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Abstract

Recent empirical work has shown that hierarchical convolutional kernels inspired
by convolutional neural networks (CNNs) significantly improve the performance
of kernel methods in image classification tasks. A widely accepted explanation for
their success is that these architectures encode hypothesis classes that are suitable
for natural images. However, understanding the precise interplay between approxi-
mation and generalization in convolutional architectures remains a challenge. In
this paper, we consider the stylized setting of covariates (image pixels) uniformly
distributed on the hypercube, and characterize exactly the RKHS of kernels com-
posed of single layers of convolution, pooling, and downsampling operations. We
use this characterization to compute sharp asymptotics of the generalization error
for any given function in high-dimension. In particular, we quantify the gain in
sample complexity brought by enforcing locality with the convolution operation
and approximate translation invariance with average pooling. Notably, these results
provide a precise description of how convolution and pooling operations trade off
approximation with generalization power in one layer convolutional kernels.

1 Introduction

Convolutional neural networks (CNNs) have become essential elements of the deep learning toolbox,
achieving state-of-the-art performance in many computer vision tasks [27, 30]. CNNs are constructed
by stacking convolution and pooling layers, which were shown to be paramount to their empirical
success [31]. A widely accepted hypothesis to explain their favorable properties is that these
architectures successfully encode useful properties of natural images: locality and compositionality of
the data, stability by local deformations, and translation invariance. While some theoretical progress
has been made in studying the approximation and generalization benefits brought by convolution and
pooling operations [6, 15, 16], our mathematical understanding of the interaction between network
architecture, image distribution, and efficient learning remains limited.

Consider x ∈ Rd an input signal, which we can think of as a grayscale pixel representation of
an image. For mathematical convenience, we will consider one-dimensional images with cyclic
convention xd+i := xi, and denote x(k) = (xk, xk+1, . . . , xk+q−1) the k-th patch of the signal x,
k ∈ [d], with patch size q ≤ d. Most of our results can be extended to two-dimensional images.

We further consider a simple convolutional neural network composed of a single convolution layer
followed by local average pooling and downsampling. The network first computes the nonlinear
convolution of N filters w1, . . . ,wN ∈ Rq with the image patches x(k). The outputs of the
convolution operation σ(〈wi,x(k)〉) are then averaged locally over segments of length ω (local
average pooling). This pooling operation is followed by downsampling which extracts one out of
every ∆ output coordinates (for simplicity, ∆ is assumed to be a divisor of d). Finally, the results are

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



combined linearly using coefficients (aik)i∈[N ],k∈[d/∆]:

fCNN(x;a,Θ) =

√
∆

Nωd

∑
i∈[N ]

∑
k∈[d/∆]

aik
∑
s∈[ω]

σ
(
〈wi,x(k∆+s)〉

)
. (CNN-AP-DS)

Note that pooling and downsampling operations are often tied together in the literature. However in
this work we will treat these two operations separately.

In the formula above, different values for q, ω,∆ lead to different architectures with vastly different
behaviors. For example, when q = ∆ = d and ω = 1, we recover a two-layer fully-connected
neural network fFC(x;a,Θ) = N−1/2

∑
i∈[N ] aiσ(〈wi,x〉) which has the universal approximation

property at large N . When ω = ∆ = 1 and q < d, the network is locally connected fLC(x;a,Θ) =
N−1/2

∑
i∈[N ],k∈[d] aikσ(〈wi,x(k)〉), and not a universal approximator anymore: however, fLC

vastly outperforms fFC in some cases [33]. For ω > 1, local pooling enables learning functions
that are locally invariant by translations more efficiently than without pooling. For ω = d (global
pooling), the network only fits functions fully invariant by cyclic translations.

The aim of this paper is to formalize and quantify the interplay between the target function class
and the statistical efficiency brought by these different architectures. As a concrete first step in this
direction, we consider kernel models that are naturally associated to (CNN-AP-DS) through the
neural tangent kernel perspective [18, 28]. Kernel methods have the advantage of 1) being tractable—
leaving the computational issue of learning CNNs aside; 2) having well-understood approximation and
generalization properties, which depends on the eigendecomposition of the kernel and the alignment
between the target function and the RKHS [12, 47] (see Appendices B and C for background). While
kernel models only describe neural networks in the lazy training regime [1, 13, 19, 20, 49] and miss
important properties of deep learning, such as feature learning, architecture choice already plays a
crucial role to learn efficiently ‘image-like’ functions in the fixed-feature regime.

Neural tangent kernels are obtained by linearizing the associated neural networks. Here we consider
the tangent kernel associated to the network fCNN (c.f. Appendix A.2 for a detailed derivation):

HCK
ω,∆(x,y) =

∆

dω

∑
k∈[d/∆]

∑
s,s′∈[ω]

h
(
〈x(k∆+s),y(k∆+s′)〉/q

)
, (CK-AP-DS)

where h : R → R is related to the activation function σ in (CNN-AP-DS). As a linearization of
CNNs, the kernel (CK-AP-DS) inherits some of the favorable properties of convolution, pooling,
and downsampling operations. Indeed, a line of work [2, 32, 35, 36, 45] showed that, though
performing slightly worse than CNNs, such (hierarchical) convolutional kernels have empirically
outperformed the former state-of-the-art kernels. For instance, these kernels achieved test accuracy
around 87%− 90% on CIFAR-10 (the state-of-the-art CNNs can achieve test accuracy 99%), against
79.6% for the best former unsupervised feature-extraction method [14].

In this paper, we will further consider a stylized setting with input signal distribution x ∼ Unif(Qd)
(uniform distribution over Qd := {−1,+1}d the discrete hypercube in d dimensions). This simple
choice allows for a complete characterization of the eigendecomposition of HCK

ω,∆, thanks to all
patches having same marginal distribution x(k) ∼ Unif(Qq). We will be particularly interested in
four specific choices of (q, ω,∆) in (CK-AP-DS):

HFC(x,y) = h
(
〈x,y〉/d

)
, (FC)

HCK(x,y) =
1

d

∑
k∈[d]

h
(
〈x(k),y(k)〉/q

)
, (CK)

HCK
ω (x,y) =

1

dω

∑
k∈[d]

∑
s,s′∈[ω]

h
(
〈x(k+s),y(k+s′)〉/q

)
, (CK-AP)

HCK
GP(x,y) =

1

d

∑
k,k′∈[d]

h
(
〈x(k),y(k′)〉/q

)
. (CK-GP)

These kernels are respectively the neural tangent kernels of a fully-connected network fFC (FC), a
convolutional network fLC (CK), a convolutional network followed by local average pooling (CK-AP)
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and a convolutional network followed by global pooling (CK-GP). We will further be interested in
(CK-GP) with patch size q = d, which we denote HFC

GP: this corresponds to a convolutional kernel
with full-size patches q = d, followed by global pooling.

In this paper, we first characterize the reproducing kernel Hilbert space (RKHS) of these convolutional
kernels, and then investigate their generalization properties in the regression setup. More specifically,
assume {(xi, yi)}i≤n are n i.i.d. samples with xi ∼ Unif(Qd) and yi = f?(xi) + εi. Here
f? ∈ L2(Qd) and (εi)i≤n are independent errors with mean zero and variance bounded by σ2

ε . We
will focus on the generalization error of kernel ridge regression (KRR) (see Appendix B.1 for general
kernel methods). In particular, given a kernel function H : Qd ×Qd → R and a regularization
parameter λ ≥ 0, the KRR estimator is the solution of the tractable convex problem

f̂λ = arg min
f∈H

{ ∑
i∈[n]

(
yi − f(xi)

)2
+ λ‖f‖2H

}
, (KRR)

whereH is the RKHS associated to H with RKHS norm ‖ · ‖H. We denote the test error with square
loss by R(f?, f̂λ) = Ex{(f?(x) − f̂λ(x))2}. We will sometimes consider the expected test error
Eε{R(f?, f̂λ)}, where expectation is taken with respect to noise ε = (εi)i≤n in the training data.

The generalization properties of kernels HFC and HFC
GP were recently studied in [7, 39]. In particular,

they showed that global pooling (kernel HFC
GP) leads to a gain of a factor d in sample complexity when

fitting cyclic invariant functions, but still suffers from the curse of dimensionality (HFC
GP only fits very

smooth functions in high-dimension). More precisely, Mei et al. [39] considered the high-dimensional
framework of [38] and showed the following: KRR with HFC requires n ≈ d` samples to fit degree-`
cyclic polynomials, while KRR with HFC

GP only needs n ≈ d`−1. To enable milder dependence on the
dimension d, further structural assumptions on the kernel and the target function should be considered
(for instance, in this paper, we use the kernel HCK and consider ‘local’ functions).

1.1 Summary of main results

Our contributions are two-fold. First, we describe the RKHS associated with the convolutional
kernel (CK-AP-DS) in the stylized setting x ∼ Unif(Qd), which provides a fully explicit picture
of the roles of convolution, pooling and downsampling operations in approximating specific classes
of functions. Second, we provide sharp asymptotics for the generalization error of KRR in high-
dimension, given any target function and one of the kernels described in the introduction1. These
asymptotics are obtained rigorously using the framework of [38] (see Appendix C for background).
For completeness, we also include bounds on the KRR test error in the classical fixed-dimension
setting with capacity/source assumptions (see Appendix C for limitations of this classical approach).

We summarize our results below. Define the q-local function class L2(Qd,Locq) and the cyclic
q-local function class L2(Qd,CycLocq) (subspace of L2(Qd,Locq) consisting of cyclic-invariant
functions) as follows:

L2(Qd,Locq) =
{
f ∈ L2(Qd) : ∃{gk}k∈[d] ⊆ L2(Qq), f(x) =

∑
k∈[d]

gk(x(k))
}
, (LOC)

L2(Qd,CycLocq) =
{
f ∈ L2(Qd) : ∃g ∈ L2(Qq), f(x) =

∑
k∈[d]

g(x(k))
}
. (CYC-LOC)

One-layer convolutional layer. The RKHS of HCK is equal to L2(Qd,Locq): kernel methods with
HCK can only fit the projection PLocqf∗ of the target function onto L2(Qd,Locq). For a
sample size n � dq`−1, KRR fits exactly a degree-` polynomial approximation to PLocqf∗.
In particular, for q � d, the convolution kernel HCK is much more sample efficient than
the standard inner-product kernel HFC for fitting functions in L2(Qd,Locq) (sample sizes
dq`−1 � d` for fitting a degree-` polynomials). The convolution operation breaks the curse
of dimensionality by restricting the RKHS to local functions.

1Note that we modify slightlyHCK
ω to simplify the derivation of the high-dimension asymptotics. However, we

believe such a simplification to be unecessary. The fixed-dimension bounds do not require such a simplification.
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To fit a degree ` polynomial HFC HFC
GP HCK HCK

ω HCK
GP

Sample complexity d` d`−1 dq`−1 dq`−1/ω q`−1

Table 1: Sample size n required to fit a q-local cyclic-invariant polynomial of degree ` using kernel
ridge regression (KRR) with the 5 different kernels of interest in this paper.

Average pooling. The RKHS of HCK
ω is still constituted of q-local functions f∗ ∈ L2(Qd,Locq),

but penalizes differently the frequency components f∗,j(x) by reweighting their eigenspaces
by a factor κj , where f∗,j(x) =

∑
k∈[d] ρ

k
j f∗(tk · x) with ρj = e

2iπj
d and tk · x =

(xk+1, . . . , xd, x1, . . . , xk) denotes the k-shift. As ω increases, local pooling penalizes
more and more heavily the high-frequency components (κj � 1), while making low-
frequency components statistically easier to learn (κj � 1). For global pooling ω = d, HCK

GP

only learns cyclic local functions L2(Qd,CycLocq) and enjoy a factor d gain in statistical
complexity compared to HCK (sample sizes q`−1 � dq`−1 to learn a degree-` polynomial).
Local pooling biases learning towards functions that are stable by small translations.

Downsampling. When ∆ ≤ ω, downsampling after average pooling leaves the low-frequency
eigenspaces of HCK

ω stable. In particular, the downsampling operation does not modify the
statistical complexity of learning low-frequency functions in one-layer kernels, while being
potentially beneficial in further layers in deep convolutional kernels.

These theoretical results answer the following question: given a target function and a sample size
n, what is the impact of the architecture on the test error? For example, Table 1 shows how the
architecture modify the sample size required to achieve small test error when learning a degree-`
polynomial in L2(Qd,CycLocq).

There are two important model assumptions in this paper, which deserve some discussions:

One-layer convolutional kernel (CK): extra layers allow for hierarchical interactions between the
patches (see for example [6]). However, we believe that the main insights on the approximation
and statistical trade-off are already captured in the one-layer case (see [48] for multi-layer but
independent patches). Note that depth might be less important for CKs than for CNNs: the one-layer
CK considered in this paper achieves 80.9% accuracy on CIFAR-10 [6] (versus 79.6% in [14])
and 3-layers CK achieves 88.2% accuracy [6] (versus 90% for the best multi-layer CK [45]). See
Appendix A.5 for a discussion on how our results could be extended to 2-layers.

Data uniform on the hypercube: this choice is motivated by our goal of deriving rigorous
fine-grained approximation and generalization errors, which requires to diagonalize the kernel
(CK-AP-DS). More general data distributions either require strong assumptions (independent patches
[43, 48]), loose minmax bounds on the generalization error (e.g., classical source/capacity assump-
tions) or non-rigorous statistical physics heuristics [22].

The rest of the paper is organized as follows. We discuss related work in Section 1.2. In Section 2,
we present our main results on convolutional kernels and describe precisely the roles of convolution,
pooling and downsampling operations. Finally, we present a numerical simulation on synthetic data
in Section 3 and conclude in Section 4. Some details and discussions are deferred to Appendix A.

1.2 Related work

Convolutional kernels have been considered in [6, 32, 35, 36, 45, 46]. In particular, they showed that
these architectures achieve good results in image classification (90% accuracy on Cifar10) and that
pooling and downsampling were necessary for their good performance [32].

The generalization error of kernel ridge regression (KRR) has been well-studied in both the fixed
dimension regime [47, Chap. 13], [12] and the high-dimensional regimes [21, 23, 24, 34, 39, 48].
These results show that the generalization error depends on the eigenvalues and eigenfunctions of the
kernel, and the alignment of the kernel with the target function.

Recently, a few theoretical work have considered the generalization properties of invariant kernels
and convolutional kernels [7, 22, 39, 43, 48]. In particular, a concurrent work [48] considers sharp
asymptotics of the KRR test error using the framework of [38] for certain hierarchical convolutional
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kernels under the strong assumption of non-overlapping patches (whereas we consider the more
natural architecture of overlapping patches). They arrive at a similar trade-off between approximation
and generalization power in convolutional kernels, which they call ‘eigenspace restructuring principle’:
given a finite statistical budget (i.e., a sample size n), convolutional architectures allocate the
‘eigenvalue mass’ by weighting differently the eigenspaces. Favero et al. [22] considers a one-layer
convolutional kernel with and without global pooling and derive asymptotic rates in sample size n in a
student-teacher scenario using statistical physics heuristics and a Gaussian equivalence conjecture. In
particular, they show that locality rather than translation-invariance breaks the curse of dimensionality.
Our goal in this paper is different: we derive rigorous quantitative bounds that give separation in
generalization power between different architectures.

See [33, 37] for more theoretical results on the separation between convolutional and fully connected
neural networks, and [10, 16] for the inductive bias of pooling operations in convolutional neural
networks.

2 Main results

We start by introducing some background on functions on the hypercube and eigendecomposition of
kernel operators in Section 2.1. We first consider a kernel with a single convolution layer in Section
2.2, and characterize its eigendecomposition and generalization properties. We then show how these
results are modified when applying local average pooling and downsampling in Section 2.3.

2.1 Functions on the hypercube and eigendecomposition of kernel operators

Recall that we work on the d-dimensional hypercube Qd := {−1,+1}d. Let L2(Qd) =
L2(Qd,Unif) be the 2d-dimensional vector space of all functions f : Qd → R, with scalar product
〈f, g〉L2 := Ex∼Unif(Qd)[f(x)g(x)]. Let ‖ · ‖L2 be the norm associated with the scaler product. We

introduce the set of Fourier functions {Y (d)
S (x)}S⊆[d] which forms an orthonormal basis of L2(Qd).

For any subset S ⊆ [d], the Fourier function is defined as Y (d)
S (x) :=

∏
i∈S xi with the convention

that Y (d)
∅ := 1 (it is easy to verify that 〈Y (d)

S , Y
(d)
S′ 〉L2 = 1S=S′). We will omit the superscript (d)

which will be clear from context and write YS := Y
(d)
S .

Consider a nonnegative definite kernel function H : Qp × Qp → R (p = d or q in this paper)
with associated integral operator H : L2(Qp) → L2(Qp) defined as Hf(u) = Ev{h(u,v)f(v)}
with v ∼ Unif(Qp). By spectral theorem of compact operators, there exists an orthonormal
basis {ψj}j≥1 of L2(Qp) and nonnegative eigenvalues (λj)j≥1 such that H =

∑
j≥1 λjψjψ

∗
j (i.e.,

H(u,v) =
∑
j≥1 λjψj(u)ψj(v) for any u,v ∈ L2(Qp)).

The most widespread example are inner-product kernels defined as H(u,v) := h(〈u,v〉/p) for
some function h : R→ R. Inner-product kernels have the following simple eigendecomposition in
L2(Qp) (taking here u,v ∈ Qp):

h
(
〈u,v〉/p

)
=

p∑
`=0

ξp,`(h)
∑

S⊆[p],|S|=`

YS(u)YS(v), (1)

where ξp,`(h) is the `-th Gegenbauer coefficient of h(·/√p) in dimension p, i.e.,

ξp,`(h) = Eu∼Unif(Qp)

[
h(〈u, e〉/p)Q(p)

` (〈u, e〉)
]
, (2)

for e ∈ Qp arbitrary and Q(p)
` the degree-` Gegenbauer polynomial on Qp (see Appendix D for

details). Note that (ξp,`)0≤`≤q are non-negative by positive semidefiniteness of the kernel. We will
write ξp,` := ξp,`(h) and use extensively the decomposition identity (1) in the rest of the paper.

2.2 One-layer convolutional kernel

We first consider the convolutional kernel HCK (CK) given by a one-layer convolution layer with
patch size q and inner-product kernel function h : R→ R:

HCK(x,y) =
1

d

d∑
k=1

h
(
〈x(k),y(k)〉/q

)
, (3)
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where we recall that x(k) = (xk, . . . , xk+q−1) ∈ Qq is the k’th patch of the image with size q.

Before stating the eigendecomposition of HCK, we introduce some notations. For any subset S ⊆ [d],
denote γ(S) the diameter of S with cyclic convention, i.e., γ(S) = max{min{mod(j − i, d) +
1,mod(i − j, d) + 1} : i, j ∈ S} (e.g., γ({2, d}) = 3). For any integer ` ≤ q, consider the set
E` = {S ⊆ [d] : |S| = `, γ(S) ≤ q} of all subsets of [d] of size ` with diameter less or equal to q.
We will assume throughout this paper that q ≤ d/2 to avoid additional overlap between sets.
Proposition 1 (Eigendecomposition ofHCK). LetHCK be a convolutional kernel as defined in Eq. (3).
Then HCK admits the following eigendecomposition:

HCK(x,y) = ξq,0 +

q∑
`=1

∑
S∈E`

r(S)ξq,`
d

· YS(x)YS(y) , (4)

where r(S) = q + 1− γ(S) and ξq,` ≥ 0 is defined in Eq. (2).

Notice that YS with γ(S) > q (monomials with support not contained in a segment of size q) are
in the null space of HCK. Hence (as long as ξq,` > 0 for all 0 ≤ ` ≤ q), the RKHS associated to
HCK exactly contains all the functions in the q-local function class L2(Qd,Locq) (c.f. Eq. (LOC)).
In words, L2(Qd,Locq) consists of functions that are localized on patches, with no long-range
interactions between different parts of the image. An example of local function with q = 3 is given
by f(x) = x1x2x3 + x4x6 + x5.

On the other hand, the RKHS associated to the fully-connected kernel HFC (FC) typically contains
all the functions in L2(Qd) (under genericity assumptions on h). The RKHS with convolution
dim(L2(Qd,Locq)) = d2q−1 + 1 is significantly smaller than dim(L2(Qd)) = 2d, which prompts
the following question: what is the statistical advantage of using HCK over HFC when learning
functions in L2(Qd,Locq)?

We first consider the classical approach to bounding the test error of [3, 12, 47] which relies on the
following two standard assumptions:

(A1) Capacity condition: we assume N (h, λ) := Tr[h/(h+ λI)−1] ≤ Chλ−1/α with2 α > 1.

(A2) Source condition: ‖h−β/2g‖L2 ≤ B with3 β > α−1
α and B ≥ 0.

The capacity condition (A1) characterizes the size of the RKHS: for increasing α, the RKHS contains
less and less functions. The source condition (A2) characterizes the regularity of the target function
(the ‘source’) with respect to the kernel: increasing β corresponds to smoother and smoother functions.
See Appendix B.2 for more discussions.

Based on these two assumptions, we can apply standard bounds on the KRR test error and obtain:
Theorem 1 (Generalization error of KRR with HCK). Let h : R → R be an inner-product kernel
satisfying (A1). Let f? ∈ L2(Qd,Locq) with f?(x) =

∑
k∈[d] gk(x(k)) satisfying source condition∑

k∈[d] ‖h−β/2gk‖2L2 ≤ B2. Then there exists C1, C2, C3 > 0 constants that only depend on (A1)

and B (and independent of d), such that for n ≥ C1 max(‖f?‖2L∞ , d) and λ∗ = C2

d (d/n)
α

αβ+1 ,

Eε
{
R(f?, f̂λ?)

}
≤ C3

(
d

n

) αβ
αβ+1

. (5)

Note that the exponent βα
βα+1 only depends on the q-dimensional kernel h. Hence, the generalization

bound with respect to (n/d) is independent of the dimension d of the image. Let’s compare to KRR

with inner-product kernel HFC (FC): from [12], we have the minmax rate Eε{R(f?, f̂λ)} � n−
α̃β̃

α̃β̃+1

where h is now defined in d dimension and verifies (A1) and (A2) with constants α̃, β̃. Typically,
if f? is only assumed Lipschitz, then β̃α̃ = O(1/d), which leads to a minmax rate n−O(1/d) for
HFC, while for HCK, βα = O(1/q), which leads to a minmax rate n−O(1/q). Hence, for q � d,

2Here, h is the integral operator and Tr[h/(h+ λI)−1] =
∑
j≥1

λj
λj+λ

with {λj}j≥1 eigenvalues of h.
3Again, h is the operator with h−κg =

∑
j≥1 λ

−κ
j 〈f, ψj〉ψj , where {ψj}j≥1 are the eigenvectors of h.
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HCK breaks the curse of dimensionality by restricting the RKHS to ‘local’ functions. Similarly, [22]
derived a decay rates in n that do not depend on d for a one-layer convolutional kernel. The key
difference between Theorem 1 and [22] is that we obtain a non-asymptotic bound that is minmax
optimal up to a constant multiplicative factor in both d and n (this can be showed for example
by adapting the proof in Appendix B.6 in [7]) using a rigorous framework of source and capacity
condition.

Theorem 1 and results of this type suffers from several limitations: 1) they are tight only in a
minmax sense; 2) they do not provide comparisons for specific subclasses of functions; 3) in order to
obtain the minmax rate, the regularization parameter λ has to be carefully tuned to balance the bias
and variance terms, which is in contrast to modern practice where often the model is trained until
interpolation. This led several groups to consider instead the test error of KRR in a high-dimensional
limit [11, 24, 38] and derive exact asymptotic predictions correct up to an additive vanishing constant
for any f? ∈ L2 (see Appendix C for more details).

Using the general framework in [38], we get the following result for q, d large:
Theorem 2 (Generalization error of KRR with HCK in high-dimension (informal)). Let f? ∈
L2(Qd,Locq) and h : R → R verifying some ‘genericity condition’. Then for n = dqs−1+ν

with 0 < ν < 1, and λ = O(1) (in particular λ = 0 works), we have

f̂λ = PE≤s,ν
f? + oq(1) , (6)

where PE≤s,ν
is the projection on the span of YS with either |S| < s and S ∈ E|S| or |S| = s and

γ(S) ≤ q(1− q−ν).

See Appendix C.1 for a rigorous statement. In words, when dqs−1 � n� dqs, KRR with HCK only
learns a degree-s polynomial approximation to f?.

On the other hand, when considering the standard inner-product kernel HFC (FC) we get:
Theorem 3 (Generalization error of KRR with HFC in high-dimension (informal)). Let f? ∈ L2(Qd)

and h̃ : R→ R with some ‘genericity condition’. Then for ds � n� ds+1 and λ = O(1),

f̂λ = P≤sf? + od(1) , (7)
where P≤s is the projection on the subspace of degree-s polynomials.

This theorem was proved in [24, 38]. Notice that Eq. (7) does not depend on the structure of f?.
Hence, when f? ∈ L2(Qd,Locq), Theorems 2 and 3 shows a clear statistical advantage of HCK over
HFC when q � d (and therefore of one-layer CNNs over fully-connected neural networks in the
kernel regime).

2.3 Local average pooling and downsampling

In many applications such as object recognition, we expect the target function to depend mildly on
the absolute spatial position of an object and to be stable under small shifts of the input. To take this
local invariance into account, convolution layers are often followed by a pooling operation. Here we
consider local average pooling on a segment of length ω and obtain the kernel

HCK
ω (x,y) =

1

dω

∑
k∈[d]

∑
s,s′∈[ω]

h
(
〈x(k+s),y(k+s′)〉/q

)
. (8)

Define S` = {S ⊆ [q] : |S| = `} as the collection of sets of size `. We further define an equivalence
relation ∼ on S`: S ∼ S′ if S′ is a translated subset of S in [q] (without cyclic convention). We
denote C` the quotient set of A` under the equivalence relation ∼.
Proposition 2 (Eigendecomposition of HCK

ω ). Let HCK
ω be a convolutional kernel with local average

pooling as defined in Eq. (8). Then HCK
ω admits the following eigendecomposition:

HCK
ω (x,y) = ωξq,0 +

q∑
`=1

∑
S∈C`

∑
j∈[d]

κjr(S)ξq,`
d

· ψj,S(x)ψj,S(y) , (9)

where (denoting k + S the translated set S by k positions with cyclic convention in [d])

κj = 1 + 2

ω−1∑
k=1

(1− k/ω) cos

(
2πjk

d

)
, ψj,S(x) =

1√
d

d∑
k=1

e
2iπjk
d Yk+S(x) . (10)
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First notice that, as long as gcd(ω, d) = 1, the RKHS associated to HCK contains the same set of
functions as the RKHS of HCK, i.e., all local functions L2(Qd,Locq). (There are gcd(ω, d) − 1
number of zero weights: κj = 0 for all j ∈ [d − 1] such that d is a divisor of jω. See Appendix
A.3 for details.) However HCK will penalize different frequency components of the functions
differently. Denote fj(x) the j-th component of the discrete Fourier transform of the function, i.e.,
fj(x) = 1√

d

∑
k∈[d] ρ

k
j f(tk · x) where ρj = e2iπj/d and tk · x = (xk+1, . . . , xd, x1, . . . , xk) is the

cyclic shift by k pixels. Then HCK reweights the eigenspaces associated with fj(x) by a factor κj ,
promoting low-frequency components (κj > 1) and penalizing the high-frequencies (κj < 1). In
words, pooling biases the learning towards low-frequency functions, which are stable by small shifts.

Let us focus on two special choices here: the pooling parameter ω = 1 and ω = d. When ω = 1,
HCK
ω reduces to HCK (κj = 1 for all j ∈ [d]) which does not bias towards either low or high frequency

components. When ω = d, we denote such kernel HCK
ω=d by HCK

GP which corresponds to global
average pooling. In this case, we have κd = d and κj = 0 for j < d which enforces exact invariance
under the group of cyclic translations. More precisely, HCK

GP has RKHS that contains all cyclic q-local
functions f(x) =

∑
k∈[d] g(x(k)) ∈ L2(Qd,CycLocq) (c.f. Eq. (CYC-LOC)).

We obtain a bound on the test error of KRR with HCK
ω similar to Theorem 1, but with d replaced by

an effective dimension deff.

Theorem 4 (Generalization of KRR with average pooling (fixed d, q)). Assume that h : R → R
has ξq,0 = 0 and satisfies (A1). Further assume (A2′) that ‖(HCK

ω /ω)−β/2f?‖L2 ≤ B. Define
deff =

∑
j∈[d]:κj>0(κj/ω)1/α. Then there exists C1, C2, C3 > 0 constants independent of d, such

that for n ≥ C1 max(‖f?‖2L∞ , deff) and setting λ∗ = C2(deff/n)
α

αβ+1 , we get

Eε
{
R(f?, f̂λ?)

}
≤ C3

(
deff

n

) αβ
αβ+1

. (11)

By Jensen’s inequality, we have deff ≤ d/ω1/α. In particular, for global pooling, deff = 1 and the
bound (11) does not depend on d at all. Adding average pooling improve by a factor ω1/α the upper
bound on the sample complexity for fitting low-frequency functions. Can we confirm this statistical
advantage using the predictions for KRR in high dimension? Consider first the case of global pooling:

Theorem 5 (Generalization of KRR with HCK
GP in high-dimension (informal)). Let f? ∈

L2(Qd,CycLocq) and h : R→ R verifying some ‘genericity condition’. Then for n = qs−1+ν with
0 < ν < 1, and λ = O(1), we have (PE≤s,ν

is defined as in Theorem 2)

f̂λ = PE≤s,ν
f? + oq(1) . (12)

Hence, global average pooling results in an improvement by a factor d in statistical efficiency when
fitting cyclic local functions, compared to HCK. This improvement was already noticed in [7, 39] but
in the case of q = d (fully connected neural networks).

For ω < d, a direct application of the theorems in [38] is more challenging because of the mixing
of eigenvalues. In this case, a modification of [38], where eigenvalues are not necessary ordered
anymore would apply. However, for simplicity, we present in Appendix C.1 a simplified kernel with
non-overlapping local pooling which we believe captures the statistical behavior of local pooling.
In this case, we show that Theorem 5 holds with n = (d/ω) · qs−1+ν , which interpolates between
Theorem 2 (ω = 1) and Theorem 5 (ω = d).

Downsampling: Often pooling is associated with a downsampling operation, which subsample
one every ∆ output coordinates. In Appendix A.4, we characterize the eigendecomposition of HCK

ω,∆

(Proposition 4) and prove for the popular choice ω = ∆, that downsampling does not modify the
cyclic invariant subspace j = d (Proposition 5). More generally, we conjecture and check numerically
that downsampling with ∆ ≤ ω leaves the low-frequency eigenspaces approximately unchanged.
In particular, the statistical complexity of learning low-frequency functions is not modified by
downsampling operation in the one-layer case (while downsampling is potentially beneficial in
further layers).
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Figure 1: Learning low-frequency (left) and high-frequency (right) cubic polynomials over the
hypercube d = 30, using KRR with HFC (FC), HFC

GP (FC-GP), HCK (CK), HCK
ω (CK-LP) and HCK

GP
(CK-GP), and regularization parameter λ = 0+. We report the average and the standard deviation of
the test error over 5 realizations, against the sample size n.

3 Numerical simulations
In order to check our theoretical predictions, we perform a simple numerical experiment on simulated
data. We take x ∼ Unif(Qd) with d = 30, and consider two target functions:

fLF,3(x) =
1√
d

∑
i∈[d]

xixi+1xi+2 , fHF,3(x) =
1√
d

∑
i∈[d]

(−1)i · xixi+1xi+2 . (13)

Here fLF,3 is a cyclic-invariant local polynomial (fLF,3 is ‘low-frequency’). The function fHF,3 is a
high-frequency local polynomial, and is orthogonal to the space of cyclic invariant functions. On
these target functions, we compare the test error of kernel ridge regression with 5 different kernels:
a standard inner-product kernel HFC(x,y) = h(〈x,y〉/d); a cyclic invariant kernel HFC

GP(x,y)
(convolutional kernel with global pooling and full-size patches q = d); a convolutional kernel HCK

with patch size q = 10; a convolutional kernel with local pooling HCK
ω with q = 10 and ω = 5; and a

convolutional kernel with global pooling HCK
GP with q = 10. In all these kernels, we choose a common

h(t) =
∑
i∈[5] 0.2 ∗ ti which is a degree 5-polynomial.

In Figure 1, we report the test errors of fitting fLF,3 (left) and fHF,3 (right) using kernel ridge regression
with these 5 kernels. We choose a small regularization parameter λ = 10−6, and the noise level
σε = 0. The curves are averaged over 5 independent instances and the error bar stands for the standard
deviation of these instances. The results match well our theoretical predictions. For the function
fLF,3, the sample sizes required to achieve vanishing test errors are ordered as HCK

GP < HCK
ω < HCK <

HFC
GP < HFC and are around the predicted thresholds q2 < dq2/ω < d2 < dq2 < d3 respectively.

Next we look at the test error of fitting the high frequency local function fHF,3. The test errors of HCK

and HFC are the same for fHF,3 and fLF,3: this is because these kernels do not have bias towards either
high-frequency or low-frequency functions. The kernel HCK

ω perform worse on fHF,3 than on fLF,3:
this is because the eigenspaces of HCK

ω are biased towards low-frequency polynomials. The kernels
HCK

GP and HFC
GP do not fit fHF,3 at all (test error greater than or equal to 1): this is because the RKHS

of these two kernels only contain cyclic polynomials, but fHF,3 is orthogonal to the space of cyclic
polynomials.

4 Discussion and Future Work
In this paper, we characterized in a stylized setting how convolution, average pooling and downsam-
pling operations modify the RKHS, by restricting it to q-local functions and then biasing the RKHS
towards low-frequency components. We quantified precisely the gain in statistical efficiency of KRR
using these operations. Beyond illustrating the ‘RKHS engineering’ of image-like function classes,
these results can further provide intuition and a rigorous foundation for convolution and pooling
operations in kernels and CNNs. A natural extension would be to study the multilayer convolutional
kernels in details and consider other pooling operations such as max-pooling. Another important
question is how anisotropy of the data impacts the results of this paper: in particular, it was shown
that pre-processing (whitening of the patches) greatly improves the performance of convolutional
kernels [6, 46]. A more challenging question is to study how training and feature learning can further
improve the performance of CNNs outside the kernel regime.
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