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Abstract

Predictive multiplicity occurs when classification models with statistically indistin-
guishable performances assign conflicting predictions to individual samples. When
used for decision-making in applications of consequence (e.g., lending, education,
criminal justice), models developed without regard for predictive multiplicity may
result in unjustified and arbitrary decisions for specific individuals. We introduce a
new metric, called Rashomon Capacity, to measure predictive multiplicity in prob-
abilistic classification. Prior metrics for predictive multiplicity focus on classifiers
that output thresholded (i.e., 0-1) predicted classes. In contrast, Rashomon Capacity
applies to probabilistic classifiers, capturing more nuanced score variations for in-
dividual samples. We provide a rigorous derivation for Rashomon Capacity, argue
its intuitive appeal, and demonstrate how to estimate it in practice. We show that
Rashomon Capacity yields principled strategies for disclosing conflicting models
to stakeholders. Our numerical experiments illustrate how Rashomon Capacity
captures predictive multiplicity in various datasets and learning models, including
neural networks. The tools introduced in this paper can help data scientists measure
and report predictive multiplicity prior to model deployment.

1 Introduction

Rashomon effect, introduced by Breiman [1], describes the phenomenon where a multitude of distinct
predictive models achieve similar training or test loss. Breiman reported observing the Rashomon
effect in several model classes, including linear regression, decision trees, and small neural networks.
In a foresighted experiment, Breiman noted that, when retraining a neural network 100 times on
three-dimensional data with different random initializations, he “found 32 distinct minima, each of
which gave a different picture, and having about equal test set error” [1, Section 8]. The set of
almost-equally performing models for a given learning problem is called the Rashomon set [2, 3].

We focus on a facet of the Rashomon effect in classification problems called predictive multiplicity.
Predictive multiplicity occurs when competing models in the Rashomon set assign conflicting
predictions to individual samples [4]. Fig. 1 presents an updated version of Breiman’s neural network
experiment and illustrates predictive multiplicity in three classification tasks with different data
domains and neural network architectures. Here, models that achieve statistically-indistinguishable
performance on a test set assign wildly different predictions to an input sample. If predictive
multiplicity is not accounted for, the output for this sample may ultimately depend on arbitrary
choices made during training (e.g., parameter initialization).

Predictive multiplicity captures the potential individual-level harm introduced by an arbitrary choice
of a single model in the Rashomon set. When such a model is used to support automated decision-
making in sectors dominated by a few companies or Government—labeled Algorithmic Leviathans
in [5, Section 3]—predictive multiplicity can lead to unjustified and systemic exclusion of individuals
from critical opportunities. For example, an algorithm used for lending may deny a loan to a specific
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(a) CIFAR-10 dataset (b) AG News dataset (c) UrbanSound8k dataset.

Figure 1: The scores (bottom) of a sample (top) generated by competing models. Predictive multiplicity
occurs on different data domains and learning models, including an image dataset (CIFAR-10 [8]) trained with
VGG16 [9], a natural language dataset (AG News [10]) trained with a simple neural networks after tokenization,
and an audio dataset (UrbanSound8k [11]) trained with LSTM [12].

applicant. However, during model development, there may have been a competing model which
performs equally well on average, yet would have approved the loan for this individual. As another
example, Governments are increasingly turning to algorithms for grading exams that grant access
to higher-level education (see, e.g., UK [6] and Brazil [7]). Here, again, accounting for predictive
multiplicity is critical: an arbitrary choice of a single model in the Rashomon set may lead to an
unwarranted restriction of educational opportunities to an individual student.

We introduce new methods for measuring and reporting predictive multiplicity in probabilistic
classification. First, we postulate several properties that a predictive multiplicity metric must satisfy
to simplify its interpretation by stakeholders. We then provide a new predictive multiplicity metric
called Rashomon Capacity. Rashomon Capacity quantifies score variations among models in the
Rashomon set for a given input sample. Unlike prior metrics restricted to thresholded scores (i.e.,
decisions), Rashomon Capacity can be applied to probabilistic classifiers that output a probability
distribution over a set of classes (e.g., neural networks with soft-max output layers). Communicating
such score disagreements helps stakeholders understand whether a given prediction is arbitrary, e.g.,
depending on randomness during training rather than patterns in the data.

We show that Rashomon Capacity of an input sample can be entirely captured by at most c models in
the Rashomon set, where c is the number of predicted classes, regardless of the size of the Rashomon
set. Remarkably, the computation of Rashomon Capacity also sheds light on a strategy for resolving
predictive multiplicity. Instead of releasing a single model, we provide a greedy algorithm for
identifying a subset of models in the Rashomon set that captures most of the score variations across
a dataset. These models can be communicated to a stakeholder, empowering them to decide how
to resolve conflicting scores via, e.g., randomization [5] and bagging [1]. In summary, our main
contributions include:

1. We postulate desirable properties that any predictive multiplicity metric must satisfy. These
properties motivate our definition of Rashomon Capacity and provide guidelines for the creation of
new multiplicity metrics in future research. We also outline computational challenges in estimating
predictive multiplicity in practice.

2. We introduce a new score-based metric for quantifying predictive multiplicity called Rashomon
Capacity. Rashomon Capacity can be applied to measure score variations across competing classifiers
that output either raw or thresholded (i.e. 0-1) scores.

2



3. We describe a methodology for reporting predictive multiplicity in probabilistic classification
using Rashomon Capacity, with examples on different datasets and models. We advocate that
predictive multiplicity must be reported to stakeholders in, for example, model cards [13].

4. We propose a procedure for resolving predictive multiplicity in probabilistic classifiers. Even
though the Rashomon set may span a large (potentially uncountable) number of models, we show
that the score variation for a sample is fully captured by a small subset of models in the Rashomon
set. Communicating these predictions to stakeholders can empower them to decide how to resolve
predictive multiplicity.

Omitted proofs, additional explanations and discussions, details on experiment setups and training,
and additional experiments are included in Supplementary Materials (SM). Code to reproduce our
experiments is available at https://github.com/HsiangHsu/rashomon-capacity.

2 Background and related work

Notation. We consider a dataset D = {(xi,yi)}ni=1, e.g., a training or test set, for a classification
task with c classes/labels. Each sample pair (xi,yi) is drawn i.i.d. from PX,Y with support X ×∆c.
Here, ∆c ≜ {(r1, · · · , rc) ∈ [0, 1]c;

∑c
i=1 ri = 1} denotes the c-dimensional probability simplex.

Let ek be a length-c indicator vector with one in the kth position and zero elsewhere, i.e., [ek]k = 1,
and [ek]j = 0 ∀j ̸= k, where [·]j denotes the jth entry of a vector. Each yi is one-hot encoded, i.e.,
yi ∈ {ek}ck=1. 1(·) denotes the indicator function.

We denote by H a hypothesis space, i.e., a set of candidate probabilistic classifier is parameterized
by θ ∈ Θ ⊆ Rd that approximate PY |X=xi

, i.e., H ≜ {hθ : X → ∆c : θ ∈ Θ}. The loss function
used to evaluate model performance is denoted by ℓ : ∆c × ∆c → R+ (e.g., cross-entropy) and
L(hθ) ≜ EPX,Y

[ℓ(hθ(X), Y )] the population risk. As usual, the population risk is approximated by
the empirical risk L̂(hθ) ≜ 1

n

∑n
i=1 ℓ(hθ(xi),yi).

Rashomon set, Rashomon ratio, and pattern Rashomon ratio. We define the Rashomon set
as the set of all models in the hypothesis space that yield similar average loss. Formally, given a
Rashomon parameter ϵ ≥ 0, the Rashomon set is defined as an ϵ-level set [3]:

R(H, ϵ) ≜ {hθ ∈ H;L(hθ) ≤ ϵ}. (1)

Note that the Rashomon set is determined by the hypothesis space H, the Rashomon parameter ϵ,
and also implicitly by the data distribution due to the evaluation of L(hθ). The cardinality |R(H, ϵ)|
or the volume1 vol(R(H, ϵ)) of the Rashomon set (depending on whether the Rashomon set has
finite elements) can be used to quantify the size of the Rashomon set. Given R(H, ϵ), the Rashomon
ratio [3, Defn. 2] is defined as R̂(H, ϵ) ≜ vol(R(H,ϵ))

vol(H) . R̂(H, ϵ) represents the fraction of models
in the hypothesis space that fit the data about equally well. A large Rashomon ratio indicates high
multiplicity. Moreover, models with various desirable properties, such as better generalizability,
can often exist inside a large Rashomon set. Similar to the Rashomon ratio, pattern Rashomon
ratio [3, Defn. 12] is defined as the ratio of the count of all possible binary predicted classes given
by the functions in the Rashomon set to that given by the functions in the hypothesis space. The
complexity of computing pattern Rashomon ratio grows exponentially with the number of samples,
yielding an “expensive” metric for predictive multiplicity when applied to large datasets.

Ambiguity and discrepancy. Instead of characterizing multiplicity in the hypothesis/ parameter
space, Marx et al. [4] measure multiplicity in terms of the thresholded outputs (i.e., predicted classes)
of a classifier, and propose two metrics: ambiguity and discrepancy. Ambiguity is the proportion
of samples in a dataset that can be assigned conflicting predictions by competing classifiers in the
Rashomon set. Discrepancy is the maximum number of predictions that could change in a dataset if
we were to switch between models within the Rashomon set. More precisely, given a base model ĥ,

1Since H is parameterized, the volume of R(H, ϵ) = {θ ∈ Θ;L(hθ) ≤ ϵ} can be directly computed in Rd.
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Figure 2: Left: 4 models output similar scores for 4 classes, but the predicted classes produced via thresholding
are very different. This may lead to high ambiguity and/or discrepancy (cf. (2)). Right: Given a sample, the
scores obtained from different models (colored dots) in the Rashomon set lead to different predicted classes
by thresholding the scores (based on decision boundaries, i.e., dashed lines in the simplex). Prior work either
measure multiplicity on the hypothesis set, e.g., the Rashomon ratio, or in terms of predicted classes, e.g., pattern
Rashomon ratio and ambiguity/discrepancy. In this work, we measure predictive multiplicity directly in terms of
scores on the probability simplex, i.e., either thresholded or raw scores.

the ambiguity αϵ(ĥ) and the discrepancy δϵ(ĥ) are respectively defined as

αϵ(ĥ) ≜
1

n

n∑
i=1

max
h∈R(H,ϵ)

1

[
argmaxh(xi) ̸= argmax ĥ(xi)

]
,

δϵ(ĥ) ≜ max
h∈R(H,ϵ)

1

n

n∑
i=1

1

[
argmaxh(xi) ̸= argmax ĥ(xi)

]
.

(2)

For linear classifiers, both quantities in (2) can be estimated by mixed integer programming [4,
Section 3]. A small ϵ could still lead to a large ambiguity, see Section SM. 2.2 for a discussion.

3 Measuring predictive multiplicity of probabilistic classifiers

The metrics in (2) for predictive multiplicity are based on predicted classes. Thus, they require finding
the argmax or thresholding the scores at the output of a classifier. In probabilistic classification,
thresholding may mask similar predictions produced by competing models and artificially increase
multiplicity: output scores can be almost equal across different classes, yet the (thresholded) predicted
classes can be very different. For example, two scores [0.49, 0.51] and [0.51, 0.49] for a binary
classification problem can lead to entirely different predicted classes after thresholding—1 and
0, respectively—and ultimately overestimate predictive multiplicity (see Fig. 2 (Left) for another
multi-class example). In fact, predictive multiplicity metrics based on predicted classes may yield
multiplicity even for a single fixed model when, for example, the threshold criteria for output scores
is changed. This subtle, yet important difference motivates us to reconsider existing metrics and
introduce a new predictive multiplicity metric that is applicable to both output scores and decisions
(cf. Fig. 2 (Right) for an overview).

We begin this section by first outlining desirable properties of predictive multiplicity metrics for
probabilistic classifiers. Motivated by the potential individual-level harm incurred by an arbitrary
choice of model in the Rashomon set, we focus on per-sample multiplicity metrics. We formally
define Rashomon Capacity in terms of the KL-divergence between the output scores of classifiers
in the Rashomon set. We then use Rashomon Capacity to define a predictive multiplicity metric for
individual samples in a dataset. We present these definitions in the ideal case where the population
loss can be computed exactly, and discuss empirical approximation in Section 4.

3.1 Properties of multiplicity metrics for probabilistic classifiers

Consider a fixed data distribution PX,Y and a corresponding Rashomon set R(H, ϵ) for a classification
problem with c classes. For a given sample xi ∈ D, we collect all possible output scores produced by
models in R(H, ϵ), and define the ϵ-multiplicity set as

Mϵ(xi) ≜ {h(xi);h ∈ R(H, ϵ)} ⊆ ∆c. (3)
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Let m(·) be a measure of predictive multiplicity, and m(Mϵ(xi)) be the predictive multiplicity of
sample xi. Which properties should m(·) have? Ideally, we expect m(Mϵ(xi)) to be a bounded
value in [1, c], since at least one class is assigned to sample xi, and at most c different classes could
be assigned to xi. Moreover, if m(Mϵ(xi)) = 1 (i.e., a predictive multiplicity of 1), then one would
expect that only one score is produced for xi and, thus, all predictions in Mϵ(xi) are exactly the same.
Similarly, if m(Mϵ(xi)) = c (i.e., predictive multiplicity equal to the number of classes), then there
must exist c models {h1, · · · , hc} ⊆ R(H, ϵ) such that hj(xi) = ej . In other words, each of the c
classes can be assigned to the sample, yielding a predictive multiplicity of c. Finally, m(Mϵ(xi))
should be monotonic in Mϵ(xi), i.e., if Mϵ(xi) ⊆ M′

ϵ(xi), then m(Mϵ(xi)) ≤ m(M′
ϵ(xi)). We

summarize these desirable properties of predictive multiplicity metrics in the following definition.
Definition 1. Let Pc be the power set2 of the probability simplex ∆c. The function m : Pc \ ∅ → R
is a predictive multiplicity metric3 if for any A,B ∈ Pc

1. 1 ≤ m(A) ≤ c;

2. m(A) = 1 if and only if |A| ≤ 1;

3. m(A) = c if and only if ek ∈ A for k ∈ [c], i.e., A contains the corner points of ∆c;

4. m(A) ≤ m(B) if A ⊆ B.

We introduce next a predictive multiplicity metric called Rashomon Capacity that satisfies all
properties above. In the rest of the paper, when the ϵ-multiplicity set Mϵ(·) is clear from context, we
use m(xi) as shorthand for m(Mϵ(xi)).

3.2 Rashomon Capacity

Our goal is to quantify predictive multiplicity in terms of the score variations assigned to each sample
xi in a dataset D, given a Rashomon set R(H, ϵ) and the corresponding ϵ-multiplicity set Mϵ(xi).
Note that an element in Mϵ(xi) is a probability distribution over c classes. Thus, it is natural to
adopt divergence measures for distributions to capture the “variation” of scores in Mϵ(xi). From a
geometric viewpoint, a larger spread in scores indicates a greater amount of predictive multiplicity
for a given sample xi.

Assume a probability measure (or “weight”) PM across models in R(H, ϵ) (and therefore each
score in Mϵ(xi)), where M denotes the random variable of selecting/sampling the models in the
Rashomon set. Intuitively, if PM assigns mass 1 to a single model and 0 to all other models in the
Rashomon set, then the output of only one model is considered. Alternatively, if PM is the uniform
distribution, then the outputs of every model in the set are equally weighed. Given a divergence
measure between distributions d(·∥·), we quantify the spread of the scores in Mϵ(xi) by

ρ(Mϵ(xi), PM ) ≜ inf
q∈∆c

Eh∼PM
d(h(xi)∥q). (4)

Here, the minimizing q acts as a “center of gravity” or “centroid” for the outputs of the classifiers in the
Rashomon set for a chosen distribution PM across models. Analogously, the quantity ρ(Mϵ(xi), PM )
can be understood as a measure of “spread” or “inertia” across model outputs. We select the
distribution PM that results in the largest spread in scores:

Cd(Mϵ(xi)) ≜ sup
PM

ρ(Mϵ(xi), PM ) = sup
PM

inf
q∈∆c

Eh∼PM
d(h(xi)∥q). (5)

The missing element is the choice of divergence measure d(·∥·). A natural candidate is cross-
entropy (or log-loss) d(h(xi)∥q) = −h(xi)

⊤ logq, since this is the standard loss used for training
and evaluating probabilistic classifiers. Alas, the minimal cross-entropy minq −h(xi)

⊤ logq =
h(xi)

⊤ log h(xi) is not 0 and depends on h(xi). Consequently, if one were to choose d(·∥·) to be
cross-entropy, the minimum value of (5) would not be consistent and would depend on xi — even
when the outputs across all models in the Rashomon set match! Thus, we shift cross-entropy by its
minimum −h(xi)

⊤ log h(xi). This results in KL-divergence as our divergence measure of choice:
DKL(h(xi)∥q) = −h(xi)

⊤ logq + h(xi)
⊤ log h(xi). Putting it all together, we next formally

define the spread in scores measured using KL-divergence as Rashomon Capacity.
2We exclude the empty set ∅ from Pc, since the multiplicity of an empty scores set is not well-defined.
3We use the term “metric” loosely, not in the sense of defining a metric space over a set.
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Definition 2. Given a sample xi, a Rashomon set R(H, ϵ), and the corresponding ϵ-multiplicity set
Mϵ(xi), the Rashomon Capacity4 is defined as

mC(xi) ≜ 2C(Mϵ(xi)), where C(Mϵ(xi)) = sup
PM

inf
q∈∆c

Eh∼PM
DKL(h(xi)∥q), (6)

where the supremum in the right-hand side is taken over all probability measures PM over R(H, ϵ).

The exponent C(Mϵ(xi)) is ubiquitous in information theory; in fact, C(Mϵ(xi)) is the channel
capacity [14] of a channel PY |M whose rows are the entries of Mϵ(xi). This connection motivates the
name “Rashomon Capacity” and is useful for proving that mC(xi) is indeed a predictive multiplicity
metric, as stated in the next proposition.

Proposition 1. The function mC(·) = 2C(Mϵ(·)) : X → [1, c] satisfies all properties of a predictive
multiplicity metric in Definition 1.

In contrast, ambiguity and discrepancy in (2) do not satisfy the properties of a predictive multiplicity
metric outlined in Definition 1. An interesting connection between ambiguity and Rashomon Capacity
is that ambiguity measures the fraction of samples in a dataset with non-zero Rashomon Capacity.
In addition, Rashomon Capacity is fundamentally different from the size of a Rashomon set, in the
sense that a larger Rashomon set does not necessarily lead to a larger Rashomon Capacity. Using a
binary classification problem as an example, consider two Rashomon sets with scores

R1(H, ϵ) = {h1, h2, h3}, h1(xi) = [0.45, 0.55], h2(xi) = [0.50, 0.50], h3(xi) = [0.60, 0.40],

R2(H, ϵ) = {h1, h2}, h1(xi) = [0.85, 0.15], h2(xi) = [0.10, 0.90].
(7)

R2(H, ϵ) has a larger Rashomon Capacity than R1(H, ϵ), albeit |R2(H, ϵ)| = 2 < |R1(H, ϵ)| = 3.

3.3 Rashomon Capacity in score and decision domains

Rashomon Capacity is defined in terms of the raw outputs in ∆c of a probabilistic classifier; therefore
it can also be evaluated with decisions, since a decision, after one-hot encoding, still lies in the
probability simplex (at a vertex). This allows Rashomon Capacity to provide a more nuanced view
of score variation, and can be used to identify the number of “conflicting” classes in the predictions
produced by models in the Rashomon set (i.e., Rashomon Capacity is between 1 and c).

Taking a ternary classification as an example, for three score vectors [0.49, 0.51, 0] and [0.51, 0.49, 0],
the Rashomon Capacity of the raw scores for these samples is close to 1. For the thresholded scores
([0, 1, 0] and [1, 0, 0]) the Rashomon Capacity is now 2. Since Rashomon Capacity is between 1 and
3, this indicates that the confusion is between 2 classes instead of 3. In contrast, prior metrics that
also operate on thresholded scores, such as ambiguity and discrepancy (2), only capture agreement
among predictions. In this sense, score-level metrics could potentially provide a finer characterization
of predictive multiplicity. This does not mean that multiplicity should only be reported in the score
domain. On the contrary, our suggestion is that multiplicity should be measured at both the score and
threshold levels and reported to stakeholders, as scores and decisions paint different pictures on how
models conflict.

4 Computational challenges of multiplicity metrics

The computation of any multiplicity metric requires an approximate characterization of the Rashomon
set—even for simple hypothesis spaces such as logistic regression. For instance, the computation of
the Rashomon ratio involves estimating vol(R(H, ϵ)), which is a level set estimation problem [15],
and is computationally infeasible5 when the hypothesis space H is large [16]. For a logistic regression,
the exact form of the pattern Rashomon ratio is not tractable due to the non-linearity of the maximum
likelihood ratio [17]. Similarly, the computation of ambiguity/discrepancy requires solving an
optimization over the Rashomon set and can be computationally burdensome since 0-1 loss is not
differentiable.

4We consider logarithms in base 2, and the unit of C(Mϵ(xi)) is bit. We include further discussions and a
geometric interpretation of Rashomon Capacity in Sections SM. 2.3 and SM. 2.4 respectively.

5An exact computation of vol(R(H, ϵ)) in a special case, e.g., ridge regression where the Rashomon set
forms an ellipsoid, is provided in [3, Section 5.1].
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Given a dataset and a hypothesis space, there are two core challenges in computing any predictive
multiplicity metric (see Definition 1). The first challenge is selecting an appropriate Rashomon
parameter ϵ, since the smallest achievable test loss L(hθ) is unknown and only empirically approx-
imated using a dataset with finite samples. The second challenge is approximating the Rashomon
set without exhaustively searching the hypothesis space6. Next, we discuss strategies for addressing
these two challenges.

Selection of the Rashomon parameter ϵ. The value of ϵ can be set relative to the performance
of a reference model. A natural choice of the reference model is the empirical risk minimizer, i.e.,
hθ∗ , where θ∗ ∈ argminθ∈Θ L̂(hθ) (see Section 2 for notation). Here, we can set ϵ = L̂(hθ∗) + ϵ′

with ϵ′ ≥ 0, i.e., the Rashomon parameter depends on the minimum empirical loss. The parameter
ϵ′, in turn, can be selected in terms of the upper boundary of a confidence interval around the
empirical minimum. For example, the confidence interval can be estimated via bootstrapping (see
Fig. SM. 4.6 for bootstrapped loss intervals). Naturally, ϵ′ depends on the size of the test set used
for evaluating hθ̂—when the dataset has n samples, usually ϵ′ will be of the order O(1/

√
n) [19]. If

more samples are available to evaluate model performance (rendering narrower confidence intervals),
this parameter’s value will decrease.

The discussion above motivates the one-sided definition for the Rashomon set in (1). If one were
able to find the unique classifier that outperforms all others in terms of population loss, then it is
justified to use this classifier in practice. In fact, this point is eloquently made in [5], which argues
that there is no (moral) harm in using the most accurate classifier, i.e., selecting a classifier that has
a provable smaller average loss (or higher accuracy) than another. Existing works on multiplicity,
e.g., [3] and [4], also adopt a one-sided Rashomon set definition.

The Rashomon subset. With limited computational power and memory, exploring the Rashomon
set, i.e., searching the hypothesis space H to find all models with test losses smaller than ϵ, is
challenging. For several hypothesis spaces (e.g., neural networks), we are only able to acquire a small
number of models in the Rashomon set. We denote the collection of these models as a Rashomon
subset R̃(H, ϵ).

The Rashomon subset can be used to approximate the “true” Rashomon set R(H, ϵ) in the evaluation
of multiplicity metrics. We can construct a Rashomon subset with K models by choosing the
Rashomon parameter ϵ in terms of a reference model hθ∗ , i.e.,

R̃(H, ϵ′) ≜ {hθi ∈ H;L(hθi) ≤ L̂(hθ∗) + ϵ′}Ki=1 ⊆ R(H, L̂(hθ∗) + ϵ′). (8)

For example, the Rashomon ratio can be approximated as K/vol(H). Similarly, we can optimize for
ambiguity/discrepancy in (2) over hθi ∈ R̃(H, ϵ′). Finally, we can approximate the ϵ′-multiplicity
subset M̃ϵ′(xi) ≜

{
hθi(xi);h ∈ R̃(H, ϵ′)

}
in (3) for Rashomon Capacity.

In this sense, evaluating multiplicity metrics boils down to finding a Rashomon subset R̃(H, ϵ′) and
computing the metric for that set. This is an approximation of the true multiplicity, yet becomes more
accurate with an increasing K. Next, we provide an algorithm based on model weight perturbation to
find a Rashomon subset for estimating Rashomon Capacity for any differentiable model.

Note that, unless the Rashomon set can be fully characterized, all estimates of multiplicity metrics are
underestimates based on approximating the true Rashomon set by a Rashomon subset. We emphasize
that identifying and disclosing predictive multiplicity — even if an underestimate — is still critical
for models deployed in applications of individual-level consequence (e.g., healthcare, education,
lending), and is better than the current practice reporting no multiplicity at all.

Computing Rashomon Capacity. The definition of Rashomon Capacity in (6) does not assume
a finite cardinality of the Rashomon set. Remarkably, even when the Rashomon set has infinite
cardinality, the value of Rashomon Capacity of a sample can be recovered by considering only a
small number of models in the Rashomon set. In fact, for each sample xi, there exists a ϵ-multiplicity
subset of at most c models that fully captures the variation in scores. This statement is formalized by
the next proposition, which can be proven by applying Carathéodory’s theorem [20].

6In neural networks, for example, the size of the Rashomon set is determined by the number of local minima,
which grows exponentially many with the number of parameters [18].
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Proposition 2. For each sample xi ∈ D, there exists a ϵ-multiplicity subset M̃ϵ(xi) ⊆ Mϵ(xi)

with |M̃ϵ(xi)| ≤ c that fully captures the spread in scores for xi across the Rashomon set, i.e.,
C(M̃ϵ(xi)) = C(Mϵ(xi)). In particular, there are at most c models in a Rashomon subset R̃(H, ϵ)
whose output scores yield the same Rashomon Capacity for xi as the entire Rashomon set.

Proposition 2 implies that, for each sample, there exists a Rashomon subset with c models that
captures all score variation. In other words, the value of Rashomon Capacity remains the same
regardless if we measure multiplicity on this subset or on the entire Rashomon set. This allows us to
circumvent the task of characterizing the entire Rashomon set (which has potentially infinite models),
and focus on identifying c models per sample that maximize score variations while still satisfying a
target loss constraint. We describe next a method (described in detail in Algorithm SM. 2) based on
weight perturbation that obtains c models in the Rashomon subset for each sample.

Given a sample xi, we obtain models with output predictions pk by approximately solving the
following optimization problem which maximizes the output score for class k:

pk = hθ̂(xi), where θ̂ = argmax
hθ∈R(H,ϵ)

[hθ(xi)]k, ∀k = 1, 2, · · · , c. (9)

To solve (9), for each k, we set the objective to be minθ∈Θ −[hθ(xi)]k, compute the gradients, and
update the parameter θ until L(hθ) > ϵ. Given a pre-trained model in the Rashomon set, (9) can be
viewed as an adversarial weight perturbations (AWP) technique to explore the Rashomon set [21, 22]
(see Section SM. 2.6 for exact weight perturbation on logistic regression).

With the discrete ϵ-multiplicity subset obtained by solving (9), Rashomon Capacity can be computed
by standard procedures such as the Blahut–Arimoto (BA) algorithm [23, 24]. The BA algorithm
is a class of iterative algorithms for numerically computing discrete channel capacity (or more
generally, the rate-distortion function), see Section SM. 2.5 for more details. Note that AWP may still
underestimate the true Rashomon Capacity, yet it greatly improves the estimates compared to prior
work and is less computationally intensive than sampling, as shown in the next section.

The procedure in (9) reveals a desirable property of a Rashomon subset: it should include models
with significant score variations. Similarly, a desirable Rashomon subset for accurately evaluating
ambiguity/discrepancy is one with models that have most score disagreement. This property also ex-
plains why collecting a Rashomon subset by straightforwardly sampling models [3] in the Rashomon
set could be inefficient (cf. Algorithm SM. 1) since the randomly sampled models would not neces-
sarily have a significant score disagreement/variation. In fact, the sampling strategy could require a
significant amount of models; see for example in [3, Section 6], a Rashomon subset consisting of
250k decision trees.

5 Empirical study

We illustrate how to measure, report, and potentially resolve predictive multiplicity of probabilistic
classifiers using Rashomon Capacity on UCI Adult [25], COMPAS [26], HSLS [27], and CIFAR-10
datasets [8]. UCI Adult and COMPAS are two binary classification datasets on income and recidivism
prediction, respectively, and are widely used in fairness research [28]. The HSLS is an education
dataset, collected from high school students in the USA, whose features include student and parent
information (see Section SM. 3.1 for details). We created a binary label Y from students’ 9th-grade
math test scores (i.e., top 50% vs. bottom 50%). We select the first three datasets to illustrate the effect
of predictive multiplicity on individuals. Finally, we include the CIFAR-10 dataset to demonstrate
how to report Rashomon Capacity in multi-class classification.

For the classifiers, we adopt feed-forward neural networks for the first three datasets, and a convo-
lutional neural network VGG16 [9] for CIFAR-10. For more information on the datasets, neural
network architectures, and training details, see Section SM. 3.2. All numbers reported are evaluated
on the test set.

Measuring and reporting predictive multiplicity via Rashomon Capacity. We evaluate two meth-
ods, sampling with different weight initialization seeds [3] and AWP (9), and report the Rashomon
Capacity in Fig. 3. For sampling, we construct a Rashomon subset R̃(H, ϵ′) with 100 models by
different random initialization (cf. (8) with K = 100). For AWP, the ϵ′-multiplicity subsets M̃ϵ′(xi)
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(a) UCI Adult (80.28%) (b) COMPAS (66.22%) (c) HSLS (70.39%) (d) CIFAR-10 (81.67%)

Figure 3: For each dataset (percentage is test accuracy), the top figure shows the mean and standard error of the
largest 1% and 5% (1% tail and 5% tail in the legend) Rashomon Capacity among all the samples with difference
Rashomon parameter ϵ. Two methods are used to obtain models from the Rashomon set, AWP (9) and random
sampling. The bottom figure shows the cumulative distribution of the Rashomon Capacity of all the samples
obtained by AWP. Each point is generated with 5 repeated splits of the dataset.

of each sample xi is constructed by the p1, · · · ,pc obtained from (9). For example, when ϵ′ = 0.01,
the models in the Rashomon set R̃(H, 0.01) achieves small and statistically indistinguishable test
losses from each other; however, the Rashomon Capacity is non-zero for a significant fraction of
samples. In particular, we showcase the average top 1% and top 5% of the Rashomon Capacity from
all samples for different ϵ′, and the cumulative distribution of the Rashomon Capacity across the
samples. As the Rashomon parameter increases, both sampling and AWP lead to higher Rashomon
Capacity since the Rashomon set gets larger. Observe that the increase of Rashomon Capacity when
ϵ′ varies from 0.01 to 0.02 is different for UCI Adult and COMPAS datasets, since the choice of
ϵ′ is data-dependent. The AWP (9) achieves higher Rashomon Capacity than random sampling as
AWP intentionally explores the Rashomon set that maximizes the scores variations. It is important
to keep in perspective that each sample in the high-Rashomon Capacity tail displayed in Fig. 3
corresponds to an individual who receives conflicting predictions. In applications such as criminal
justice and education, conflicting predictions for even one individual should be reported in, e.g.,
model cards [13].

For the experiments in Figure 3, the estimated Rashomon ratio are almost all zeros since the hypothesis
space, parameterized by millions of parameters, is always significantly larger. In SM, we further
report (i) other strategies to explore the Rashomon set in Section SM. 4.2, (ii) Rashomon Capacity
evaluated with decisions instead of scores in Section SM. 4.3, and (iii) other metrics of multiplicity
such as ambiguity/discrepancy in Section SM. 4.4.

Resolving predictive multiplicity by greedy model selection. Predictive multiplicity could be
resolved by, for example, selecting a subset of models (potentially of size one in the ideal case) and
releasing the scores to a stakeholder. We propose a greedy model selection procedure to select a
subset of competing classifiers for resolving predictive multiplicity. Given R competing classifiers,
the goal is to select r models (r < R) that result in distributions of the Rashomon Capacity similar
to that of the original R models. Starting from a dataset D and a Rashomon subset R̃(H, ϵ′), this
can be implemented by (i) initializing a set A of models by randomly selecting a model in R̃(H, ϵ′),
(ii) growing A by adding one model from R̃(H, ϵ′) that maximizes the average Rashomon Capacity
across D, and (iii) stopping until there are r models in A. This greedy model selection is inspired
by Property 4 (monotonicity) in Definition 1, since including the models to the set A does not
reduce capacity. In Fig. 4, we models from the Rashomon sets for UCI Adult, COMPAS, HSLS and
CIFAR-10 datasets respectively. Here, the hypothesis space are feed-forward neural networks (see
details in Section SM. 3.2). Observe that only a small subset of the sampled models, selected by the
greedy model selection procedure, is required to recover the distribution of the Rashomon Capacity.
On COMPAS dataset, the 10 models obtained by the greedy model selection procedure capture the
Rashomon Capacity computed with the original 163 models, i.e., these 10 models display most of the
score variations.
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(a) UCI Adult (83.47%) (b) COMPAS (67.35%) (c) HSLS (69.91%) (d) CIFAR-10 (80.33%)

Figure 4: The distributions of the Rashomon Capacity for UCI Adult, COMPAS, HSLS and CIFAR-10 datasets
(ϵ is percentage of mean test accuracy) obtained by sampling models from the Rashomon subset and applying
greedy model selection procedure (Greedy in the legend) on the sampled models.

In Section SM. 4.1, we provide a worked-out example with the COMPAS dataset on how Rashomon
Capacity can be used to identify high-multiplicity samples. We observe patterns in sex and prior
convictions leading to samples having high Rashomon Capacity. We further discuss promising
strategies, e.g., ensemble methods, model calibration and weight regularization to resolve multiplicity,
in Sections SM. 4.5 and SM. 4.6. We observe that the ensemble method could lead to a smaller
Rashomon Capacity, and is a viable strategy for resolving multiplicity in small models, but may be
infeasible for large, computationally expensive models. In addition, weight regularization for logistic
regression (e.g., LASSO or ridge penalties) could also reduce Rashomon Capacity. On the other
hand, a perfectly calibrated classifier does not necessarily resolve multiplicity—a classifier whose
predicted classes matches the true classes “on average” across samples does not necessarily translate
to a consistent set of predictions for a single target sample across equally calibrated classifiers.

6 Final remarks
Limitations. The AWP (9), despite being more efficient than random sampling, still requires
re-training/perturbing a significant amount of models, and is computationally burdensome when
scaling up to large datasets with millions of samples. Rashomon Capacity in certain cases may seem
small for already significant score variations across classes, due to the convexity of KL-divergence.
Indeed, this issue will occur for any strictly convex measure of divergence in (4). We provide a further
discussion of how to interpret the numerical values of Rashomon Capacity in Section SM. 2.7.

Future directions. First, overcoming the computational bottleneck to efficiently explore the
Rashomon set is an impactful direction for optimization techniques. Second, Rashomon Capacity
could be generalized to other probability divergences, e.g., f -divergences [29], Rényi divergence [30],
or Wasserstein distance [31]. This generalization could potentially provide further operational signifi-
cance and tunability for measuring multiplicity, as long as the conditions in Definition 1 are satisfied.
Third, ensemble methods could be a promising strategy to reduce predictive multiplicity that worth
studying.

Broader impacts. The Rashomon effect impacts model selection [32–35], explainability [36],
and fairness [37]. Rudin et al. [32] suggested that, given the choice of competing models, machine
learning practitioners should select interpretable models a priori, rather than selecting a black-box
model with conjectural explanations post-training. Hancox-Li [33] and D’Amour et al. [34] argued
that epistemic patterns, e.g., causality, should be reflected when selecting models the Rashomon set.
Black et al. [35] further studied multiplicity in the context of the conventional bias-variance trade-off
analysis. Competing models in the Rashomon set may not only render conflicting explanations for
predictions [36] and measures of feature importance [2], but also have inconsistent performance
across population sub-groups. Consequently, the arbitrary choice of a single model may result in
unnecessary and discriminatory bias against vulnerable population groups [37]. See Section SM. 2.1
for further discussion, including connections with individual fairness [38].
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