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Abstract

We advance both the theory and practice of robust ℓp-quasinorm regression for
p ∈ (0, 1] by using novel variants of iteratively reweighted least-squares (IRLS) to
solve the underlying non-smooth problem. In the convex case, p = 1, we prove
that this IRLS variant converges globally at a linear rate under a mild, deterministic
condition on the feature matrix called the stable range space property. In the non-
convex case, p ∈ (0, 1), we prove that under a similar condition, IRLS converges
locally to the global minimizer at a superlinear rate of order 2−p; the rate becomes
quadratic as p→ 0. We showcase the proposed methods in three applications: real
phase retrieval, regression without correspondences, and robust face restoration.
The results show that (1) IRLS can handle a larger number of outliers than other
methods, (2) it is faster than competing methods at the same level of accuracy,
(3) it restores a sparsely corrupted face image with satisfactory visual quality.
https://github.com/liangzu/IRLS-NeurIPS2022

1 Introduction

Given a feature matrix A ∈ Rm×n with m≫ n and a response vector y ∈ Rm, the problem

min
x∈Rn

∥∥Ax− y
∥∥
p

(1)

of ℓp-regression has a variety of different applications depending on the choice of ∥v∥p =(∑
i |vi|p

)1/p
. While p = 2 corresponds to standard linear regression, the choice of p > 2 arises

naturally in semi-supervised learning on graphs [1, 2, 3], and a lot of activity has been dedicated
recently to the computational complexity analysis for the case p > 1 [4, 5, 6].

In this paper, we assume there is a coefficient vector x∗ ∈ Rn such that the residual r∗ := Ax∗ − y
is k-sparse, in which case a choice of p ∈ (0, 1] is of interest. Indeed, for the convex and non-smooth
case p = 1, (1) is known as least absolute deviation, which dates back to the time of Boscovich
around in the middle of the 18th century [7, 8]. Since then, it has been known intuitively that (1)
(p = 1) is robust to large but few measurement errors (quoting [9]), i.e., that (1) is robust to outliers.

The algorithmic and theoretical understanding of (1) for p = 1 has been of long-standing interest to
statisticians, which has led to a vast literature spanning from the classic 1964 paper of Huber [10]
to recent contributions [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. That being said, for p = 1, there is
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Algorithm 1: IRLS for ℓp-Regression (IRLSp)

1 Input: A = [a1, . . . ,am]⊤ ∈ Rm×n,y = [y1, . . . , ym]⊤ ∈ Rm, p ∈ (0, 1];
2 Weight initialization w(0) ← [w

(0)
1 ; . . . ;w

(0)
m ] ∈ Rm; // Instead, one can initialize some vector x(1).

3 For t← 0, 1, . . . :
x(t+1) ← argmin

x∈Rn

∑m

i=1
w

(t)
i (a⊤

i x− yi)
2 (2)

Update ϵ(t+1) suitably based on x(t+1), A, and y; // See Section 2.2 for details.

w
(t+1)
i ← max

{
|a⊤

i x
(t+1) − yi|, ϵ(t+1)

}p−2 ∀i = 1, . . . ,m (3)

a close, but somewhat underexplored connection between (1) and the basis pursuit problem [21],
and more specifically, the theoretical [22, 23, 24] and algorithmic aspects [25, 26, 27] of compressed
sensing [28] (see also Section 2.1). For p ∈ (0, 1), problem (1) is non-smooth and non-convex,
and generally less well understood. To the best of our knowledge, the only paper that considered
(1) with p ∈ (0, 1) is [29], where the authors presented a condition (based on restricted isometry
constants) that guarantees exact recovery of x∗ from (1). Other related works come either from the
compressed sensing literature, where an ℓp (and noisy) version of basis pursuit has been considered as
a sparsity-promoting formulation [30, 31, 32, 26, 33, 34, 35, 36, 37], or from the literature of matrix
recovery/completion, where the Schatten-p norm has come into play as a non-convex surrogate for
rank minimization [38, 39, 40, 41, 42, 43]. A key message from these works is that ℓp or Schatten-p
minimization with p ∈ (0, 1) offers better information-theoretic properties (e.g., requires fewer
samples for exact recovery) than minimization with p = 1.

Here, we study an iteratively reweighted least-squares method (IRLSp) to solve (1) with p ∈ (0, 1].
As listed in Algorithm 1, IRLSp alternates between solving a weighted least-squares problem (2) and
updating the weights (3); see Section 2.2 for more elaboration on IRLS. The simplicity of this idea
(with its impressive performance) justifies its popularity in many machine learning [44, 45, 46, 47]
and computer vision [48, 49, 50, 51, 52] applications. Based on recent advances on IRLS [26, 27],
we make several contributions for understanding (1) and IRLSp. We state our contributions next.

The Stable Range Space Property (Section 3.1). We put forward the use of the (stable) range
space property (RSP) for studying the robust regression problem (1). The stable RSP was proposed
by [53] in a different context to analyze a compressed sensing algorithm for solving a weighted
basis pursuit problem at each iteration. In analogy to the nullspace property in compressed sensing
[24, 28], we show that the RSP is a necessary and sufficient condition for guaranteeing that the
ℓp-regression problem in (1) admits x∗ as its unique solution (Proposition 2). Moreover, we show
that if A ∈ Rm×n has i.i.d. N (0, 1) entries and if m is large enough, then the (stable) RSP holds
with high probability (Proposition 3). This justifies its use as the core assumption in our analysis.

Global Linear Convergence (Section 3.2). We prove in Theorem 1 that, under a stable RSP
assumption and with ϵ(t) suitably updated, the IRLSp Algorithm 1 with p = 1 converges linearly to
the ground-truth x∗ from any initial weight w(0) (or equivalently from any initial point x(1)). Note
that while (accelerated) first-order methods (e.g., (sub-)gradient descent and proximal algorithms)
can also solve the convex and non-smooth problem (1) with p = 1, they exhibit, in general, (global)
sub-linear rates at best [54, 55]. To our knowledge, [17] is the only paper that claims global linear
convergence of a different IRLS variant for (1) with p = 1; we compare our results with the ones of
[17] in Section 3.2. On the other hand, Theorem 1 is inspired by the IRLS method of [27] for basis
pursuit; based on [27], we suitably modify their proof strategy, and thus obtain a faster linear rate.

Local Superlinear Convergence (Section 3.3). We prove in Theorem 2 that, under a stable RSP
assumption and with ϵ(t) suitably updated, the IRLSp Algorithm 1 with p ∈ (0, 1) converges to x∗

superlinearly, provided that x(1) falls into a certain neighborhood of x∗. To the best of our knowledge,
no similar result exists for ℓp-regression (1). While Theorem 2 is inspired by the IRLS algorithm of
[26] for ℓp-basis pursuit, their IRLS method does not work well for small p (Section 2.2), and unlike
in our work, their radius of local convergence diminishes greatly as p→ 0 or m→∞.
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Applications (Section 4). We illustrate the performance of IRLSp for real phase retrieval [56, 57],
linear regression without correspondences [58, 59, 60, 61], and face restoration from sparsely
corrupted measurements [62, 63, 64]. For real phase retrieval (Section 4.1), we show that IRLS0.1

needs only m = 2n − 1 measurements to recover x∗ up to sign, with an additional assumption.
Theoretically, even brute-force can fail to identify ±x∗ for fewer than 2n− 1 measurements [65].
Empirically, many methods, including Kaczmarz [66, 67, 57], PhaseLamp [68], truncated Wirtinger
flow [69], and coordinate descent [70], fail with m = 2n− 1 Gaussian measurements (Figure 2a).
For linear regression without correspondences (Section 4.2), we show in Figures 2b-2c that, IRLS0.1

is uniformly faster (20-100x) and more accurate than PDLP [71] (merged into Google or-tools) and
the commercial solver Gurobi [72], both of which solve (1) with p = 1 as a linear program, and also
than subgradient descent implemented by Beck & Guttmann-Beck [73]. For face restoration (Section
4.3), we present both quantitative and qualitative results on the Extended Yale B dataset [74].

2 Background

2.1 Connection of Robust Regression and Compressed Sensing

The ℓp-regression problem (1) has a natural correspondence to the sparse recovery problem

min
r∈Rm

∥∥r∥∥
p

s.t. Dr = z (4)

where D is a (m− n)×m matrix, z ∈ Rm−n a vector and the objective ∥r∥p penalizes coefficient
vectors with too many non-zero coordinates. For p = 1, (4) is also called basis pursuit [75]. Problems
(1) and (4) are known to be related in the following sense (as implicitly stated in [21, 29]):
Proposition 1. Suppose that the range space of A is equal to the nullspace of D, and that z = −Dy.
If x1 globally minimizes (1), then r1 := Ax1 − y globally minimizes (4). On the other hand, if r2
globally minimizes (4), then there exists some x2 with r2 = Ax2 − y that globally minimizes (1).

Proposition 1 sheds light on how we “transfer”, with new insights, from the analysis of [26, 27] for (4)
to results for (1). In what follows, we treat [26, 27] in the context of robust regression and highlight
the contribution of our work relative to [26, 27] and other existing results, whenever possible.

2.2 Iteratively Reweighted Least-Squares: The Basics and New Insights

We first discuss two different updating rules for the smoothing parameter ϵ(t) of Algorithm 1: the
fixed rule and the dynamic rule. We then consider the weight updating strategy (3). Along the way
we use synthetic experiments to illustrate ideas; see Appendix D for the experimental setup. In doing
so, we intend to provide a review of the state-of-the-art on the variants of IRLS.

Fixed Smoothing Parameter. Instead of updating ϵ(t) at each iteration, most works on IRLS use a
fixed and small positive number, e.g., ϵ := ϵ(t) = 0.001 for each t [44, 76, 45, 47, 49, 51, 50, 77]. The
intuition is to avoid division by the potentially very small residual |a⊤

i x
(t) − yi|. But this common

practice of fixing ϵ comes with at least three issues. First, IRLS with a fixed ϵ > 0 converges only
to an “ϵ-approximate” point, not exactly the global minimizer ([78, 79, 44, 76], Figure 1a). Second,
even if setting ϵ small (e.g., ϵ = 10−15) could lead to an accurate enough solution for p = 1 (Figure
1a), it can fail for p < 1 (Figure 1b). Finally, it makes obtaining a global linear convergence rate
guarantee difficult: We are not aware of any theory about a global linear rate of IRLS with fixed ϵ.

Dynamic Smoothing Parameter. Researchers have used different insights to reach the consensus
of dynamically updating ϵ(t) [26, 17, 80, 27, 81]. The first insight is that convergence to global
minimizers ensues if ϵ(t) is suitably decreased to 0 [26]. With β ∈ (0, 1), one such decreasing rule is

ϵ(t+1) ← βϵ(t) if certain conditions are satisfied, or keep ϵ(t+1) ← ϵ(t) otherwise [17, 81]. (5)

Figure 1a depicts the performance of [17] with an arbitrary choice β = 0.5 and ϵ(0) = 1. Also shown
in Figure 1a are the IRLS methods with update rules of [26] and [27], which we discuss next.

The basis pursuit paper [26] also proposed a dynamic updating rule for ϵ(t). In our context (1), it sets

ϵ(0) ←∞, ϵ(t+1) ← min
{
ϵ(t), [r(t+1)]α+1/m

}
, r(t+1) := Ax(t+1) − y ∈ Rm, (6)
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Figure 1: Figure 1a: The relative error ∥x(t) − x∗∥2/∥x∗∥2 at each iteration t of different IRLS
variants for ℓ1-regression (k = 200). Figure 1b: The relative error of IRLSp Algorithm 1 and that of
[26] for ℓp-regression (50 iterations). Figure 1c: The sensitivity of (6) and (7) to mis-specification of
α (50 iterations). In Figure 1, we set m = 1000, n = 10, and results are averaged over 20 trials.

where the hyper-parameter1 α is a non-negative integer, and [r(t+1)]α+1 is the (α + 1)-th largest
element of the residual r(t+1) in absolute values. Clearly, (6) creates a non-increasing sequence of
smoothing parameters ϵ(t), and the decay rate of ϵ(t) is adaptive to the data (in this case to the residual
r(t+1)). While at first glance it is not clear how fast ϵ(t) decays, [26] showed that the decay rate of
ϵ(t) in (6) is locally linear for p = 1, α = k under mild conditions, in accordance with the decay of
the objective values.

The final dynamic update rule for the parameter ϵ(t) is from [27]1 and improves upon (6) [26] via:

ϵ(0) ←∞, ϵ(t+1) ← min
{
ϵ(t), σ(t+1)/m

}
where σ(t+1) ← min

{∥∥r(t+1) − z
∥∥
1
: z ∈ Rm is α-sparse

} (7)

Observe that (7) computes the ℓ1-norm σ(t+1) of the best α-term approximation of the residual
r(t+1), which is in general larger than [r(t+1)]α+1 of (6), while both update rules (6) and (7) rely
on the hyper-parameter α. Ideally, if α = k, and if IRLS with (6) or (7) converges to x∗, then both
[r(t+1)]α+1 and σ(t+1) will approach 0 for large enough t. While update rules (6) and (7) perform
similarly for ℓ1-regression (Figure 1a), (6) fails more easily for small p than (7) (Figure 1b). Finally,
we note that overestimating the sparsity level k by setting α > k deteriorates the performance of (7)
only slightly (Figure 1c).

Summary. In Section 2.2 we delivered two take-away messages: (1) IRLS with a fixed ϵ(t) finds
some approximate solution, sometimes good enough, (2) dynamically updating ϵ(t) as per (5)-(7)
leads to local [26] or global [17, 27] linear convergence guarantees. In view of Figure 1, we will next
consider the IRLSp Algorithm 1 with update rule (7) for ϵ(t), and analyze its convergence rates.

3 Convergence Theory of IRLS for Robust Regression

In Section 3.1 we introduce the stable range space property and justify it as our core assumption.
Under this assumption, we prove the global linear convergence (Theorem 1) and local superlinear
convergence (Theorem 2) of the IRLSp Algorithm 1 in Sections 3.2 and 3.3, respectively.

3.1 The Stable Range Space Property

Definition 1 (Stable Range Space Property). A matrix A ∈ Rm×n is said to satisfy the range space
property (RSP) of order k, or the k-RSP for short, if the following holds for any vector d in the range

1In [26] and [27], α is the sparsity level k, but k might be unknown in practice, so we treat it as a hyper-
parameter. That being said, in the experiments we set α = k by default, for simplicity and in light of Figure 1c.
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space of A and any set S ⊂ {1, . . . ,m} of cardinality at most k:∑
i∈S

|di| <
∑
i∈Sc

|di| (8)

The stable RSP of A is defined in the same way as the RSP except that we now require∑
i∈S

|di| ≤ η
∑
i∈Sc

|di| (9)

for some η ∈ (0, 1). We write “(k, η)-stable RSP” to emphasize the parameters k and η.

By definition, the stable RSP implies the RSP. Note that the (k, η)-stable RSP was proposed in [53]
to analyze a reweighted ℓ1-minimization algorithm for compressed sensing. With the notation of
Proposition 1, we can see that checking (8) for all d in the range space of A is equivalent to checking
it for all d in the nullspace of D, the latter being the well-known nullspace property (NSP) [24, 28].
In other words, the (stable) RSP of A is equivalent to the (stable) NSP of D.

In Sections 3.2 and 3.3, we will use the (k, η)-stable RSP as an assumption for analysis. Arguably,
this is a weak assumption to make as the (stable) RSP is very close to a sufficient and necessary
condition for exact recovery of the coefficient vector via ℓp-robust regression (1):
Proposition 2 (Exact Recovery⇔ RSP). Let p ∈ (0, 1]. For all x∗ and y such that Ax∗ − y is
k-sparse x∗ is the unique solution to (1) if and only if A ∈ Rm×n satisfies the k-RSP.

It follows from [82, Theorem 5] and Proposition 1 that checking whether a given matrix A satisfies
the stable RSP is co-NP-complete [83]. On the other hand, we show that random Gaussian matrices
of size m× n with sufficiently large m satisfy the stable RSP with high probability, which further
justifies the usage of the stable RSP as an assumption in our analysis of IRLSp:
Proposition 3 (Gaussian⇒ RSP). Suppose m − n ≥ 2k. Let A ∈ Rm×n be a matrix with i.i.d.
N (0, 1) entries. Let δ ∈ (0, 1) and η ∈ (0, 1] be fixed constants. If it holds that

(m− n)2

m− n+ 1
≥ 2k ln(em/k) ·

(
1.67 + η−1 +

√
18 ln(2.5δ−1)√
2k ln(em/k)

)2

, (10)

then A satisfies the (k, η)-stable RSP with probability at least 1− δ.

The assumption m − n ≥ 2k of Proposition 3 is necessary, as it is not hard to prove that, if
m− n < 2k and Ax∗ − y is k-sparse, then the ℓ0-minimization problem minx∈Rn ∥Ax− y∥0 has
multiple solutions. With this assumption, (10) roughly becomes m− n ≥ ck log(em/k) for some
constant c if m− n is large enough; thus, ignoring logarithmic and constant factors, condition (10)
becomes m− n ≥ Θ(k), which is nearly optimal, as the condition m− n ≥ 2k is necessary.

Proposition 2 follows directly from [28, Theorem 4.9], so we omit its proof. The reader might also
find Proposition 3 corresponds to [28, Corollary 9.34]. This corollary assumes D of (4) has i.i.d.
N (0, 1) entries, from which is not immediate what the distribution of A is, thus it does not imply
Proposition 3 directly; this is why we provide a complete proof for Proposition 3 in Appendix C.1.

3.2 Global Linear Convergence of IRLS1

With the background provided in Section 2, we are now ready to state the first main result:
Theorem 1 (Global Linear Convergence). Suppose A ∈ Rm×n obeys the (k, η)-stable RSP with
η ∈ (0, 3/4) (cf. Definition 1). Let Ax∗ − y be k-sparse. If the smoothing parameter ϵ(t) is updated
as per (7) with α = k during the execution of the IRLS1 Algorithm 1, then it holds for any t ≥ 1 that∥∥Ax(t+1) − y

∥∥
1
−
∥∥Ax∗ − y

∥∥
1
≤

(
1− (3− 4η)2

294ηm

)t

· 3 ·
∥∥Ax(1) − y

∥∥
1
, (11)

meaning that the IRLS1 Algorithm 1 converges linearly and globally in objective value.

Discussion. The condition η ∈ (0, 3/4) is better understood via Proposition 3, which asserts that
this condition holds with high probability if A has i.i.d. Gaussian entries and if m is large enough
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(compared to n, k). Moreover, if the (k, η)-stable RSP holds, Proposition 2 implies that x∗ is a global
minimizer of (1) with p = 1. The strength of Theorem 1 is in that it guarantees linear convergence for
any initialization, starting at the first iteration. However, the price to pay is that the convergence rate
seems conservative with constant 1/294, and depends on the number m of samples: (11) predicts
that IRLS1 converges with accuracy δ in O(m log(1/δ)) iterations and m can be large. We argue
that such dependency is not an artifact of our analysis, because similar dependencies have been
established for IRLS variants for ℓp-regression (1) with p > 2 [2, Theorem 3.1], for interior point
methods in convex optimization with m inequality constraints ([84, Chapter 11], [55, Chapter 5]),
and for SGD in smooth & strongly convex optimization with a sum of m function components [85,
Theorem 2.1]). Moreover, an adversarial initialization for which the rate empirically depends on m
was pointed out for IRLS for basis pursuit in [27]. That being said, we conjecture that the linear
dependency on m in (11) can be improved to

√
m logm for some different choice of ϵ(t); see [2]

and [84, Sections 11.5 and 11.8.2] for why this conjecture makes sense. Furthermore, Figure 1a
empirically depicts that, with the least-squares initialization, i.e., with w

(0)
i = 1 for all i, IRLS1

typically converges to x∗ in 30 iterations. This hints to the possibility of alleviating the dependency
on m by analyzing the least-squares initialization, a challenging task which we leave to future work.

Comparison to [17]. To our knowledge, [17] is the only paper that claimed the global linear
convergence of an IRLS variant with ϵ(t) updated as per (5) and with p = 1. In particular, [17] sets
ϵ(t+1) ← βϵ(t) whenever ∥x(t+1) − x(t)∥2 ≤ 2βϵ(t); see Figure 1a for the convergence of IRLS
under this rule. The update rule ϵ(t+1) ← βϵ(t) of [17] has the advantage of being faster to compute
than (7). In spite of this, and of their beautiful proof idea, their result has several disadvantages
compared to Theorem 1. First, their proof involves sophisticated probabilistic arguments, and is
tailored towards a feature matrix that satisfies strong concentration properties. Our analysis, on the
other hand, uses the (k, η)-stable RSP, which is close to a necessary and sufficient condition for the
success of ℓ1-regression (cf. Proposition 2) and expected to hold for a much larger range of matrices
than just (sub-)Gaussian matrices (see [86, 87] for related results in the context of basis pursuit).
Second, some statements in their proof are inaccurate (e.g., their Lemma 5 does not hold for k < n,
the last paragraph in their proving Lemma 8 is not rigorous). Third, their update rule incurs two
hyper-parameters, ϵ(0) and β, while Theorem 1 is based on the decreasing rule (7) that is adaptive to
data, and the only hyper-parameter α is easier to set (Figure 1c).

Connection to [27]. A related global linear convergence was established for the IRLS method for
basis pursuit in [27, Theorem 3.2]. Our proof is inspired by [27], but also improves on its strategy.
For example, their Theorem 3.2 involves two parameters for the stable nullspace property, while we
only have a single RSP parameter η, simplifying matters. Also, we obtain a constant of 1/294 in
Theorem 1, which is better than the value of 1/768 for the respective constant in [27, Theorem 3.2].

It is important to note that the proofs of [17, 27] and ours heavily rely on certain rules for decreasing
the smoothing parameter ϵ(t); all these proofs of global linear convergence for IRLS would break
down if ϵ(t) were fixed. While the main theorems of both [17] and [27] are limited to the p = 1 case,
we present our Theorem 2 for p ∈ (0, 1) next.

3.3 Local Superlinear Convergence of IRLSp

The ℓp-regression problem (1) with p ∈ (0, 1) is more challenging than the case p = 1 due to the lack
of convexity. However, here we show that at least locally, IRLSp converges with a superlinear rate of
order 2− p. Moreover, since it is valid to run IRLSp even with p = 0, we carefully design the proof
such that the following result holds not only for p ∈ (0, 1], but also for p = 0, in which case IRLSp

can be interpreted as an algorithm minimizing a sum-of-logarithm objective (see Appendix A.2).

Theorem 2 (Local Superlinear Convergence). Run IRLSp with p ∈ [0, 1] and update ϵ(t) by (7) with
α = k. Assume A satisfies the (k, η)-stable RSP (Definition 1). Let c ∈ (0, 1) be a sufficiently small
constant such that 2c1−pη(η + 1) < (1− c)2−p. Let Ax∗ − y be k-sparse with support S∗. Define

µ := 2η(η + 1)(1− c)p−2 · min
i∈S∗
|a⊤

i x
∗ − yi|p−1. (12)

If the initialization x(1) is in a neighborhood of x∗, in the sense that∥∥Ax(1) −Ax∗∥∥
1
≤ c · min

i∈S∗
|a⊤

i x
∗ − yi|, (13)
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then IRLSp achieves the following superlinear convergence rate of order 2− p for every t ≥ 1:∥∥Ax(t+1) −Ax∗∥∥
1
≤ µ ·

(∥∥Ax(t) −Ax∗∥∥
1

)2−p

<
∥∥Ax(t) −Ax∗∥∥

1
(14)

In particular, for p ∈ [0, 1), the superlinear rate (14) implies∥∥Ax(t+1) −Ax∗∥∥
1
≤

(
µ1/(1−p) ·

∥∥Ax(1) −Ax∗∥∥
1

)(2−p)t−1

·
∥∥Ax(1) −Ax∗∥∥

1
. (15)

Example 1 (Quadratic versus linear rates). We illustrate the practical benefit of a superlinear
(quadratic) convergence rate with the following simple calculation. Suppose that the inequality in (13)
is barely fulfilled such that in the case of p = 0, x(1) satisfies µ · ∥Ax(1) −Ax∗∥1 ≤ 0.9999999.
Then (15) implies that after 30 iterations, the residual error is far below numerical precision already
since ∥Ax(31) −Ax∗∥1 ≤ 0.99999992

30−1 · ∥Ax(1) −Ax∗∥1 ≈ 10−47 · ∥Ax(1) −Ax∗∥1. On
the other hand, for p = 1, a linear convergence factor µ of µ ≤ 0.9999999 is only able to guarantee a
decay of the order µ30 ≤ 0.999999930 ≈ 0.999997 after 30 iterations.

Discussion. Even though IRLSp with p ∈ (0, 1) is tailored to ℓp-regression, we measure the progress
of IRLSp in ℓ1-norm, e.g., we provide upper bounds on ∥Ax(t+1) −Ax∗∥1; this is because doing
so avoids the use of Hölder’s inequality, which allows us to give tighter results that improve on
[26] (see the next paragraph). The second point that deserves discussion is the local convergence
neighborhood defined by the right-hand side of (13). Note that, we typically assume that every outlier
sample (ai, yi) (with i ∈ S∗) would result in a relatively large residual at x∗, say |a⊤

i x
∗ − yi| ≫ 0.

Hence the minimization term of the right-hand side in (13) is well-behaved. Next, one might ask
how to obtain such an initialization x(1) that satisfies (13). One might run IRLS1 to produce such an
initialization; note though that the upper bound of (13) can not be computed, so one could not detect
when to switch from IRLS1 to IRLSp (p ∈ [0, 1)). Or alternatively, one could run IRLSp with a
least-squares initialization and count on empirical global (super)linear convergence of IRLSp; the
latter is what we did in the experiments and is what we recommend. A final and important remark
is that ℓp-regression (1) with p ∈ (0, 1) is in general NP-hard [28, Exercise 2.10], but this does
not contradict the theoretical local superlinear convergence of Theorem 2 and the empirical global
convergence in Figures 1b and 2b, and this does not mean that IRLSp solves an NP-hard problem
in polynomial time. The catch is that we operate under the assumption that x∗ leads to a k-sparse
residual and is a unique global minimizer of (1) (cf. Proposition 2). With this assumption and small
enough k/m, ℓp-regression is tractable and can be solved via IRLSp to high accuracy (Figure 1b).

Connection to [26]. [26, Theorem 7.9] proves the local superlinear convergence of IRLS with update
rule (6) for ℓp-basis pursuit (4), which motivates Theorem 2. However, [26, Theorem 7.9] requires c
of (13) to satisfy c = O(1/m2/p−1), which means that, as p→ 0 or m→∞, the eligible value of c
quickly becomes vanishingly small, and thus the radius of local convergence (13) diminishes greatly.
In contrast, in our condition 2c1−pη(η + 1) < (1− c)2−p, c has no direct dependency on m and is
well-behaved even if p→ 0. The above difference is due partly to our improved proof strategy, and
partly to the different update rules of the smoothing parameter ϵ(t). Figure 1b showed that rule (6) of
[26] does not work well for small p, in contrast to rule (7) that we use; a possible explanation for this
phenomenon is that rule (6) decreases ϵ(t) too fast, yielding a poor initialization for the next iteration
of weighted least-squares (similarly to the interior point method, cf. [84]). Finally, [26, Theorem 7.9]
does not hold for p = 0, for which Theorem 2 still holds and suggests a local quadratic rate.

4 Applications and Experiments

We now explore the performance of IRLSp in three different applications, real phase retrieval
(Section 4.1), linear regression without correspondences (Section 4.2), and face restoration (Section
4.3). Note that the first two applications are special examples of the recent algebraic-geometric
framework called homomorphic sensing [88], [89, Section 4], [90, Section 1.2]. In Section 4.4, we
examine the behavior of IRLSp for different values of p and under noise.

4.1 Real Phase Retrieval

In real phase retrieval [56, 57], we are given a measurement matrix A = [a1, . . . ,am]⊤ and
y = [y1, . . . , ym]⊤, where yi := |a⊤

i x
∗|, and we need to find either x∗ or −x∗. This problem
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Figure 2: Figure 2a: Relative error min{∥x̂−x∗∥2, ∥x̂+x∗∥2}/∥x∗∥2 of the methods that produce
estimates x̂ for real phase retrieval. Figures 2b-2c: Relative errors ∥x̂− x∗∥2/∥x∗∥2 and running
times for linear regression without correspondences. IRLSp run for at most 50 iterations. 50 trials.

is a relative of the complex phase retrieval problem [65], where all data y and A, as well as the
ground-truth x∗, are complex-valued, and which has applications in X-ray crystallography [91].

Here we show that real phase retrieval can be solved via ℓp-regression (1). Consider the index sets

I+ := {i : a⊤
i x

∗ > 0}, I− := {i : a⊤
i x

∗ < 0}. (16)

We might assume a⊤
i x

∗ ̸= 0 for every i without loss of generality. Then we know that either
Ax∗−y has its ℓ0 norm equal to m−|I−|, or A(−x∗)−y has its ℓ0 norm equal to m−|I+|. With
such sparsity patterns on these two residuals, we can minimize (1), which serves as a (non-convex)
relaxation of ℓ0-minimization, to recover x∗ or −x∗, whichever corresponds to a sparser residual.
Here, we essentially treat one of the two clusters defined by (16) as inliers, and the other as outliers.
This robust regression point of view on real phase retrieval seems to be known by experts [92, Section
1.2], but we have not found a paper that actually proposes to solve (1) for real phase retrieval.

Here we argue with Figure 2a that, solving (1) (by IRLS0.1) for real phase retrieval can be bene-
ficial. Indeed, theoretically, IRLS0.1 converges to ±x∗ locally but superlinearly (as a corollary of
Theorem 2). Empirically, Figure 2a shows that IRLS0.1 succeeds in recovering ±x∗ by using only
m = 2n− 1 samples, which is exactly the theoretical minimum for real phase retrieval [65, Propo-
sition 2.5]. Figure 2a also shows that multiple other state-of-the-art methods2 [57, 67, 68, 69, 70]
fail to recover ±x∗ in this extreme situation, even though some of them have nearly optimal sample
complexity, which requires roughly O(n) samples up to a logarithmic factor to succeed (caution:
nearly optimal ̸= optimal). As suggested by Proposition 3, for |I+| fixed, minimizing (1) with a
Gaussian matrix A enjoys m = O(n) sample complexity, up to also a logarithmic factor.

Despite these advantages, we also emphasize that solving (1) (via IRLS0.1) for real phase retrieval
has an inherent limit: The performance depends on the number |I+| of positive signs and the number
m of samples; we might call |I+|/m the inlier rate or outlier rate. At n/m = 200/399, we see that
IRLS0.1 succeeds if |I+| ≤ 70, and if |I+| ≥ 399− 70 by symmetry, but it fails if |I+| and |I−| get
closer (Figure 2a). For IRLS0.1 to successfully handle the case |I+| = |I−|, we need more samples,
empirically, say m ≥ 5n. It is an interesting future direction to design an algorithm that can handle
the case of minimum samples (m = 2n− 1) and balanced data (|I+| = |I−|).

4.2 Linear Regression without Correspondences

Compared to (real) phase retrieval, the problem of linear regression without correspondences is an
also important, but less developed subject; see [58, 94, 59, 60, 61, 95, 96, 97] for recent advances. In
this problem we are given y ∈ Rm and A ∈ Rm×n, and we need to solve the equations

y = ΠAx (17)

for some unknown permutation matrix Π ∈ Rm×m and vector x ∈ Rn, under the assumption that
there exists a solution (Π∗,x∗). Solving (17) is in general NP-hard for n > 1 [94, 98]. However, if

2Reviewing these algorithms is beyond the scope of this paper. Some of them are designed for complex
phase retrieval but is applicable to the real case. We used the implementations from PhasePack [93].
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Figure 3: Recover a face image of the Extended Yale B dataset [74] that is corrupted by salt & pepper
noise [63]. Figure 3a: relative error as a function of the amount of random salt & pepper noise or
sparsity level, averaged over 20 trials, all faces, and all individuals. Figure 3b: qualitative results.

we further assume that Π∗ permutes at most k rows of A, then we know that the residual Ax∗− y is
k-sparse. This is an insight of [59], where it was proposed to estimate x∗ by solving (1) with p = 1.

We show that IRLSp with p ∈ (0, 1) is more suitable than several baselines for solving this robust
regression problem reduced from linear regression without correspondences. As baselines, we use
the PDLP [71] and Gurobi [72] solvers to solve (1) with p = 1 as a linear program, and we also use a
subgradient descent method implemented in the FOM toolbox of Beck & Guttmann-Beck [73]. Figure
2b shows that IRLS0.1 is the most accurate, and Figure 2c shows that IRLS0.1 is 30 times faster than
Gurobi and subgradient descent, and is more than 100 times faster than PDLP. Interestingly, IRLS1

is not very competitive in terms accuracy (Figure 2b). Moreover, IRLS1 is slower than IRLS0.1, as
IRLS0.1 converges faster and thus terminates earlier than IRLS1; we terminate IRLSp whenever the
objective stops decreasing (up to a tolerance 10−15). Finally, see also [45, 48, 49, 50, 51, 52] where
their IRLS variants outperform a different set of baselines (for different problems).

4.3 Face Restoration from Sparsely Corrupted Measurements

Here we consider a simple face restoration experiment on the Extended Yale B dataset [74], downsam-
pled as per [99]. This dataset contains the face images of 38 individuals under about n ≈ 60 different
illuminations. Let F = [f1, . . . ,fn+1] be the matrix of faces of the same individual, where each
fi ∈ Rm is a (vectorized) face image with m = 2, 016 pixels. We assume that F is approximately
low-rank (which is true under the Lambertian reflectance assumption [100]), thus each fi can be
approximately represented as a linear combination of other faces of the individual, i.e., fi ≈ Fix

∗
i

for some x∗
i ∈ Rn, where Fi ∈ Rm×n is the same as F , except with the i-th column excluded.

In our experiments of Figure 3, we corrupt fi by random salt & pepper noise [63] and obtain the
noisy face f̃i as our measurement; so Fix

∗
i − f̃i is approximately sparse. We consider three methods

to estimate x∗
i and thus to find an estimate f̂i of fi: (1) Least-Squares that solves (1) with A = Fi,

y = f̃i, and p = 2, (2) Least-Squares∗ that solves (1) with A = Fi, y = fi, and p = 2, used as a
golden baseline, and (3) IRLS0.1 which solves (1) with A = Fi and y = f̃i. Figure 3a shows that
IRLS0.1 is more robust to salt & pepper noise, whose amount is k/m, than Least-Squares, and has
lower error ∥f̂i − fi∥2/∥fi∥2 (recall though that Least-Squares is statistically optimal for Gaussian
noise). Figure 3b shows some images randomly chosen from the dataset; observe that Least-Squares
tends to “average” the illumination in all images Fi, while IRLS0.1 delivers faithful restoration.

4.4 The Choice of p and Performance of IRLSp Under Noise

Here we outline two experiments that illustrate two different aspects of IRLSp empirically.

In the first experiment, visualized in Figure 4a, we compare the decay of the relative errors of the
iterates of IRLSp for different choices of p in the case that the residual is exactly k-sparse. We
observe that IRLS1 exhibits a linear error decay on the one hand and a superlinear decay for IRLSp

with p = 0.5 and p = 0.1 that accelerates as p decreases towards 0, confirming the rates predicted by
Theorem 1 and Theorem 2. (p = 1, 0.5, 0.1 are rather arbitrary choices in our experiments.)
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Figure 4: Empirical convergence rates of IRLSp for different values of p (m = 1000, n = 10, k =
200, averaged over 20 trials). Figure 4a: Ax∗ − y is exactly k-sparse. Figure 4b: Ax∗ − y is
approximately k-sparse with 1% noise (see Section D.2 for data generation).

In another experiment, visualized in Figure 4b, we explore the robustness of IRLSp if the model
assumption of k-sparse residuals is not satisfied, but only approximately. In particular, the input vector
y ∈ Rm of IRLSp is now such that its restriction on S∗ with |S∗| = k has i.i.d. N (0, 1) entries
(corresponding to the sparse corruptions), but its other coordinates are distributed as independent
Gaussian variables with mean a⊤

i x
∗ and variance 0.01, where i ∈ (S∗)c (corresponding to dense

noise); see also the code provided in Appendix D.2. We observe that also for this case of only
approximately k-sparse residuals, IRLSp performs well, with faster and more accurate convergence
for p = 0.1 and p = 0.5 compared to p = 1. We note that, strictly speaking, Theorem 1 and Theorem
2 do not apply directly to this case of approximately k-sparse residuals, but it is not hard to generalize
it to this case; see [27, Theorem A.1] for a similar result for IRLS applied to basis pursuit.

5 Discussion and Future Work

In this work, we established novel global linear and local superlinear rates of IRLSp for ℓp-regression
(1) under the assumption of the stable range space property. Furthermore, we explored several
applications for which IRLSp exhibits state-of-the-art results.

There are several directions that deserve further investigation. Theoretically, the Gaussian assumption
of Proposition 3 might be weakened; similar results would hold for sub-Gaussian distributions
[86, 87]. Note also that, in experiments (Figures 1 and 2), IRLSp works well even when m−n→ 2k.
This leaves the question of whether the constant or logarithmic factors of condition (10) are too
stringent for guaranteeing the stable RSP to hold; can this be improved? Finally, it is tempting to
carry out a global rate analysis of IRLSp with p ∈ (0, 1) for ℓp-regression; can one prove global
(linear) rates under the stable RSP or other assumption?

Algorithmically, designing inexact solvers for the inner (weighted) least-squares problem (2) based on
Krylov-subspace methods [101, 102] is expected to further accelerate our current IRLS implementa-
tion (our current implementation is attached in Appendix E). Also, our empirical experiments suggest
that IRLSp (in particular p ∈ (0, 1)) is worth being adopted and applied to many other outlier-robust
estimation tasks beyond robust regression [45, 48, 49, 50, 51, 52, 103, 104, 105, 106, 107, 108].
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A IRLS as Smoothing Method Minimizing Quadratic Models

In this section, we clarify the precise relationship between the steps of IRLSp as described in
Algorithm 1 and the ℓp-objective on the residual, cf. (1).

A.1 IRLSp as Lp-Regression for 0 < p ≤ 1

In Section 2.2, we shed light on the different rules for choosing the smoothing parameter ϵ(t+1) in
Algorithm 1. In fact, this terminology is used as there is an intimate relationship between the least
squares step (2) of IRLSp and a smoothed ℓp-objective Hϵ(·) which is, for given ϵ > 0, defined as

Hϵ(r) =

m∑
i=1

hϵ(ri) (18)

where hϵ : R→ R is a symmetric smoothed one-dimensional function such that

hϵ(r) =

{
1
p |r|

p |r| > ϵ
1
2

r2

ϵ2−p +
(

1
p −

1
2

)
ϵp |r| ≤ ϵ

,

which makes Hϵ a function akin to a scaled ℓp-quasinorm, but which is quadratic around 0. This
definition corresponds to a scaled Huber loss in the case of p = 1 [10], but extends to the non-convex
case if 0 < p < 1.

By considering the derivative of ϵ→ hϵ(r) for fixed r, it is easy to see that hϵ(r), and therefore also
Hϵ(r), is non-decreasing in ϵ, which implies that

1

p

∥∥Ax− y
∥∥p
p
= lim

ϵ′→0
Hϵ′(Ax− y) ≤ Hϵ(Ax− y) (19)

for any ϵ > 0. We note that Hϵ(·) is continuously differentiable, so that the function Rm ×
R>0 → R, (r, ϵ) 7→ Hϵ(r) can be considered as a smoothing function as defined in the non-smooth
optimization literature [109, 110].

In this context, one interpretation of IRLSp (and of other IRLS methods such as [111, 26, 17, 27],
with possibly different smoothing functions) is to consider it as a smoothing method for ℓp-regression
with quadratic majorizing models. Indeed, defining the function Qϵ : Rm × Rm → R,

Qϵ(v, r) =

m∑
i=1

qϵ(vi, ri), where qϵ(v, r) = hϵ(r) +
1

2
· v2 − r2

max{|r|, ϵ}2−p
,

which is quadratic in r, we observe that the least squares step (2) of IRLSp satisfies

x(t+1) = argmin
x∈Rn

Qϵ(Ax− y, r(t)) (20)

where r(t) = Ax(t) − y. Since Qϵ(·, r) locally coincides with the smoothed function Hϵ(·) so that

Hϵ(r) = Qϵ(r, r)

for each r ∈ Rm, and furthermore, since it is not hard to show that Qϵ(·, r) majorizes Hϵ(·) in the
sense that

Hϵ(v) ≤ Qϵ(v, r) (21)
for any v, r ∈ Rm and ϵ > 0, it is possible to establish the monotonous decrease of the smoothed
ℓp-objective at each iteration of IRLSp without too much additional work: For each t = 1, 2, . . . we
obtain that

Hϵ(t+1)

(
r(t+1)

)
≤ Hϵ(t)

(
r(t+1)

)
≤ Qϵ(t)

(
r(t+1), r(t)

)
≤ Qϵ(t)

(
r(t), r(t)

)
= Hϵ(t)

(
r(t)

)
, (22)

where the first inequality holds as long as ϵ(t+1) ≤ ϵ(t), which is satisfied for the smoothing parameter
update rules described in Section 2.2.

The monotonicity outlined in (22) enables the following interpretation of the iterates {x(t)}t≥1 of
IRLSp: Recalling the definition r(t) = Ax(t) − y, it follows that without any assumption—in
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particular, without assuming any range space property on the feature matrix A—each accumulation
point of {r(t)}t≥1 is a first-order stationary point of the ϵ-smoothed ℓp-objective Hϵ(·) of (18) if ϵ is
defined as ϵ = limt→∞ ϵ(t) (see, e.g., [26, Theorem 5.3] for a similar result).

We conclude this section by noting that IRLSp can be also interpreted within the framework of
majorization-minimization (MM) [112, 113] algorithms—albeit, with the crucial difference that
unlike for MM methods, the smoothing updates of IRLSp as described in Algorithm 1 change the
underlying objective Hϵ(t)(·) every time when ϵ(t) changes, i.e., in many cases at each iteration.

A.2 IRLSp as Sum-of-Logarithm Minimization for p = 0

The considerations of Section A.1 are tailored for IRLSp with 0 < p ≤ 1. However, it is valid to use
IRLSp with p = 0 by setting the weights w(t+1)

i accordingly in (3). In this case, it is still possible to
interpret IRLS0 as a smoothing method with respect to an underlying smoothed surrogate objective.

In particular, we then define Hϵ : Rm → R as in (18) with

hϵ(r) =

{
log(|r|), if |r| > ϵ,
1
2
r2

ϵ2 + log(ϵ)− 1
2 , if |r| ≤ ϵ,

i.e., a smoothed sum-of-logarithm objective [114, 115, 116]. As the inequalities (21) and (22) still
hold in this case, we conclude that IRLS0 can be interpreted as a smoothing method for sum-of-
logarithm minimization on the residuals r = Ax− y. We note that while there is a close relationship
between their minimizers, a pointwise majorization of an ℓ0-objective

∥∥Ax− y
∥∥
0

by the smoothed
objective Hϵ(·) as in (19) is not possible for p = 0.

Another minor difference to the case 0 < p ≤ 1 is that for p = 0, the smoothed objective Hϵ(t)(r
(t))

of IRLS0 residuals r(t) might converge to −∞ as ϵ→ 0; however, this is rather a technicality than a
deterrence for the numerical performance of the algorithm, which remains excellent.

On the other hand, the local convergence analysis put forward in Section 3.3 and Theorem 2 still
applies: In particular, we obtain that IRLS0 as described in Algorithm 1 exhibits local quadratic
convergence under appropriate assumptions on the feature matrix, cf. Theorem 2.

B Proofs of Main Results

B.1 Global Linear Convergence for L1-Regression

Proof of Theorem 1. Define r∗ := Ax∗ − y, r(t) := Ax(t) − y, and d(t) := r(t) − r∗ = Ax(t) −
Ax∗. Recalling (22), for any s > 0 we have the following chain of inequalities:

Hϵ(t+1)

(
r(t+1)

)
≤ Hϵ(t)

(
r(t+1)

)
≤ Qϵ(t)

(
r(t+1), r(t)

)
≤ Qϵ(t)

(
r(t) − sd(t), r(t)

)
(23)

In (23), the first inequality holds because ϵ(t+1) ≤ ϵ(t), and ϵ 7→ Hϵ(·) is a non-decreasing function
in ϵ, the second inequality holds because Hϵ(·) is majorized by Qϵ(·,×), see also (22). Furthermore,
the third inequality holds due to the optimality of r(t+1) or x(t+1) (cf. (2) and (20)). From (23) we
obtain

Hϵ(t+1)

(
r(t+1)

)
−Hϵ(t)

(
r(t)

)
≤ Qϵ(t)

(
r(t) − sd(t), r(t)

)
−Hϵ(t)

(
r(t)

)
(24)

=
1

2

m∑
i=1

(
r
(t)
i − sd

(t)
i

)2 − (
r
(t)
i

)2
max{

∣∣r(t)i

∣∣, ϵ(t)} (25)

= s

m∑
i=1

−r(t)i · d
(t)
i

max
{∣∣r(t)i

∣∣, ϵ(t)} +
s2

2

m∑
i=1

(
d
(t)
i

)2
max

{∣∣r(t)i

∣∣, ϵ(t)} . (26)
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We next derive upper bounds for the two sums of (26) respectively. Denote by S∗ the support of r∗,
and define R := {i :

∣∣r(t)i

∣∣ > ϵ} ⊂ {1, . . . ,m}. Then the first sum of (26) is
m∑
i=1

−r(t)i · d
(t)
i

max
{∣∣r(t)i

∣∣, ϵ(t)} =
∑
i∈S∗

−r(t)i

max
{∣∣r(t)i

∣∣, ϵ(t)} · d(t)i +
∑

i∈(S∗)c

−r(t)i · r
(t)
i

max
{∣∣r(t)i

∣∣, ϵ(t)} (27)

≤
∑
i∈S∗

∣∣d(t)i

∣∣− ∑
i∈(S∗)c∩R

r
(t)
i · r

(t)
i∣∣r(t)i

∣∣ −
∑

i∈(S∗)c∩Rc

r
(t)
i · r

(t)
i

ϵ(t)
(28)

≤
(
η − 1

) ∑
i∈(S∗)c

∣∣d(t)i

∣∣+ ∑
i∈(S∗)c∩Rc

∣∣r(t)i

∣∣− ∑
i∈(S∗)c∩Rc

r
(t)
i · r

(t)
i

ϵ(t)
. (29)

In the last inequality, we applied (k, η)-RSP as our assumption, and used the fact d(t)i = r
(t)
i for

i ∈ (S∗)c. Since
∣∣r(t)i

∣∣ ≤ r
(t)
i · r

(t)
i /ϵ(t) + ϵ(t)/4, from the above we now arrive at

m∑
i=1

−r(t)i · d
(t)
i

max
{∣∣r(t)i

∣∣, ϵ(t)} ≤ (
η − 1

) ∑
i∈(S∗)c

∣∣d(t)i

∣∣+ ∣∣(S∗)c ∩Rc
∣∣ · ϵ(t)

4
(30)

≤
(
η − 1

) ∑
i∈(S∗)c

∣∣d(t)i

∣∣+ m · ϵ(t)

4
(31)

≤
(
η − 1

) ∑
i∈(S∗)c

∣∣d(t)i

∣∣+ 1

4

∑
i∈(S∗)c

∣∣d(t)i

∣∣ = (
η − 3

4

) ∑
i∈(S∗)c

∣∣d(t)i

∣∣. (32)

In the last inequality we used the definitions of d(t)i and ϵ(t). Next, the second summation of (26) is
m∑
i=1

(
d
(t)
i

)2
max

{∣∣r(t)i

∣∣, ϵ(t)} ≤ max
i
|d(t)i | ·

∑m
i=1 |d

(t)
i |

ϵ(t)
(33)

≤ η(η + 1)
∑

i∈(S∗)c

|d(t)i | ·
(η + 1)

∑
i∈(S∗)c |d

(t)
i |

ϵ(t)
(34)

≤ 49

16
η

(∑
i∈(S∗)c |d

(t)
i |

)2

ϵ(t)
. (35)

In the above we used (k, η)-stable RSP multiple times. With the two upper bounds on the sums of
(26), and with s′ := s

(∑
i∈(S∗)c |d

(t)
i |

)
, we now obtain

Hϵ(t+1)

(
r(t+1)

)
−Hϵ(t)

(
r(t)

)
≤ s′(η − 3

4
) +

(s′)2

2
· 49
16
· η

ϵ(t)
. (36)

Since s is an arbitrary non-negative integer, let s be such that s′ = (12− 16η)ϵ(t)/(49η). Then

Hϵ(t+1)

(
r(t+1)

)
−Hϵ(t)

(
r(t)

)
≤ − (3− 4η)2

98η
· ϵ(t). (37)

The definition of ϵ(t) (7) implies there exists some t′ ≤ t such that ϵ(t) = σ(t′)/m. Substituting this
value of s′ into the above inequality gives us the bound

Hϵ(t+1)

(
r(t+1)

)
−
∥∥r∗∥∥

1
≤ Hϵ(t)

(
r(t)

)
−
∥∥r∗∥∥

1
− (3− 4η)2

98η
· σ

(t′)

m
(38)

≤ Hϵ(t)
(
r(t)

)
−
∥∥r∗∥∥

1
− (3− 4η)2

98η
·
Hϵ(t′)

(
r(t

′)
)
−

∥∥r∗∥∥
1

3m
(39)

≤ Hϵ(t)
(
r(t)

)
−
∥∥r∗∥∥

1
− (3− 4η)2

98η
·
Hϵ(t)

(
r(t)

)
−

∥∥r∗∥∥
1

3m
(40)

=
(
1− (3− 4η)2

294ηm

)
·
(
Hϵ(t)

(
r(t)

)
−

∥∥r∗∥∥
1

)
. (41)
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The last two inequalities above are due to Lemma 1 and the monotonicity of Hϵ(t)(r
(t)) in t. Finally,

Note that Hϵ(t+1)

(
r(t+1)

)
majorizes

∥∥r(t+1)
∥∥
1

and Lemma 1 implies

Hϵ(1)
(
r(1)

)
−

∥∥r∗∥∥
1
≤ 3σ(1) ≤ 3

∥∥r(1)∥∥
1
. (42)

We have thus obtained∥∥r(t+1)
∥∥
1
−
∥∥r∗∥∥

1
≤ Hϵ(t+1)

(
r(t+1)

)
−
∥∥r∗∥∥

1
≤

(
1− (3− 4η)2

294ηm

)t

· 3
∥∥r(1)∥∥

1
. (43)

and the proof is now complete.

B.2 Local Superlinear Convergence for Lp-Regression

Proof of Theorem 2. We first show that the right inequality of (14), µ ·
∥∥Ax(t) −Ax∗

∥∥1−p

1
< 1,

holds true. With (13) and the definition of µ, this inequality holds whenever we have

2η(η + 1)(1− c)p−2 · min
i∈S∗
|a⊤

i x
∗ − yi|p−1 ·

(
c · min

i∈S∗
|a⊤

i x
∗ − yi|

)1−p

< 1, (44)

⇔ 2η(η + 1)(1− c)p−2c1−p < 1, (45)

which is true by the definition of c. This finishes proving the right inequality of (14). Next, one easily
verifies (14) implies (15). Hence, it remains to prove the left inequality of (14).

Recall r∗ := Ax∗ − y. Define r(t) := Ax(t) − y, and d(t) := r(t) − r∗ = Ax(t) −Ax∗. And
recall that S∗ denotes the support of the ground-truth residual r∗. We have

m∑
i=1

(
r∗i + d

(t+1)
i

)
d
(t+1)
i w

(t)
i = 0, (46)

a known property for the global minimizer x(t+1) of the weighted least-squares problem (2). So

m∑
i=1

(
d
(t+1)
i

)2
w

(t)
i = −

∑
i∈S∗

r∗i d
(t+1)
i w

(t)
i (47)

≤
∑
i∈S∗

|r∗i | ·
∣∣d(t+1)

i

∣∣max
{
|r(t)i |, ϵ

(t)
}p−2

(48)

≤
∑
i∈S∗

|r∗i | ·
∣∣d(t+1)

i

∣∣ · |r(t)i |
p−2 (49)

=
∑
i∈S∗

|r∗i | ·
∣∣d(t+1)

i

∣∣ · |d(t)i + r∗i |p−2 (50)

≤
∑
i∈S∗

|r∗i | ·
∣∣d(t+1)

i

∣∣ · |r∗i |p−2 · (1− c)p−2. (51)

In the last step, we used the fact |d(t)i | ≤ c · |r∗i | for all i ∈ S∗ (13), which means |d(t)i + r∗i | ≥
(1− c)|r∗i |. Thus, with the definition C := (1− c)p−2 ·mini∈S∗ |a⊤

i x
∗ − yi|p−1, we get

m∑
i=1

(
d
(t+1)
i

)2
w

(t)
i ≤

∑
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∣∣d(t+1)
i

∣∣ · |r∗i |p−1 · (1− c)p−2

≤ C
∑
i∈S∗

∣∣d(t+1)
i

∣∣. (52)

From the above and the (k, η)-stable RSP, we can now arrive at

∑
i∈(S∗)c

(
d
(t+1)
i

)2
w

(t)
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m∑
i=1

(
d
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∑
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i

∣∣ ≤ η · C
∑

i∈(S∗)c
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i

∣∣. (53)

20



Next, from the above and the Cauchy–Schwarz inequality, we get that∑
i∈(S∗)c

∣∣d(t+1)
i

∣∣ = ∑
i∈(S∗)c

∣∣d(t+1)
i

∣∣ · (w(t)
i

) 1
2 ·

(
w

(t)
i

)− 1
2

≤
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(
d
(t+1)
i

)2
w

(t)
i ·
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(
w

(t)
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≤
√
η · C
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i∈(S∗)c

∣∣d(t+1)
i

∣∣ ·√ ∑
i∈(S∗)c

(
w

(t)
i

)−1
.

(54)

We next suppose d
(t+1)
i = r

(t+1)
i − r∗i ̸= 0 for some i ∈ (S∗)c, for otherwise r(t+1) is k-sparse and

thus x(t+1) = x∗ by the uniqueness of the k-sparse residual. Then the above inequality implies∑
i∈(S∗)c

∣∣d(t+1)
i

∣∣ ≤ η · C
∑

i∈(S∗)c

(
w

(t)
i
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(
m
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+

∑
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+
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·
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( 1
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(55)

In the above, we used the definitions of ϵ(t), σ(t), r
(t)
i , d

(t)
i , and S∗. We have proved (14) since∑m

i=1

∣∣d(t+1)
i

∣∣ ≤ (1 + η)
∑

i∈(S∗)c

∣∣d(t+1)
i

∣∣ and by the definition of C.

C Auxiliary Theoretical Results

Lemma 1 (Upper Bound of The Residual). Recall r∗ = Ax∗ − y. Run IRLS1 Algorithm 1 with
p = 1 and the update rule (7) for σ(t) and ϵ(t), which yields the iterates {x(t)}t>0. If A satisfies
(k, η)-stable RSP, then for every t ≥ 1 the residual r(t) := Ax(t) − y satisfies

Hϵ(t)
(
r(t)

)
−

∥∥r∗∥∥
1
≤ 3σ(t), (56)

where Hϵ(t)
(
r(t)

)
is the smoothed ℓp-objective defined in (18) with p = 1.

Proof. Recall R := {i :
∣∣r(t)i

∣∣ > ϵ} ⊂ {1, . . . ,m} and the definition of Hϵ(t) (18), we have
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(
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)
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1
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−
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1
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Then it remains to prove
∥∥r(t)∥∥

1
−

∥∥r∗∥∥
1
≤ 2σ(t). For this, define S(t) to be the support of the k

largest entries of r(t) in absolute values, then
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i∈(S(t))c
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∣∣r(t)i − r∗i
∣∣ ≤ ∑

i∈(S(t))c

∣∣r(t)i

∣∣+ ∑
i∈(S(t))c

∣∣r∗i ∣∣ (60)

= σ(t) +
∥∥r∗∥∥

1
−

∑
i∈S(t)

∣∣r∗i ∣∣ (61)

= 2σ(t) +
∥∥r∗∥∥

1
−

∥∥r(t)∥∥
1
+

∑
i∈S(t)

∣∣r(t)∣∣− ∑
i∈S(t)

∣∣r∗i ∣∣ (62)

≤ 2σ(t) +
∥∥r∗∥∥

1
−

∥∥r(t)∥∥
1
+
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∣∣r(t)i − r∗i
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Since A satisfies (k, η)-stable RSP and r(t) − r∗ is in the range space of A, it holds that∑
i∈S(t)

∣∣r(t)i − r∗i
∣∣ ≤ η

∑
i∈(S(t))c

∣∣r(t)i − r∗i
∣∣ (64)

⇒
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(
2σ(t) +
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1
−
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1

)
. (65)

In the last inequality we used (63) and rearranged terms. Using (63) and (65) we obtain∥∥r(t)∥∥
1
−
∥∥r∗∥∥

1
≤

∥∥r(t) − r∗
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(66)
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1
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1
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(69)

which implies ∥∥r(t)∥∥
1
−
∥∥r∗∥∥

1
≤ 1 + η

2
· 2σ(t) ≤ 2σ(t). (70)

This finishes the proof.

C.1 The Stable Range Space Property of Gaussian Matrices

Proof of Proposition 3. We need the notion of Gaussian width w(·) of a given set K, defined as

w(K) := Eg∼N (0,Im)

[
sup
r∈K

g⊤r

]
. (71)

Write Sm−1 := {v ∈ Rm : v⊤v = 1}. Denote by Gr(n,m) the set of n dimensional subspaces of
Rm, also known as the Grassmannian manifold or variety. With η ∈ (0, 1], consider the set

Tk :=

{
r ∈ Rm :

∑
i∈S

|ri| > η
∑
i∈Sc

|ri|, for some S ⊂ {1, . . . ,m} with of cardinality k

}
. (72)

The following lemma gives an upper bound on the Gaussian width of Tk ∩ Sm−1:

Lemma 2 (Remark 9.30 and Proposition 9.33 of [28]). If m ≥ 2k then we have:

w
(
Tk ∩ Sm−1

)
≤

√
2k ln(em/k) ·

(
1.67 + η−1

)
. (73)
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Lemma 2 and (10) imply that w
(
Tk ∩ Sm−1

)
≤ m−n√

m−n+1
. Since A has i.i.d. N (0, 1) entries, we

can think of its range space r(A) as drawn uniformly at random from the Grassmannian Gr(n,m).
Invoking Lemma 3 with V = r(A) andM = Tk ∩ Sm−1, we see that

Pr
(
r(A) ∩ Tk ∩ Sm−1 = ∅

)
≥ 1− 2.5 exp

(
− 1

18

( m− n√
m− n+ 1

− w(Tk ∩ Sm−1)
)2

)
. (74)

Furthermore, Lemma 2 and condition (10) make sure that

m− n√
m− n+ 1

− w(Tk ∩ Sm−1) ≥ m− n√
m− n+ 1

−
√
2k ln(em/k) ·

(
1.69 + η−1

)
(75)

≥
√

18 ln(2.5δ−1). (76)

Combining the above leads us to

Pr
(
r(A) ∩ Tk ∩ Sm−1 = ∅

)
≥ 1− 2.5 exp

(
− ln(2.5δ−1)

)
= 1− δ. (77)

The event r(A) ∩ Tk ∩ Sm−1 = ∅ implies that the stable (k, η)-stable RSP holds true.

Lemma 3 (Gordon’s Escape Through a Mesh Theorem, Corollary 3.4 of [117], Theorem 4.3 of
[118]). Let V be a n-dimensional subspace of Rm drawn uniformly at random from the Grassmannian
Gr(n,m). LetM be a subset3 of Sm−1. If w(M) < m−n√

m−n+1
then

Pr
(
V ∩M = ∅

)
≥ 1− 2.5 exp

(
− 1

18

( m− n√
m− n+ 1

− w(M)
)2

)
. (78)

D Experimental Setup

D.1 How We Run Other Methods

In the real phase retrieval experiment (Figure 2a), all other baselines are implemented in PhasePack
[93]. We use the following (quite standard) parameters:

opts.tol = 1e-11; opts.initMethod = ’Truncatedspectral’;

In the experiments of linear regression without correspondences (Figures 2b and 2c), the implementa-
tion of PDLP [71] is here, and we run it with the command:

julia --project=scripts scripts/solve_qp.jl \
--instance_path test/trivial_lp_model.mps --iteration_limit 500 \
--method pdhg --output_dir [my directory]

Note that we run PDLP for a maximum of 500 iterations, while the recommended number of
maximum iterations from their GitHub repo is 5000; this is mainly for the sake of efficiency. We use
the newest version 9.5.1 of the Gurobi solver with default parameters. we employ the implementation
of the FOM toolbox [73] for the (proximal) subgradient descent method. In particular, we invoke the
function prox_subgradient with the function G being zero and F being ∥Ax− y∥1. We use
0 as initialization, and we observe similar performance when using the least-squares initialization.
We set par.alpha to be 1/∥A∥2, which corresponds to a stepsize of 1/∥A∥2/(t+ 1), where t is
the number of iterations. We make this choice because the default par.alpha = 1 does not work
well and sometimes diverges. Finally, we set the maximum number of iterations to be 10000, as the
default choice 1000 leads to an estimate with large errors.

D.2 Synthetic Data Generation

In this section, we provide the Matlab codes generating synthetic data for experiments visualized in
Figures 1, 2, and4, detailing the precise data generation process.

3The proof of Gordon [117] assumes M to be closed, but this assumption can be removed in view of the
definition of the Gaussian width and the compactness of Sm−1. The factor 3.5 of [117] can be improved to 2.5

[118]. To correct [118]; their condition “w(S) <
√
k” should be replaced by “w(S) < k/

√
k + 1”.
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%% robust regression
function [y, A, x] = gen_RR(m, n, k, sigma)

A = randn(m, n); x = randn(n,1);

y = zeros(m,1);

idx = datasample(1:m, k, ’Replace’, false);

y(idx) = randn(k,1);

s = setdiff(1:m, idx);
y(s) = A(s, :) * x + sigma * randn(length(s), 1);

end

%% linear regression without correspondences
function [y, A, x] = gen_SLR(m, n, sigma, shuffle_ratio)

A = randn(m, n); x = randn(n,1);

w = sigma*randn(m, 1);

y0 = A*x;
k = int64(shuffle_ratio * m);
partial_idx = datasample(1:m, k, ’Replace’, false);
y1 = y0(partial_idx, 1);
y0(partial_idx, 1) = y1(randperm(k));

y = y0 + w;
end

%% real phase retrieval
function [y, A, x] = gen_RPR(m, n, num_positive_sign)

A = randn(m, n); x = randn(n,1); y = zeros(m,1);

idx = datasample(1:m, num_positive_sign, ’Replace’, false);

y(idx) = A(idx, :) * x;

s = setdiff(1:m, idx);
y(s) = - A(s, :) * x;

% make y positive
idx = y < 0;
y(idx) = -y(idx);

A(idx,:) = -A(idx,:);
end

E Implementation

The below is our Matlab code that implements IRLSp:

function [x_hat] = IRLSp(A, y, p, k, num_iter)
[m, n] = size(A);

q = 2 - p; l = m - k; epsilon = inf;

w = ones(m,1); x_old = zeros(n,1);
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for i = 1:num_iter
x_hat = (A’* (w.*A)) \ (A’ * (w.* y));

abs_residual = abs(A*x_hat - y);

sigma = sum(mink(abs_residual, l)) / m;

epsilon = max(min(epsilon, sigma), 1e-16);

w = 1./ (max(abs_residual, epsilon)).^(q);

if norm(x_old - x_hat)/ norm(x_hat) < 1e-15
break;

end
x_old = x_hat;

end
end
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