α] ≤ 2

n
+ n(|Df |+ 2)

(
1

rn
+ 4

√
ln(2(|Df |+ 1)n)

T

)
.

We can do so similarly for the high probability bound, so that with probability 1− δ:

τ ≤ 2

n
+ n(|Df |+ 2)

(
1

rn
+ 8

√
1

T
ln

(
2(|Df |+ 1)n

δ

))
.

Finally, the overall calibration error follows directly by plugging in for α.

The main utility in our approach to calibeating is that it easily extends to multicalibeating. As a warm
up, we start by deriving calibration with respect to an ensemble of forecasters. The main result then
combines this with calibeating on groups to attain the multicalibeating from Definition 4.5.

Calibeating an ensemble of forecasters Since our result above is based on bounds on multicalibra-
tion, we can easily extend it to calibeating an ensemble of forecasters F by asking for multicalibration
with respect to the level sets of all forecasters. More formally, define the groups as:⋃

f∈F

S(f)

 ∪ {Θ}.
Theorem 4.2 applies separately to each f . The only degradation comes in the α, since we’re asking
for multicalibration with respect to more groups. But this effect is small, since the dependence on the
number of groups is only O(

√
ln |G|).

Corollary E.2 (Ensemble Calibeating). On groups G′ :=
(⋃

f∈F S(f)
)
∪{Θ}, the multicalibration

algorithm with parameters r, n ≥ 1, after T rounds attains (F , {Θ}, β)-multicalibeating with

E[β(f,Θ)] ≤ 2

n
+ n(|Df |+ 2)

 1

rn
+ 4

√
ln(2(1 +

∑
f ′∈F Df ′)n)

T

 .

Proof. We instantiate Theorem D.1 with group collection size |G′| = 1 +
∑
f ′∈F |Df ′ | to conclude

that the multicalibrated algorithm achieves (α, n)-multicalibration, with

E[α] ≤ 1

rn
+ 4

√
ln(2(1 +

∑
f ′∈F Df ′)n)

T
.

Now, ∀f ∈ F : S(f) ∪ {Θ} ⊆ G′ for every f ∈ F , so we can instantiate Theorem 4.2 for every
forecaster f ∈ F to give us:

Ba −Rf ≤ αn(|Df |+ 2) +
2

n
∀ f ∈ F .

Plugging in the in-expectation bound on α, we conclude:

E[β(f,Θ)] ≤ E[α] ·n(|Df |+ 2) +
2

n
≤ 2

n
+n(|Df |+ 2)

 1

rn
+ 4

√
ln(2(1 +

∑
f ′∈F Df ′)n)

T

 .

25

E.3 Multicalibeating + Multicalibration Theorem 4.3: Full Statement and Proof

Recall that for every group g ∈ G, we let S(g) denote the subsequence of days on which g occurs,
where the transcript is left implicit.

Theorem E.1 (Multicalibeating + Multicalibration: Full version with high-probability bounds).
Let G ⊆ 2Θ, and F some set of forecasters f : Θ → Df . The multicalibration algorithm on

G′ :=
(⋃

f∈F{g ∩ S : (g, S) ∈ G × S(f)}
)
∪ G with parameters r, n ≥ 1, after T rounds, attains

expected (F ,G, β)-multicalibeating, where: E.1

E[β(f, g)] ≤ 2

n
+
|Df |+ 2

r · |S(g)|/T
+4n(|Df |+2)

√
1

|S(g)|2/T
ln
(

2n|G|(1 +
∑
f |Df |)

)
∀ f ∈ F , g ∈ G,

while maintaining (α, n)-multicalibration on the original collection G, with:

E[α] ≤ 1

rn
+ 4

√
1

T
ln
(

2n|G|(1 +
∑
f |Df |)

)
.

We also have the corresponding high probability bounds. For any δ ∈ (0, 1), with probability 1− δ:

β(f, g) ≤ 2

n
+
|Df |+ 2

r · |S(g)|/T
+8n(|Df |+2)

√
1

|S(g)|2/T
ln

(
2n|G|(1 +

∑
f |Df |)

δ

)
∀ f ∈ F , g ∈ G,

and on the original collection G, the multicalibration constant α satisfies, with probability 1− δ,

α ≤ 1

rn
+ 8

√
1

T
ln

(
2n|G|(1 +

∑
f |Df |)

δ

)
.

Proof. We begin with a preliminary observation that translates our overall multicalibration assump-
tions into guarantees over the individual sequences S(g), for g ∈ G.

Observation 4. Let a be (α, n)-multicalibrated on groups G′ over the entire time sequence [T].

Then, for any g, on the subsequence of days S(g) the predictor a is
(
α T
|S(g)| , n

)
-multicalibrated

with respect to groups
(⋃

f∈F S(f)
)
∪ {Θ}.

Proof. Let g ∈ G be some particular group. Also, fix any f ∈ F and S ∈ S(f) ∪ {Θ}. Using
multicalibration guarantees (Definition 4.1), we have that for every i ∈ [n]:∣∣∣∣∣∣

∑
t∈S(g): θt∈S and at∈Bin

bt − at
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

t∈[T]: θt∈g∩S and at∈Bin

bt − at
∣∣∣∣∣∣ ≤ αT =

(
α

T

|S(g)|

)
|S(g)|.

The first equality is by definition of S(g); in particular, θt ∈ g ∩ S ⇐⇒ t ∈ S(g) ∧ θt ∈ S. This
concludes the proof of our observation.

With this observation in hand, the proof is again a direct application of Theorem 4.2.

We can instantiate Theorem D.1 with groups G′ to conclude that the multicalibrated algorithm
achieves (α, n)-multicalibration, with (choosing any δ ∈ (0, 1)):

E[α] ≤ 1

rn
+ 4

√
ln(2|G′|n)

T
, and α ≤ 1

rn
+ 8

√
1

T
ln

(
2|G′|n
δ

)
w. prob. 1− δ.

where |G′| = |G|+ |G|(
∑
f Df) = |G|(1 +

∑
f Df).

E.1S(g) denotes the subsequence of days on which a group g occurs, suppressing dependence on transcript.

26

Now, fix any g ∈ G and f ∈ F . By our observation above, we are α T
|S(g)| multicalibrated w.r.t.

S(f) ∪ {Θ} on the sequence of days on which g occurs. Therefore, we can instantiate Theorem 4.2:

Ba(πT |{t:θt∈g})−Rf (πT |{t:θt∈g}) ≤
2

n
+ n(|Df |+ 2)α

T

|S(g)|
.

Inserting the above bounds on α yields our in-expectation and high-probability bounds on β(·, ·).

Additionally, the theorem posits that the predictor is also (α, n)-multicalibrated on the base collection
of subgroups G. Indeed, we have included the family G into the collection G′, hence the predictor
will be (α, n)-multicalibrated on G.

F Blackwell Approachability: The Algorithm and Full Proofs

Proof of Theorem 5.1. We instantiate our probabilistic framework of Section B.2.1. The Learner’s
and Adversary’s action sets are inherited from the underlying Polytope Blackwell game.

Defining the loss functions. For all t = 1, 2, . . ., we consider the following losses:

`thα,β (x, y) := 〈α, u(x, y)〉 − β, for hα,β ∈ H, x ∈ X , y ∈ Y,

where here and below the notational convention is that for x ∈ X , y ∈ Y , u(x, y) := Ea∼x[u(a, y)].
The coordinates of the resulting vector loss `tH(x, y) :=

(
`thα,β (x, y)

)
hα,β∈H

correspond to the

collection H of the halfspaces that define the polytope. By Holder’s inequality, each vector loss
function `tH ∈ [−2, 2]d — this follows because we required that for some p, q with 1

p + 1
q = 1, the

familyH is p-normalized, and the range of u is contained in Bdq . In addition, each `thα,β is continuous
and convex-concave, as it is a linear transformation of the continuous and affine-concave function u.

Bounding the Adversary-Moves-First value. We observe that for t ∈ [T], the AMF value wtA ≤ 0.
Indeed, if the Adversary moves first and selects any yt ∈ Y , then by the assumption of response
satisfiability, the Learner has some xt ∈ X guaranteeing that u(xt, yt) ∈ P (H). The latter is
equivalent to `thα,β (xt, yt) = 〈α, u(xt, yt)〉 − β ≤ 0 for all hα,β ∈ H, letting us conclude that for
any round t,

wtA = sup
yt∈Y

min
xt∈X

(
max
hα,β∈H

`thα,β (xt, yt)

)
≤ 0.

Applying AMF regret bounds. Given this instantiation of our framework, Theorem B.1 implies that
for any response satisfiable Polytope Blackwell game, the Learner can use Algorithm B.1 (instantiated
with the above loss functions) to ensure that after any round T ≥ ln |H|,

E

 max
hα,β∈H

∑
t∈[T]

(〈
α, u

(
at, yt

)〉
− β

) ≤ E

 max
hα,β∈H

∑
t∈[T]

`thα,β (at, yt)−
T∑
t=1

wtA

 ≤ 8
√
T ln |H|,

where the expectation is with respect to the Learner’s randomness. Given this guarantee, we obtain,
using the definition of ūT , that

max
hα,β∈H

E
[〈
α, ūT

〉
− β

]
≤ 8

√
ln |H|
T

.

Using T = T (ε) ≥ ln |H|, we have that for every hα,β ∈ H,

E
[〈
α, ūT (ε)

〉
− β

]
≤ 8

√
ln |H|
T (ε)

= 8

√
ln |H|

64 ln |H|/ε2
= ε.

This concludes the proof of our in-expectation guarantee for Polytope Blackwell games.

The high-probability statement follows directly from Theorem B.2, using C = 2.

27

An LP based algorithm when the Adversary has a finite pure strategy space. Algorithm B.1,
which achieves the guarantees of Theorem 5.1, generally involves solving a convex program at each
round. It is worth pointing out that only a linear program will need to be solved at each round in
the commonly studied special case of Blackwell approachability where both the Learner and the
Adversary randomize between actions in their respective finite action sets A and B.

Formally, in the setting above, suppose additionally that the Adversary’s action space is Y = ∆B,
where B is a finite set of pure actions for the Adversary. At each round t, both the Learner and the
Adversary randomize over their respective action sets. First, the Learner selects a mixture xt ∈ ∆A,
and then the Adversary selects a mixture yt ∈ ∆B in response. Next, pure actions at ∼ xt and
bt ∼ yt are sampled from the chosen mixtures, and the vector valued utility in that round is set to
u(at, bt).

In this fully probabilistic setting, at each round t Algorithm B.1 has the Learner solve a normal-form
zero-sum game with pure action sets A,B, where the utility to the Adversary (the max player) is

ξt(a, b) :=
∑

hα,β∈H

exp

(
η

t−1∑
s=1

(〈α, u (as, bs)〉 − β)

)
· (〈α, u(a, b)〉 − β) for a ∈ A, b ∈ B. (2)

A standard LP-based approach to solving this zero-sum game (see e.g. Raghavan [1994]) is for the
Learner to select among distributions xt ∈ ∆A with the goal of minimizing the maximum payoff to
the Adversary over all pure responses b ∈ B. Writing this down as a linear program, we obtain the
following algorithm:

Algorithm F.1: Linear Programming Based Learner for Polytope Blackwell Approachability
for t = 1, . . . , T do

Choose a mixture xt = (xta)a∈A ∈ ∆A that solves the following linear program (where ξt(·, ·)
is defined in (2), and z is an unconstrained variable):

Minimize z

s.t. ∀b ∈ B : z ≥
∑
a∈A

xta ξ
t(a, b).

Sample at ∼ xt.

28

	Introduction
	General Framework
	The Setting
	General Algorithm

	Deriving No-X-Regret Algorithms from Our Framework
	Multicalibration and Multicalibeating
	Multicalibration
	Multicalibeating

	Polytope Blackwell Approachability
	Additional Related Work
	The General Framework with Extensions to Probabilistic and Approximate Learners: Full Proofs and Algorithms
	Omitted Proofs from Section 2
	Extensions
	Performance Bounds for a Probabilistic Learner
	Performance Bounds for a Suboptimal Learner

	Omitted Proofs and Details from Section B.2.1: Bounds for the Probabilistic Learner

	No-X-Regret: Definitions, Examples, Algorithms, and Proofs
	Simple Learning From Expert Advice: External Regret
	Generalization to Subsequence Regret
	Deriving No-Subsequence-Regret Algorithms
	Omitted Reductions between Different Notions of Regret

	Multicalibration: The Algorithm and Full Proofs
	Multicalibeating: Full Statements and Proofs
	Calibeating a Single Forecaster: Proof of Theorem 4.2
	Applying Theorem 4.2: Explicit Rates and Multiple Forecasters
	Multicalibeating + Multicalibration Theorem 4.3: Full Statement and Proof

	Blackwell Approachability: The Algorithm and Full Proofs

