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This supplementary materials include omitted proofs for Proposition 1 and 2, additional explanations
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the numbers with a prefix SM. refer to equations, figures, and tables in the supplementary material;
numbers without the prefix refer to equations, figures, and tables in the main paper.

SM. 1 Omitted proofs

SM. 1.1 Proof of Proposition 1

Proposition 1. The function mC(·) = 2C(Mϵ(·)) : X → [1, c] satisfies all properties of a predictive
multiplicity metric in Definition 1.

Proof. For clarity, we assume |Mϵ(xi)| = m. By the information inequality [1, Theorem 2.6.3]
the mutual information I(M ;Y ) between the random variables M and Y (defined in Section 3)
is non-negative, i.e., I(M ;Y ) ≥ 0. Moreover, since I(M ;Y ) = H(Y ) − H(Y |M) ≤ log c,
we have 0 ≤ C(Mϵ(xi)) ≤ log c, and therefore 1 ≤ 2C(Mϵ(xi)) ≤ c (since we pick the log
base to be 2). If all rows in the transition matrix are identical, Y is independent of M , and
H(Y |M) =

∑m
j=1 pm(j)H(Y |M = j) =

∑m
j=1 pm(j)H(Y ) = H(Y ); thus, C(Mϵ(xi)) ≤

H(Y ) − H(Y |M) = 0 and mC(xi) = 2C(Mϵ(xi)) = 1. On the other hand, we denote
the c models in R(H, ϵ) which output scores are the “vertices” of ∆c to be m1, · · · ,mc, then
H(Y |M = mk) = 0, ∀k ∈ [c]. H(Y |M) is minimized to 0 by setting the weights pm on
those c models to be 1

c and the rest to be 0. Thus, C(Mϵ(xi)) = H(Y ) − H(Y |M) = H(Y )

and mC(xi) = 2C(Mϵ(xi)) = c. Finally, letM1
ϵ(xi) ⊆ M2

ϵ(xi) with random variables M1 and
M2 respectively. Without loss of generality, assume that M1

ϵ(xi) = {h1(xi), · · · , hr(xi)} and
M2

ϵ(xi) =M1
ϵ(xi) ∪ {hr+1(xi)}, and we have

Eh∼PM2
D(h(xi)∥q) =

r+1∑
i=1

PM2
(hi)DKL(hi(xi)∥q)

=

r∑
i=1

PM2
(hi)DKL(hi(xi)∥q) + PM2

(hr+1)DKL(hr+1(xi)∥q)

≥
r∑

i=1

PM2
(hi)DKL(hi(xi)∥q) = Eh∼PM1

D(h(xi)∥q).

(SM. 1)
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Therefore, I(M1;Y ) = infPM1
Eh∼PM1

D(h(xi)∥q) ≤ infPM2
Eh∼PM2

D(h(xi)∥q) = I(M2;Y ),
and

I(M1;Y ) ≤ I(M2;Y )⇒ sup
M1

I(M1;Y ) ≤ sup
M2

I(M2;Y )

⇒ C(M1
ϵ(xi)) ≤ C(M2

ϵ(xi))

⇒ mC(M1
ϵ(xi)) ≤ mC(M2

ϵ(xi)),

(SM. 2)

since the power function is monotonic.

We now prove the converse statements. Assume m(xi) = c and, thus, C(Mϵ(xi)) = log c. Let PM

be the capacity-achieving distribution over models. Then I(M ;Y ) = log c and, from non-negativity
of entropy and the fact that the uniform distribution maximizes entropy, H(Y ) = c and H(Y |M) = 0.
Consequently, again from non-negativity of entropy, H(Y |M = m) = 0 for all m ∈ supp(PM ), and
thus PY |M=m is an indicator function (i.e., given M , Y is constant w.p.1). Since H(Y ) = c, the
result follows.

Finally, let C(Mϵ(xi)) = 0 and PM be the capacity-achieving input distribution. Then Y and M are
independent and, thus, PY |M=m = PY (i.e., all scores are identical) for all values m ∈ supp(PM ),.
Since this holds for the capacity-achieving PM , which in turn is the maximimum across input
distributions, the converse result follows.

SM. 1.2 Proof of Proposition 2

Proposition 2. For each sample xi ∈ D, there exists a subset A ⊆Mϵ(xi) with |A| ≤ c that fully
captures the spread in scores for xi across the Rashomon set, i.e., mC(xi) = 2C(A). In particular,
there are at most c models inR(H, ϵ) whose output scores yield the same Rashomon Capacity for xi

as the entire Rashomon set.

Proof. Carathéodory’s theorem [2] states that if a point x of Rd lies in the convex hull of a set X ,
then x can be written as the convex combination of at most d + 1 points in X . Namely, there is a
subset X ′ of X consisting of d+ 1 or fewer points such that x lies in the convex hull of X ′.

In our case, we consider the random variable M of the Rashomon setR(H, ϵ) and Y = ∆c , {g ∈
Rc;
∑c

i=k[g]k = 1,∀k [g]k ≥ 0} is a (c − 1) dimensional space1. We assume |R(H, ϵ)| = m in
the following proof, butR(H, ϵ) could contain arbitrary large (or infinite) amount of output scores
from the models in the Rashomon set. There are also m output scores {h1(xi), · · · , hm(xi)} ∈ ∆c

in the ϵ-multiplicity setMϵ(xi) for each sample xi ∈ D. By Carathéodory’s theorem, since ∆c is
(c− 1) dimensional and is convex, any score h(xi) can be expressed by the convex combination of
(c−1)+1 = c scores. Moreover, let the c scores be {h1(xi), · · · , hc(xi)}, since Rashomon Capacity
measures the spread of the scores, adding any score h(xi) ∈ convexhull(h1(xi), · · · , hc(xi)) to the
channel constructed by {h1(xi), · · · , hc(xi)} would not affect Rashomon Capacity.

SM. 2 Additional details

SM. 2.1 Predictive multiplicity: fairness, reproducibility, and security

Predictive multiplicity and the Rashomon effect are related to individual fairness [3,4]. A mechanism
M : X → Y satisfies individual fairness if for every x, x′ ∈ X , D(M(x),M(x′)) ≤ d(x, x′),
where d and D are metrics on X and Y respectively. It is also called the (D, d)-Lipschitz property.
Individual fairness aims to ensure that “similar individuals are treated similarly.” The consequence
of predictive multiplicity is that the same individual can be treated differently due to arbitrary and
unjustified choices made during the training process (e.g., parameter initialization, random seed,
dropout probability, etc.). Integrating predictive multiplicity and individual fairness could results in a
more thorough formulation for fair machine learning.

Predictive multiplicity allows different predictions from competing classifiers for the samples. Thus
predictive multiplicity could lead to different decision regions when training with the same dataset

1In the main paper, we say ∆c is a c-dimensional probability simplex, but it does not mean ∆c is a c
dimensional space. In fact, ∆c is a (c− 1) dimensional space.
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and achieving similar performance, and makes it hard for a machine learning practitioner to reproduce
the decision regions if a different initalization of a classifier is selected. Somepalli et al. [5] studied the
reproducibility of decision regions of almost-equally performing learning models, and observe that
changes in model architecture (which reflect the inductive bias) lead to visible changes in decision
regions. Notably, neural networks with very narrows or wide layers have better reproducibility in
their decision regions. On the other hand, neural networks with “moderate” number of neurons in
each layer have decision regions fragmented into many small pieces, and are harder to reproduce. The
connection between predictive multiplicity, neural network architectures, and inductive bias is also an
interesting research direction. For example, a stronger inductive bias could restrict the arbitrariness
of a training process, leading to smaller predictive multiplicity.

The fact that multiple classifiers may yield distinct predictions to a target a sample while having
statistically identical average loss performance can also cause security issues in machine learning.
The score variation could result from a malicious learner/designer who either plants an undetectable
backdoor or carefully selects a specific model. This may result in intentional manipulation of the
output scores for a sample without detectable performance changes [6].

SM. 2.2 Predictive multiplicity with small Rashomon parameters

Note that ϵ = 0 implies prefect generalization to the test set, and is in general infeasible due to a
limited number of samples and optimization techniques. Moreover, a small ϵ could lead to high
predictive multiplicity. Consider a classification task with 1000 samples with binary classes, and
trained with the 0-1 loss. Suppose ϵ = 0.001, i.e., only allowing one sample xi at a time to be
misclassified. If the hypothesis space is tremendous, it is possible to find a classifier that only assign
the wrong label to any xi, and thus the ambiguity in (2) could be 1.

SM. 2.3 Metrics for the spread of scores

The divergence measure between two distributions used in (4) is not restricted to KL-divergence. For
example, given a convex function f : (0,∞)→ R satisfying f(1) = 0, and assume that P and Q are
two probability distributions over a set X , and P is absolutely continuous with respect to Q. The
f -divergence between P and Q is given by [7]

Df (P∥Q) , EQ

[
f

(
P (X)

Q(X)

)]
. (SM. 3)

Different choices of f lead to different divergence; for example, if f(t) = t log t, Df (P∥Q) =
DKL(P∥Q); if f(t) = (t − 1)2, Df (P∥Q) = χ2(P∥Q) is the chi-square divergence; if f(t) =
t log t− (1 + t) log(1 + t)/2, Df (P∥Q) = DJS(P∥Q) is the Jensen-Shannon divergence. Another
example of a tunable probability divergence is the Rényi divergence Rα(P∥Q) of order α ∈ R+/{1},
defined as [8]

Dα(P∥Q) ,
1

α− 1
log

(∑
x

(
P (x)

Q(x)

)α

Q(x)

)
, (SM. 4)

Its continuous extensions for α = 1 and∞ can also be defined. In particular, for α = 1, the Rényi
divergence recovers KL divergence, and for α =∞, D∞(P∥Q) = maxx logP (x)/Q(x) is called
the max-divergence. Both the f -divergence and Rényi divergence generalize the usual notion of
KL-divergence used in this paper, and these families of divergences could also be used to measure
the spread of the scores in the probability simplex. For example, Nielsen et al. [9] reported an
iterative algorithm to numerically compute a centroid for a set of probability densities measured
by the Jensen–Shannon divergence. However, these generalizations of the KL divergence do not
necessarily lead to multiplicity metrics that satisfy the properties outlined in Definition 1. More
importantly, when taking the supremum over the input distributions (see (5)), we are unaware of
a procedure as simple as the Blahut-Arimoto algorithm to estimate the corresponding Rashomon
Capacity if the probability divergence is not the KL-divergence. Exploring alternative metrics for
measuring score “spread” is a promising future research direction.

SM. 2.4 Geometric interpretation of Rashomon Capacity

In Section 3, we introduce the Rashomon capacity to measure the spread of scores from a geometric
viewpoint. Here, we further discuss the pleasing geometric interpretations possessed by Rashomon
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Capacity, which can be found in information theory. Particularly, given a samplex i , let the informa-
tion radiusrad(M � (x i )) and information diameterdiam(M � (x i )) of the� -multiplicity setM � (x i )
be [10]

rad(M � (x i )) = inf
q2 � c

sup
p 2M � (x i )

DKL (pkq); diam(M � (x i )) = sup
p ;p 02M � (x i )

DKL (pkp0);

(SM. 5)
we have

C(M � (x i )) � rad(M � (x i )) � diam(M � (x i )) ; (SM. 6)
whereC(M � (x i )) = rad(M � (x i )) if M � (x i ) is a convex set [11].

The proof of (SM. 6) is straightforward:

C(M � (x i )) = sup
� 2 � m

inf
q2 � c

mX

j =1

� j DKL (p j kq)

� inf
q2 � c

sup
� 2 � m

mX

j =1

� j DKL (p j kq)

= inf
q2 � c

sup
� 2 � m

Em � � DKL (PY jM = m kq)

� inf
q2 � c

sup
p 2M � (x i )

DKL (pkq) , rad(M � (x i ))

� sup
p ;p 02M � (x i )

DKL (pkp0) , diam(M � (x i )) :

(SM. 7)

At �rst glance, the information radius or diameter seem to be more intuitive metrics to measure
the “spread” of the all possible scores from the Rashomon set; however, both of them do not
satisfy the properties in De�nition 1. More importantly,(SM. 6)shows that Rashomon capacity is a
tighter metric, and is less likely to overestimate the spread of scores, i.e., the predictive multiplicity.
Moreover, maximizing the KL divergence is in general an ill-posed problem since the KL divergence
is (jointly) convex, and could diverge to in�nity. Zhang et al. [12] demonstrated that maximizing the
KL divergence between the scores generated by a classi�er with two different samples is solvable
if the Euclidean distance between the two samples is upper bounded. In our case, we do not have
control overp; p0 2 M � (x i ) and the underlying models that outputp; p0 since two models could be
very different from each other (in terms of, e.g., the Euclidean distance of the model parameters), but
still yield similar test loss due to the existence of multiple local minima.

SM. 2.5 The Blahut-Arimoto algorithm

For the sake of completeness, we describe the Blahut-Arimoto (BA) algorithm [13, 14] used in
Section 5 for computing channel capacity. For a discrete memoryless channel (DMC)X ! Y with
transition probabilitiesPY jX and input probabilityQ, whereX = [1 ; � � � ; m] andY = [1 ; � � � ; c].
The mutual informationI (X ; Y ) betweenX andY is de�ned as

I (X ; Y ) ,
mX

i =1

cX

j =1

PX;Y (i; j ) log
PX;Y (i; j )
Q(i )PY (j )

=
mX

i =1

cX

j =1

PY jX (j ji )Q(i ) log
PX jY (i jj )

Q(i )
: (SM. 8)

By de�nition, the capacity of the channelPY jX is de�ned as

C(PY jX ) = max
Q

I (X ; Y ) = max
Q

mX

i =1

cX

j =1

PY jX (j ji )Q(i ) log
PX jY (i jj )

Q(i )
; (SM. 9)

wherePX jY (i jj ) = PY j X ( j j i )Q( i )P
k PY j X ( j j k )Q(k ) . SincePX jY (i jj ) can be viewed as a function of the channel

PY jX andQ, from (SM. 9), it is clear that for a �xed channelPY jX , the channel capacity is a convex
function of the input probabilitiesQ. Denote anyPX jY (i jj ) = �( i jj ), we can alternatively express
the mutual information as

I (X ; Y ) =
mX

i =1

cX

j =1

PY jX (j ji )Q(i ) log
�( i jj )
Q(i )

= J (Q; �) : (SM. 10)

It can be proven that [13,14]
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1. For a �xed Q, J (Q; �) � J (Q; PX jY ), i.e.,J (Q; PX jY ) = max � J (Q; �) , and therefore
C(PY jX ) = max Q max� J (Q; �) .

2. For a �xed � , J (Q; �) � log (
P m

i =1 r (i )) , r (i ) = exp
hP c

j =1 PY jX (j ji ) log �( i jj )
i
,

where equality holds if and only ifQ(i ) = r (i )=
P m

k=1 r (k).

The BA algorithm is built upon these two properties, and doubly maximizesJ (Q; �) . More speci�-
cally, let t be the iteration index, and letQ0 be a choose initialization of the input distribution, for
each iteration, we update� andQ by

1. � l +1 (i jj ) = Q l ( i )PY j X ( j j i )P m
k =1 Q l (k )PY j X ( j j k ) , 8i; j .

2. r l +1 (i ) = exp
� P c

j =1 PY jX (j ji ) log � l +1 (i jj )
�

.

3. Ql +1 (i ) = r l +1 ( i )P m
k =1 r l +1 (k ) .

4. J (Ql +1 ; � l +1 ) = log
� P m

i =1 r l +1 (i )
�
.

5. l = l + 1 .

For the stopping criteria, letcl (i ) = r l (i )=Ql (i ), we haveJ (Ql ; � l ) = log
� P m

i =1 Ql (i )cl (i )
�
. Since

J (Ql ; � l ) is the logarithm of the average ofcl (i ), we have

log

 
mX

i =1

Ql (i )cl (i )

!

� C(PY jX ) � max
i

logcl (i ); (SM. 11)

and therefore we updateQl +1 (i ) and� l +1 (i jj ) until the stopping criteria is matched,

max
i

logcl (i ) � log

 
mX

i =1

Ql (i )cl (i )

!

� �; (SM. 12)

where� > 0 is a pre-de�ned accuracy parameter.

The BA algorithm has also been extended to channels with continuous input and output alphabets,
i.e., jX j = 1 andjYj = 1 , based on sequential Monte-Carlo integration methods (i.e., particle
�lters) [15–18]. Since we deal with �nite predicted classes and discrete Rashomon sets, Proposition 2
allows us to circumvent the use of more sophisticated variations of the BA algorithm.

SM. 2.6 Adversarial weight perturbation on unregularized logistic regression

In (9), we introduce an adversarial weight perturbation procedure to estimate Rashomon Capacity
in the Rashomon set. In general, the problem in(9) is dif�cult to analyze, and is usually optimized
by using automated gradient computation tools such as Tensor�ow [19]. Here, we provide a special
case of unregularized logistic regression, which gradient and Hessian can be analytically computed.
We start with a more general case by considering a set of features and labelsf zi ; yi gn

i =1 for a binary
classi�cation problem, wherezi 2 Rm andyi 2 f 0; 1g. Logistic regression assumes the output
scores

P(Ŷ = 1 jZ = zi ; w) =
ez>

i w

1 + ez>
i w

and

P(Ŷ = 0 jZ = zi ; w) = 1 � P(Ŷ = 1 jZ = zi ; w) =
1

1 + ez>
i w

;

(SM. 13)

wherew 2 Rm is the vector of weights. The loss in logistic regression (without regularization) is
de�ned as [20]

`(w) = �
nX

i =1

�
yi logP(Ŷ = 1 jZ = zi ; w) + (1 � yi ) log(1 � P(Ŷ = 1 jZ = zi ; w))

�

=
nX

i =1

�
yi w > zi � log(1 + ew > z i )

�
:

(SM. 14)
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Let Z = [ z1; � � � ; zn ]> 2 Rn � m be the feature matrix,y = [ y1; � � � ; yn ]> the label vec-
tor, p = [ P(Ŷ = 1 jZ = z1; w); � � � ; P(Ŷ = 1 jZ = zn ; w)] be the score vector, and
W = diag(w1; � � � ; wm ) be the weight matrix with diagonal entries equal tow. The gradient
and Hessian of̀(w) with respect tow can be expressed as

r `(w) = �
nX

i =1

zi (yi � P(Ŷ = 1 jZ = zi ; w)) = Z> (y � p); and

r 2`(w) = �
nX

i =1

zi z>
i P(Ŷ = 1 jZ = zi ; w)(1 � P(Ŷ = 1 jZ = zi ; w)) = � Z> WZ :

(SM. 15)

We use the Newton–Raphson algorithm to update the weights, i.e.,

w t +1 = w t �
�
r 2`(w)

� � 1
r `(w)

= w t +
�
Z> WZ

� � 1
Z> (y � p);

(SM. 16)

wheret 2 [1; T] is the index of the iterations, andw t is the weight at iteration t. Note that the features
zi could be kernel transformation of a samplex i , logits outputed from a neural network of a sample
x i , or even the samplex i itself. Whenzi = x i , it is the vanilla logistic regression.

In order to perform adversarial weight perturbation onw (i.e., to maximize scores of different
classes in(9)), for a target feature inputzt , whenyt = 0 , we aim to maximizew > zt such that
P(Ŷ = 1 jZ = zi ; w) is maximized. Similarly, whenyt = 1 , we aim to minimizew > zt such that
P(Ŷ = 0 jZ = zi ; w) is maximized. Therefore, we modify the gradient in (SM. 15) to

r `(w) = Z> (y � p) + � t zt ; (SM. 17)

where� t is a regularization parameter, and� t > 0 if yt = 0 , and� t < 0 if yt = 1 . When
� = 0 , (SM. 17)degenerates to(SM. 15). Therefore, the adversarial weight perturbation on logistic
regression could be performed by keep updating the weights with

w t +1 = w t +
�
Z> WZ

� � 1 �
Z> (y � p) + � t zt

�
; (SM. 18)

until convergence. The reason we introduce the featureszi in the beginning instead of the sampleszi
if that if zi = f (x i ) for a neural networkf (�), (SM. 18)can be used for last-layer weight perturbation
of the neural network [21].

SM. 2.7 Convexity of the channel capacity

In the last paragraph of Section 5, we mention an important limitation of KL-divergence based
Rashomon Capacity due to the convexity of KL-divergence: in certain casesC(M � (x i )) (and
thereforemC (x i ) = 2 C (M � (x i )) ) may seem small for already signi�cant score variations across the
classes. Here, we use an example the binary asymmetric channel [1] to illustrate this phenomenon.
Given p; q 2 [0; 1], a binary asymmetric channelX ! Y has a channel transition matrixP =
[[p;1 � p]; [q;1 � q]] 2 [0; 1]2� 2. Whenp = q, the binary asymmetric channel matches the binary
symmetric channel. In Fig. SM. 1, we show the channel capacity algorithm, with different pairs(p; q).
We observe that the channel capacity is a very “�at” convex function ofp andq; for example, when
p = 0 :5 andq = 0 :1, the channel capacity is 1.3, and the channel capacity is larger than 1.8 if the
differencejp � qj is larger than 0.7. When the channel transition matrix to be the estimated scores in
a binary classi�cation problem, Rashomon Capacity must be interpreted accordingly For example,
the difference of the scores of a sample for class 0 and class 1 needs to be larger than 0.7 such that
the Rashomon Capacity exceeds 1.8. In fact, a Rashomon capacity above 1.1 already corresponds to
a potentially signi�cant score variation in practice.

SM. 3 Datasets and experiments setups

SM. 3.1 Dataset descriptions and pre-processing procedures.

UCI adult dataset. The UCI Adult dataset [22] contains multiple domestic factors including an
individual's education level, age, gender, occupation, and etc. We drop missing values, and obtain
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Figure SM. 1: Channel capacity (values annotated on the heatmap) of the binary asymmetric channel
with differentp andq.

46447 samples with 20 features. The 20 features include the one-hot encoded version of the originally
selected features [age, education, marital-status, relationship, race, gender, capital-gain, capital-loss,
hours-per-week]; note that the features 'race' and 'gender' are binarized. The label is the income, and
is divide into two classes: <=50K and >50K.

COMPAS recidivism dataset. The COMPAS (Correctional Offender Management Pro�ling for
Alternative Sanctions) dataset [23] is a widely used algorithm for judges and parole of�cers to score
criminal defendant's likelihood of reoffending (i.e., recidivism). The features include [age, charge
degree, race, sex, priors crime count, days before screening/arrest, jail in date, jail out date], and
the label is the binary prediction on recidivism. We pre-processed the features by binarizing 'race',
'sex', 'charge degree' (felony or others), and 'days before screening/arrest' (<= 30 days or > 30 days);
creating a new feature call 'length of stay', which is duration between 'jail in date' and 'jail out date'.
The resulting dataset has 52878 samples with 6 features.

HSLS dataset. The HSLS (High School Longitudinal Study) dataset [24] is collected from 23,000+
participants across 944 high schools in the USA, and it includes thousands of features such as student
demographic information, school information, and students' academic performance across several
years. We pre-processed the dataset (e.g., dropping rows with a signi�cant number of missing entries
and students taking repeated exams, performing k-NN imputation, normalization), and the number of
samples reduced to 14,509 and the number of features is 59. For the labels, we created a binary label
Y from students'9th-grade math test score (i.e., top 50% vs. bottom 50%).

CIFAR-10 dataset. The CIFAR-10 dataset [25] contains 50,000 colored images for training and
10,000 for test, where each images has 32× 32 pixels, and has a label 10 classes [airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships, and trucks]. The samples are distributed evenly on the 10
classes for both training and test set.
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SM. 3.2 Training details and experimental setups

For UCI Adult, COMPAS and HSLS datasets, the hypothesis space is composed of simple feed-
forward neural networks with ReLU activations, and the optimizer is gradient descent trained with
the whole datasets, and the training loss is the cross-entropy loss, and the learning rate is 0.001. For
UCI Adult dataset, the neural networks have 5 layers/100 neurons per layer, and is trained with 100
epochs. For COMPAS dataset, the neural networks have 5 layers/200 neurons per layer, and is trained
with 200 epochs. For HSLS dataset, the neural networks have 5 layers/200 neurons per layer, and is
trained with 500 epochs.

For CIFAR-10 dataset, the hypothesis space is composed of VGG16 convolutional neural networks
[26], and the optimizer is stochastic gradient descent with batch size 40. The VGG16 models are
trained with the cross-entropy loss for 3 epochs and the learning rate is 0.001.

Sampling. For UCI Adult, COMPAS and HSLS datasets, we did 5 repeated experiments with
difference random seeds for 70%/30% train/test split, and in each experiments, we trained 100
models, and evaluated on the test set. We select the smallest test loss, and select models that have
test losses smaller than the smallest test loss plus the Rashomon parameter� = [0 :01; 0:02; 0:05; 0:1].
For CIFAR-10 dataset, we did 2 repeated experiments with difference random seeds for 90%/10%
train/test split, and in each experiments, we trained 50 models, and evaluated on the test set. The
mean accuracy for UCI Adult, COMPAS, HSLS and CIFAR-10 datasets are0:8034, 0:6540, 0:6247
and0:8380respectively. The Rashomon Capacity of all test samples can then be computed by the
scores generated by the selected models for difference� , and the mean and standard errors of the
largest 1% and 5% Rashomon Capacity, i.e., the statistics on the tails of the Rashomon Capacity, are
reported in Fig. 3.

Adversarial weight perturbation. For UCI Adult, COMPAS and HSLS datasets, we did 3 repeated
experiments with difference random seeds for 95%/5% train/test split, 90%/10% train/test split and
90%/10% train/test split respectively. We �rst trained a base classi�er, and perturbed the weights
of the neural networks for each test sample (cf.(9)) with learning rates 0.001 (for UCI Adult and
COMPAS datasets) and 0.01 (for HSLS dataset). We require the perturbation procedure to stop
updating the weights if either the perturbed scores exceed 0.9, or the test loss is larger than the base
test loss plus the Rashomon parameter� = [0 :01; 0:02; 0:05; 0:1]. Similarly, for CIFAR-10 dataset,
we did 2 repeated experiments with difference random seeds for 99%/1% train/test split. The mean
accuracy of the base classi�ers for UCI Adult, COMPAS, HSLS and CIFAR-10 datasets are0:8028,
0:6458, 0:7039and0:8167respectively. Therefore, for each sample, we computed the Rashomon
Capacity of all test samples with scores from the base classi�er and from the perturbed classi�er.

Algorithm SM. 1 Sampling with Rejection

Require: training setS, test setT , number of modelsm 2 N, Rashomon parameter� > 0
SampledModel [ ]
TestLoss [ ]
RashomonSet [ ]
RashomonSetProb [ ]
for i 2 [m] do

model train(S, random_seed=i)
loss evaluate(model,T )
SampledModel.append(model)
TestLoss.append(loss)

end for
for i 2 [m] do

if TestLoss[i] < min(TestLoss) +� then
RashomonSet.append(SampledModel[i])
RashomonSetProb.append([compute_scores(SampledModel[i],T )])

end if
end for
return RashomonSet, RashomonSetProb
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Algorithm SM. 2 Adversarial Weight Perturbation (AWP)

Require: datasetD = f x i ; y i gn
i =1 , pretrained modelf � : X ! � c with weight� , learning rate
 ,

number of classesc
RashomonSetProb zeros(n, c, c)
BaseLoss evaluate(f � , D)
for i 2 [n] do

for j 2 [c] do
CurrentLoss evaluate(f � , D)
while CurrentLoss < BaseLoss +� do

scores f � (x i )
r �  @-scores[j]

@�
�  � + 
 r �
CurrentLoss evaluate(f � , D)

end while
RashomonSetProb[i, j, :] f � (x i )

end for
end for

Table SM. 1: Samples with high Rashomon Capacity in the COMPAS dataset.

Age Charge Degree Race Sex Prior Counts Length of Stay Max Score Min Score

25 1 0 1 5 35 0.498 0.194
49 0 1 0 2 82 0.886 0.270
58 0 1 1 2 83 0.885 0.224
45 0 0 1 20 46 0.354 0.030
40 0 0 1 24 1 0.453 0.047
25 1 1 1 5 101 0.756 0.196
45 0 0 0 9 75 0.799 0.162
66 1 0 1 33 13 0.489 0.014
37 0 0 1 3 80 0.867 0.301
58 1 1 1 7 185 0.987 0.343
53 1 1 1 9 117 0.890 0.199
29 0 0 1 1 99 0.930 0.416
37 0 1 1 5 82 0.849 0.272
37 0 0 1 22 1 0.434 0.058
52 1 0 1 7 117 0.921 0.251

SM. 3.3 Algorithm boxes

For the sake of clarify, we summarized the sampling and AWP algorithms to explore the Rashomon
set and to compute Rashomon Capacity in Algorithm SM. 1 and Algorithm SM. 2 respectively. Both
algorithms produce scores from models in the Rashomon set, where the scores are used later to
compute the Rashomon Capacity by the Blahut-Arimoto algorithm (Section SM. 2.5).

SM. 4 Additional experiments

SM. 4.1 A Case study on the COMPAS dataset

We trained 1k multi-layer perceptron classi�ers with different random seeds and selected classi�ers
which have loss smaller than0:685(the smallest loss observed was0:68), and compute Rashomon
Capacity. We show the samples with Rashomon Capacity higher than 1.2 in the COMPAS dataset
in Table SM. 1. Observe that the samples with con�icting scores are mostly with sex 1 (marked as
Male in the dataset) and numerous prior convictions (i.e., prior counts or length of stay). Thus, one
must recommend caution when evaluating input samples with this pro�le. This example showcases
how a stakeholder can zoom into samples with high Rashomon Capacity and �ag them for further
investigation.
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(a) Training with label flipping (b) Fast Gradient Sign Method (FSGM)

Figure SM. 2: Other methods to explore the Rashomon sets.

SM. 4.2 Other methods to explore the Rashomon sets

The procedure in (9) reveals a desirable property of a Rashomon subset: it should include models
with significant score variations. Similarly, a desirable Rashomon subset for accurately evaluating
ambiguity/discrepancy is one with models that have most score disagreement. Based on the observa-
tion, we briefly overview next two alternative strategies for identifying a Rashomon subset: training
with label flipping [27] and fast gradient sign method (FSGM) [28].

Training with label flipping For training with label flipping, a classifier is trained with a sample
whose label is adversarially corrupted to different classes, i.e., training c classifiers for a sample
of a c-class classification problem, with the goal of producing conflicting scores of the sample. In
Fig. SM. 2 (Left), we performed the label flipping procedure and report Rashomon Capacity with
different Rashomon parameters ϵ on 1k random samples in the test set of COMPAS and HSLS
datasets. The accuracy of the base classifier and the mean accuracy of the classifiers trained with
a flipped label are 0.68029 and 0.6660 for COMPAS dataset, and 0.7337 and 0.7324 for HSLS
dataset. The Rashomon Capacity are all small since a miss classification of a single sample does not
significantly influence the overall empirical risk. Therefore, the classifiers are more likely to ignore
the sample with a flipped label.

Fast gradient sign method (FSGM) The FSGM is different from the proposed adversarial weight
perturbation in (9) in two aspects. First, FSGM is applied to create an imperceivable perturbation
on the samples instead of the weights. Second, FSGM only uses the sign of the gradient (times a
scalar β) to update the weights. We implemented FSGM on the weights to adversarially change the
scores of 1k random samples in the test set of COMPAS and HSLS datasets, and report Rashomon
Capacity in Fig. SM. 2 (Right). Note that even with a small scalar β = 0.0001, the update on the
weights—despite being imperceivable when added to input samples—could lead to a significant
change of the loss when added to the model weights, and most classifiers updated with the FSGM
would not belongs to the Rashomon set defined by the Rashomon parameter. Therefore, Rashomon
Capacity is almost 0, as observed in Fig. SM. 2 (Right).

SM. 4.3 Evaluating Rashomon Capacity in the decision domain

In Figure SM. 3, we demonstrate that Rashomon Capacity can be evaluated with both scores and
decisions generated from 100 models in the Rashomon set. Decision-based Rashomon Capacity has
integer values, indicating the number of classes that are confused for each sample.

SM. 4.4 Predictive multiplicity scores based on predicted classes: ambiguity and discrepancy

The computation of the ambiguity and discrepancy in (2) requires searching over the entire Rashomon
set, which is computationally infeasible when the hypothesis space is composed of neural networks.
However, we can restrict the search in the entire Rashomon set to the sampled Rashomon set, and
approximate the ambiguity and discrepancy. In Fig. SM. 4, we report both ambiguity and discrepancy
of the 100 sampled models used to produce Fig 3 for UCI Adult, COMPAS, and HSLS datasets. Note
that both ambiguity and discrepancy report high predictive multiplicity. For example, in COMPAS
dataset, 38% of the samples can be assigned conflicting predictions by switching between classifiers
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