A Further Related Work

Batched algorithms for multi-armed bandits. Batched processing for the stochastic multi-armed bandit problem has been investigated in the past few years. A special case when there are two bandits was studied by [39]. They obtain a worst-case regret bound of $O\left(\left(\frac{T}{\log(T)}\right)^{1/B}\frac{\log(T)}{\Delta_{\min}}\right)$. [25] studied the general problem and obtained a worst-case regret bound of $O\left(\frac{K\log(K)T^{1/B}\log(T)}{\Delta_{\min}}\right)$, which was later improved by [23] to $O\left(\frac{KT^{1/B}\log(T)}{\Delta_{\min}}\right)$. Furthermore, [23] obtained an instance-dependent regret bound of $\sum_{j:\Delta_j>0} T^{1/B}O\left(\frac{\log(T)}{\Delta_j}\right)$. Our results for batched dueling bandits are of a similar flavor; that is, we get a similar dependence on T and B. [23] also give batched algorithms for stochastic linear bandits and adversarial multi-armed bandits.

Adaptivity in combinatorial optimization. Adaptivity and batch processing has been recently studied for stochastic submodular cover [27, 1], 24, 26], and for various stochastic "maximization" problems such as knapsack [20, 13], matching [10, 12], probing [30] and orienteering [28, 29, 11]. Recently, there have also been several results examining the role of adaptivity in (deterministic) submodular optimization; e.g. [8, 6, 9, 7, 17].

B Missing Proofs from §3.1

Proof of Lemma 3.1. Note that $\mathbb{E}[\hat{p}_{i,j}(r)] = p_{i,j}$, and applying Hoeffding's inequality gives

$$\mathbf{P}\left(|\widehat{p}_{i,j}^{r+1} - p_{i,j}| > \gamma_{i,j}(r)\right) \le 2\exp\left(-2N_{i,j}(r) \cdot \gamma_{i,j}(r)^2\right) \le 2\eta.$$

Proof of Lemma 3.2 Applying Lemma 3.1 and taking a union bound over all pairs and batches, we get that the probability that some estimate is incorrect is at most $\binom{K}{2} \times B \times 2\eta \leq \frac{1}{T}$ where $\eta = 1/K^2 BT$. Thus, $\mathbf{P}(\overline{G}) \leq \frac{1}{T}$.

Proof of Lemma 3.3 In C2B, an arm j is deleted in batch r iff there is an arm $i \in \mathcal{A}$ with $\hat{p}_{i,j}(r) > \frac{1}{2} + 2\gamma_{i,j}(r)$. If a^* is eliminated due to some arm j, then by definition of event G, we get $p_{j,a^*} > \frac{1}{2} + \gamma_{i,j}(r) > \frac{1}{2}$, a contradiction.

C Missing Proofs from §3.1.1

Proof of Lemma 3.4 For any pair i, j of arms and round r, let $B_{i,j}(r)$ denote the event that $|\hat{p}_{i,j}(r) - p_{i,j}| > c_{i,j}(r)$. Note that $N_{ij}(r) \le \sum_{s=1}^{r} q_s \le 2q_r$. For any integer n, let $s_{ij}(n)$ denote the sample average of n independent Bernoulli r.v.s with probability p_{ij} . By Hoeffding's bound,

$$\mathbf{P}[|s_{ij}(n) - p_{ij}| > c] \le 2e^{-2nc^2}, \quad \text{for any } c \in [0, 1].$$

We now bound

$$\begin{aligned} \mathbf{P}[B_{ij}(r)] &\leq \sum_{n=0}^{2q_r} \mathbf{P}[B_{ij}(r) \wedge N_{ij}(r) = n] \\ &\leq \sum_{n=0}^{2q_r} \mathbf{P}\left[|s_{ij}(n) - p_{ij}| > \sqrt{\frac{2\log(2K^2q_r)}{n}} \right] \leq \sum_{n=0}^{2q_r} 2\exp\left(-2n \cdot \frac{2\log(2K^2q_r)}{n}\right) \\ &\leq 4q_r \cdot \frac{1}{(2K^2q_r)^4} \leq \frac{1}{4K^2 \cdot q_r^2} \end{aligned}$$

The second inequality uses the definition of $c_{ij}(r)$ when $N_{ij}(r) = n$. The last inequality uses $K \ge 2$. Next, by a union bound over arms and rounds, we can write the desired probability as

$$\mathbf{P}(\exists r \ge C(\delta), i, j : B_{i,j}(r)) \le \sum_{r \ge C(\delta)} \sum_{i < j} \mathbf{P}(B_{i,j}(r))$$

$$\le \sum_{r \ge C(\delta)} \binom{K}{2} \cdot \frac{1}{4K^2 \cdot q_r^2} \le \sum_{r \ge C(\delta)} \frac{1}{8q_r^2}$$

$$\le \sum_{r \ge C(\delta)} \frac{1}{2q^{2r}} = \frac{1}{2q^{2C(\delta)}} \cdot \left(1 + \frac{1}{q^2} + \frac{1}{q^4} + \cdots\right) \le \frac{1}{q^{2C(\delta)}} \le \delta$$
(4)

The second inequality above uses the bound on $\mathbf{P}[B_{ij}(r)]$. The first inequality in (4) uses $q_r = \lfloor q^r \rfloor \ge q^r - 1 \ge \frac{q^r}{2}$ as $q \ge 2$. The last inequality in (4) uses the definition of $C(\delta)$.

The lemma now follows by the definition of event $\neg E(\delta)$ as $\exists r \ge C(\delta), i, j : B_{i,j}(r)$. \Box

Proof of Lemma 3.5 Fix any round $r \ge C(\delta) + 1$. Suppose that $a^* \in D_r(i)$ for some other arm *i*. This implies that $\hat{p}_{i,a^*}(r-1) > \frac{1}{2} + c_{i,a^*}(r-1)$. But under event $E(\delta)$, we have $|\hat{p}_{i,a^*}(r-1) - p_{i,a^*}| \le c_{i,a^*}(r-1)$ because $r-1 \ge C(\delta)$. Combined, these two observations imply $p_{i,a^*} > \frac{1}{2}$, a contradiction.

Proof of Lemma 3.7 We first argue that a^* is compared to all active arms in each round $r \ge r(\delta)$. By Lemma 3.3 we know $a^* \in \mathcal{A}$. By Lemma 3.5 we have $a^* \notin D_r(j)$ for all $j \ne a^*$ because $r \ge r(\delta) \ge 1 + C(\delta)$. If candidate $i_r \ne a^*$, then a^* will be compared to all $j \in \mathcal{A}$ (since $a^* \notin D_r(i_r)$). On the other hand, if $i_r = a^*$, then (1) for any $j \in D_r(a^*)$, arm j is only compared to a^* , and (2) for any $j \in \mathcal{A} \setminus D_r(a^*)$, arm j is compared to all active arms including a^* .

Next, we show that for any round $r \ge r(\delta) + 1$, arm a^* defeats all other arms, i.e., $|D_r(a^*)| = |\mathcal{A}| - 1$. This would imply that $i_r = a^*$ and a^* is the champion. Consider any arm $j \in \mathcal{A} \setminus a^*$. Since a^* is compared to all active arms in round $r - 1 \ge r(\delta)$, we have

$$N_{a^*,j}(r-1) \ge q^{r-1} > \frac{8}{\Delta_{\min}^2} \cdot \log\left(2K^2 q_{r-1}\right),$$

where the second inequality is by Lemma 3.6 with $r-1 \ge r(\delta)$. Now, by definition, we have

$$c_{a^*,j}(r-1) = \sqrt{\frac{2\log\left(2K^2q_{r-1}\right)}{N_{a^*,j}(r-1)}} < \sqrt{\frac{2\log\left(2K^2q_{r-1}\right)}{\frac{8}{\Delta_{\min}^2}\log\left(2K^2q_{r-1}\right)}} = \frac{\Delta_{\min}}{2}.$$

Given this, it is easy to show that a^* defeats arm j in round r. Conditioned on $E(\delta)$, we know that $|\hat{p}_{a^*,j}(r-1) - p_{a^*,j}| \le c_{a^*,j}(r-1) \le \frac{\Delta_{\min}}{2}$. Then, we have

$$\widehat{p}_{a^*,j}(r-1) \ge p_{a^*,j} - \frac{\Delta_{\min}}{2} = \frac{1}{2} + \Delta_j - \frac{\Delta_{\min}}{2} \ge \frac{1}{2} + \frac{\Delta_{\min}}{2} > \frac{1}{2} + c_{a^*,j}(r-1).$$

Therefore, $j \in D_r(a^*)$. It now follows that for any round $r \ge r(\delta) + 1$, arm a^* is the champion. \Box

Proof of Theorem [1.1] First, recall that in round r of C2B, any pair is compared $q_r = \lfloor q^r \rfloor$ times where $q = T^{1/B}$. Since $q^B = T$, C2B uses at most B rounds.

For the rest of proof, we fix $\delta > 0$. We now analyze the regret incurred by C2B, conditioned on events G and $E(\delta)$. Recall that $\mathbf{P}(G) \ge 1 - 1/T$ (Lemma 3.2), and $\mathbf{P}(E(\delta)) \ge 1 - \delta$ (Lemma 3.4). Thus, $\mathbf{P}(G \cap E(\delta)) \ge 1 - \delta - 1/T$. Let R_1 and R_2 denote the regret incurred before and after round $r(\delta)$ (see Definition 3.4) respectively.

Bounding R_1 . This is the regret incurred up to (and including) round $r(\delta)$. We upper bound the regret by considering all pairwise comparisons every round $r \leq r(\delta)$.

$$\begin{aligned} R_1 &\leq K^2 \cdot \sum_{r \leq r(\delta)} q_r \leq K^2 \cdot \sum_{r \leq r(\delta)} q^r &\leq 2K^2 \cdot q^{r(\delta)} \\ &\leq 2K^2 \cdot \max\left\{q \cdot 2A \log A, q^{C(\delta)+1}\right\}, \end{aligned}$$

where the last inequality uses Definition 3.4, recall $A = \frac{16}{\Delta_{\min}^2} \cdot \log(2K^2)$. Plugging in the value of $C(\delta) \leq 1 + \frac{1}{2}\log_q(1/\delta)$, we obtain

$$R_1 \le O(K^2) \cdot \max\left\{q \cdot \frac{\log K}{\Delta_{\min}^2} \cdot \log\left(\frac{\log K}{\Delta_{\min}}\right), q^2 \sqrt{\frac{1}{\delta}}\right\}.$$
(5)

Bounding R_2 . This is the regret in rounds $r \ge r(\delta) + 1$. By Lemma 3.7 arm a^* is the champion in all these rounds. So, the only comparisons in these rounds are of the form (a^*, j) for $j \in A$.

Consider any arm $j \neq a^*$. Let T_j be the total number of comparisons that j participates in after round $r(\delta)$. Let r be the penultimate round that j is played in. We can assume that $r \geq r(\delta)$ (otherwise arm j will never participate in rounds after $r(\delta)$, i.e., $T_j = 0$). As arm j is *not* eliminated after round r,

$$\widehat{p}_{a^*,j}(r) \le \frac{1}{2} + \gamma_{a^*,j}(r)$$

Moreover, by $E(\delta)$, we have $\widehat{p}_{a^*,j}(r) \ge p_{a^*,j} - c_{a^*,j}(r)$ because $r \ge r(\delta) \ge C(\delta)$. So,

$$\frac{1}{2} + \Delta_j = p_{a^*,j} \le \widehat{p}_{a^*,j}(r) + c_{a^*,j}(r) \le \frac{1}{2} + \gamma_{a^*,j}(r) + c_{a^*,j}(r).$$

It follows that

$$\Delta_j \le \gamma_{a^*,j}(r) + c_{a^*,j}(r) \le \frac{3}{\sqrt{2}} \sqrt{\frac{\log(2K^2 BT)}{N_{a^*,j}(r)}}$$

where the final inequality follows by definition of c and γ . On re-arranging, we get $N_{a^*,j}(r) \leq \frac{9 \log(2K^2 BT)}{2\Delta_j^2}$. As r + 1 is the last round that j is played in, and j is only compared to a^* in each round after $r(\delta)$,

$$T_j \leq N_{a^*,j}(r+1) \leq N_{a^*,j}(r) + 2q \cdot N_{a^*,j}(r) \leq \frac{15q \cdot \log(2K^2BT)}{\Delta_j^2}.$$

The second inequality follows since j is compared to a^* in rounds r and r + 1, and the number of comparisons in round r + 1 is $\lfloor q^{r+1} \rfloor \leq q \cdot (2q_r) \leq 2q \cdot N_{a^*,j}(r)$. Adding over all arms j, the total regret accumulated beyond round $r(\delta)$ is

$$R_2 = \sum_{j \neq a^*} T_j \Delta_j \le \sum_{j \neq a^*} O\left(\frac{q \cdot \log(KT)}{\Delta_j}\right).$$
(6)

Combining (5) and (6), and using $q = T^{1/B}$, we obtain

$$R(T) \leq O\left(T^{1/B} \cdot \frac{K^2 \log(K)}{\Delta_{\min}^2} \cdot \log\left(\frac{\log K}{\Delta_{\min}}\right)\right) + O\left(T^{2/B} \cdot K^2 \cdot \sqrt{\frac{1}{\delta}}\right) + \sum_{j \neq a^*} O\left(\frac{T^{1/B} \cdot \log(KT)}{\Delta_j}\right).$$

This completes the proof Theorem 1.1

D Expected Regret Bound

In this section, we present the proof of Theorem 1.2. We first state the definitions needed in the proof. Let $F_X(\cdot)$ denote the cumulative density function (CDF) of a random variable X; that is, $F_X(x) = \mathbf{P}(X \leq x)$. The inverse CDF of X, denoted F_X^{-1} , is defined as $F_X^{-1}(z) = \inf\{x : \mathbf{P}(X \leq x) \geq z\}$ where $z \in [0, 1]$. We will use the identity $\mathbb{E}[X] = \int_0^1 F_X^{-1}(z) dz$.

Proof of Theorem 1.2 First, note that in round r of C2B, any pair is compared $q_r = \lfloor q^r \rfloor$ times where $q = T^{1/B}$. Since $q^B = T$, C2B uses at most B rounds.

Let R(T) be the random variable denoting the regret incurred by C2B. By Theorem 1.1, we know that with probability at least $1 - \delta - 1/T$,

$$R(T) \le O\left(T^{1/B} \cdot \frac{K^2 \log(K)}{\Delta_{\min}^2} \cdot \log\left(\frac{\log K}{\Delta_{\min}}\right)\right) + O\left(T^{2/B} \cdot K^2 \cdot \sqrt{\frac{1}{\delta}}\right) + \sum_{j \ne a^*} O\left(\frac{T^{1/B} \cdot \log(KT)}{\Delta_j}\right).$$

Thus, $F_{R(T)}^{-1}(1-\delta-1/T) \leq G(\delta)$ where

 \mathbb{E}

$$G(\delta) := A + O\left(T^{2/B} \cdot K^2 \cdot \sqrt{\frac{1}{\delta}}\right) + B$$

where to simplify notation we set $A = O\left(T^{1/B} \cdot \frac{K^2 \log(K)}{\Delta_{\min}^2} \cdot \log\left(\frac{\log K}{\Delta_{\min}}\right)\right)$ and $B = \sum_{j \neq a^*} O\left(\frac{T^{1/B} \cdot \log(KT)}{\Delta_j}\right)$. Using the identity for expectation of a random variable, we get

$$\begin{split} [R(T)] &= \int_{0}^{1} F_{R(T)}^{-1}(z) dz \\ &= \int_{0}^{1-\frac{1}{T}} F_{R(T)}^{-1}(z) dz + \underbrace{\int_{1-\frac{1}{T}}^{T} F_{R(T)}^{-1}(z) dz}_{\leq T \cdot \frac{1}{T} = 1} \\ &\leq \int_{0}^{1-\frac{1}{T}} F_{R(T)}^{-1}(z) dz + 1 \\ &= \int_{1-\frac{1}{T}}^{0} F_{R(T)}^{-1} \left(1 - \delta - \frac{1}{T}\right) (-d\delta) + 1 \\ &\leq \int_{0}^{1-\frac{1}{T}} G(\delta) d\delta + 1 \\ &\leq A + O\left(T^{2/B} \cdot K^{2}\right) + B + 1 \end{split}$$

where the fourth equality follows by setting $1 - q - 1/T = \delta$ and the final inequality follows since $\int_0^1 \left(\frac{1}{\delta}\right)^{1/2} \leq 2$. Thus,

$$\mathbb{E}[R(T)] \le O\left(T^{1/B} \cdot \frac{K^2 \log(K)}{\Delta_{\min}^2} \cdot \log\left(\frac{\log K}{\Delta_{\min}}\right)\right) + O\left(T^{2/B} \cdot K^2\right) \\ + \sum_{j \ne a^*} O\left(\frac{T^{1/B} \cdot \log(KT)}{\Delta_j}\right).$$

This completes the proof of Theorem 1.2

E The Batched Algorithm with KL-based Elimination Criterion

In this section, we modify C2B to use a Kullback-Leibler divergence based elimination criterion. We provide a complete description of the algorithm, denoted C2B-KL, in Algorithm[2] In what follows, we highlight the main differences of C2B-KL from C2B. Recall the following notation. We use \mathcal{A} to denote the current set of *active* arms; i.e., the arms that have not been eliminated. We use index r for rounds or batches. If pair (i, j) is compared in round r, it is compared $q_r = \lfloor q^r \rfloor$ times where $q = T^{1/B}$. We define the following quantities at the *end* of each round r:

- $N_{i,j}(r)$ is the total number of times the pair (i, j) has been compared.
- $\widehat{p}_{i,j}(r)$ is the frequentist estimate of $p_{i,j}$, i.e.,

$$\widehat{p}_{i,j}(r) = \frac{\# i \text{ wins against } j \text{ until end of round } r}{N_{i,j}(r)} \,. \tag{7}$$

• A confidence-interval radius for each (i, j) pair:

$$c_{i,j}(r) = \sqrt{\frac{2\log(2K^2q_r)}{N_{i,j}(r)}}$$

• We define a term $I_j(r)$ which, at a high-level, measures how unlikely it is for j to be the Condorcet winner at the end of batch r:

$$I_j(r) = \sum_{i:\widehat{p}_{i,j}(r) \ge \frac{1}{2}} D_{\mathrm{KL}}\left(\widehat{p}_{i,j}(r), \frac{1}{2}\right) \cdot N_{i,j}(r),$$

where $D_{\text{KL}}(p,q)$ denotes the Kullback–Leibler divergence between two Bernoulli distributions: B(p) and B(q). We define $I^*(r) = \min_{j \in \mathcal{A}} I_j(r)$.

The *B*-round algorithm, C2B-KL, proceeds exactly as C2B. The only change is in the *elimination criterion*, which we describe next.

Elimination Criterion. In round r, if, for any arm j, we have $I_j(r) - I^*(r) > \log(T) + f(K)$, then j is eliminated from \mathcal{A} . Here f(K) is a non-negative function of K, independent of r.

The main result of this section is to show that C2B-KL achieves the following guarantee.

Theorem E.1. For any integer $B \ge 1$, there is an algorithm for the K-armed dueling bandit problem that uses at most B rounds. Furthermore, for any $\delta > 0$, with probability at least $1 - \delta - \frac{1}{T} \cdot e^{K \log(C) - f(K)}$, where C is some constant (see Lemma E.2), its regret under the Condorcet condition is at most

$$\begin{split} R(T) &\leq O\left(T^{1/B} \cdot \frac{K^2 \log(K)}{\Delta_{\min}^2} \cdot \log\left(\frac{\log K}{\Delta_{\min}}\right)\right) \\ &+ O\left(T^{2/B} \cdot K^2 \cdot \sqrt{\frac{1}{\delta}}\right) \\ &+ \sum_{j \neq a^*} O\left(\frac{T^{1/B} \cdot \log(T)}{\Delta_j}\right) \\ &+ \sum_{j \neq a^*} O\left(\frac{T^{1/B} \cdot f(K)}{\Delta_j}\right) \end{split}$$

Remark. Setting $f(K) > K \log(C)$, we get the same asymptotic expected regret bound as in Theorem 1.2 Following 35, we set $f(K) = 0.3K^{1.01}$ in our experiments.

We require the following result in the proof of Theorem E.1.

Fact E.1. For any μ and μ_2 satisfying $0 < \mu_2 < \mu < 1$. Let $C_1(\mu, \mu_2) = (\mu - \mu_2)^2/(2\mu(1 - \mu_2))$. Then, for any $\mu_3 \leq \mu_2$,

$$D_{KL}(\mu_3,\mu) - D_{KL}(\mu_3,\mu_2) \ge C_1(\mu,\mu_2) > 0.$$

The high-level outline of the analysis is exactly the same as that of C2B. For completeness, we provide the analysis in the following section; however, we skip the proofs of lemmas that follow from the analysis of C2B.

Algorithm 2 C2B-KL

1: Input: Arms \mathcal{B} , time-horizon T, integer $B \ge 1$ 2: active arms $\mathcal{A} \leftarrow \mathcal{B}, r \leftarrow 1$, emprical probabilities $\widehat{p}_{i,j}(0) = \frac{1}{2}$ for all $i, j \in \mathcal{B}^2$ 3: while number of comparisons $\leq T$ do if $\mathcal{A} = \{i\}$ for some *i* then play (i, i) for remaining trials $D_r(i) \leftarrow \{j \in \mathcal{A} : \widehat{p}_{i,j}(r-1) > \frac{1}{2} + c_{i,j}(r-1)\}$ 4: 5: 6: $i_r \leftarrow \arg \max_{i \in \mathcal{A}} |D_r(i)|$ for $i \in \mathcal{A} \setminus \{i_r\}$ do 7: 8: if $i \in D_r(i_r)$ then 9: compare (i_r, i) for q_r times 10: else for each $j \in A$, compare (i, j) for q_r times 11: compute $\widehat{p}_{i,j}(r)$ values if $\exists j: I_j(r) - I^*(r) > \log(T) + f(K)$ then 12: 13: $\mathcal{A} \leftarrow \mathcal{A} \setminus \{j\}$ 14: 15: $r \leftarrow r+1$

E.1 The Analysis

In this section, we prove the high-probability regret bound for C2B-KL. Recall that $q = T^{1/B}$, and that $q \ge 2$. We first show that, with high probability, a^* is not eliminated during the execution of the algorithm. The following lemma formalizes this.

Lemma E.2. Let G denote the event that the best arm a^* is not eliminated during the execution of C2B-KL. We can bound the probability of \overline{G} as follows.

$$\mathbf{P}(\overline{G}) \le \frac{1}{T} \cdot e^{K \log(C) - f(K)},$$

where
$$C = \max_{j} C(j) + 1$$
, is a constant, with $C(j) = \left(\frac{1}{e^{D_{KL}\left(p_{j,a^{*}}, 1/2\right)} - 1} + \frac{e^{C_{1}\left(p_{a^{*}, j}, 1/2\right)}}{\left(e^{C_{1}\left(p_{a^{*}, j}, 1/2\right)} - 1\right)^{2}}\right)$.

Proof. Let n_j denote the number of times a^* and j are compared. Let $\hat{p}_{a^*,j}(n_j)$ denote the frequentist estimate of $p_{a^*,j}$ when a^* and j are compared n_j times (we will abuse notation and use $\hat{p}_{a^*,j}$ when n_j is clear from context). Let $S \in 2^{[K] \setminus \{a^*\}} \setminus \emptyset$, and consider vector $\{n_j \in \mathbb{N} : j \in S\}$. We define $A = \sum_{j \in S} D_{\text{KL}}(\hat{p}_{j,a^*}, 1/2) \cdot n_j$. Let $D(S; \{n_j : j \in S\})$ denote the event that a^* and j are compared n_j times and $\hat{p}_{a^*,j} \leq 1/2$ for all $j \in S$, and that $A > \log(T) + f(K)$. The probability of this event upper bounds the probability that a^* is eliminated (as per our elimination criterion) when a^* and j are compared n_j times, and $\hat{p}_{a^*,j} \leq 1/2$ for all $j \in S$. We will show that

$$\mathbf{P}(D(S; \{n_j : j \in S\})) \le \frac{e^{-f(K)}}{T} \prod_{j \in S} \left(e^{-n_j D_{\mathsf{KL}}\left(p_{j,a^*}, 1/2\right)} + n_j e^{C_1\left(p_{j,a^*}, 1/2\right)} \right)$$
(8)

where $C_1(\mu_1, \mu_2) = (\mu_1 - \mu_2)^2/(2\mu_1(1 - \mu_2))$. Using the above, we first show that by taking a union bound over all $S \in 2^{[K] \setminus \{a^*\}} \setminus \emptyset$ and $\{n_j : j \in S\}$, we obtain the final result. We have

$$\mathbf{P}(\overline{G}) \leq \sum_{S \in 2^{[K] \setminus \{a^*\}} \setminus \emptyset} \sum_{n_j \in \mathbb{N}^{|S|}} \mathbf{P}(D(S; \{n_j : j \in S\})) \\
\leq \sum_{S \in 2^{[K] \setminus \{a^*\}} \setminus \emptyset} \sum_{n_j \in \mathbb{N}^{|S|}} \frac{e^{-f(K)}}{T} \prod_{j \in S} \left(e^{-n_j D_{\mathsf{KL}}\left(p_{j,a^*}, 1/2\right)} + n_j e^{C_1\left(p_{j,a^*}, 1/2\right)} \right) \\
= \frac{e^{-f(K)}}{T} \sum_{S \in 2^{[K] \setminus \{a^*\}} \setminus \emptyset} \prod_{j \in S} \sum_{n_j \in \mathbb{N}} \left(e^{-n_j D_{\mathsf{KL}}\left(p_{j,a^*}, 1/2\right)} + n_j e^{C_1\left(p_{j,a^*}, 1/2\right)} \right) \tag{9}$$

$$=\frac{e^{-f(K)}}{T}\sum_{S\in 2^{[K]\setminus\{a^*\}\setminus\emptyset}}\prod_{j\in S}\left(\frac{1}{e^{D_{\mathsf{KL}}\left(p_{j,a^*},1/2\right)}-1}+\frac{e^{C_1\left(p_{j,a^*},1/2\right)}}{\left(e^{C_1\left(p_{j,a^*},1/2\right)}-1\right)^2}\right)$$
(10)

$$\leq \frac{e^{-f(K)}}{T} \sum_{S \in 2^{[K] \setminus \{a^*\}} \setminus \emptyset} (C-1)^{|S|} \leq \frac{e^{-f(K)}}{T} \cdot C^K$$
(11)

$$= \frac{1}{T} \cdot e^{K \log(C) - f(K)}$$

where (9) follows by swapping the order of summation and multiplication, (10) uses $\sum_{n=1}^{\infty} e^{-nx} = 1/(e^x - 1)$ and $\sum_{n=1}^{\infty} ne^{-nx} = e^x/(e^x - 1)^2$, and (11) follows by letting $C(j) = \left(\frac{1}{e^{D_{\text{KL}}\left(p_{j,a^*}, 1/2\right)} - 1} + \frac{e^{C_1\left(p_{j,a^*}, 1/2\right)}}{\left(e^{C_1\left(p_{j,a^*}, 1/2\right)} - 1\right)^2}\right), C = \max_j C(j) + 1 \text{ and the binomial theorem.}$ To complete the proof, we need to prove (8)

For the remainder of this proof, we fix $S \in 2^{[K] \setminus \{a^*\}} \setminus \emptyset$, and vector $\{n_j \in \mathbb{N} : j \in S\}$. Observe that

$$\mathbf{P}(D(S; \{n_j : j \in S\})) = \mathbf{P}(A > \log(T) + f(K)) = \mathbf{P}\left(T < e^{-f(K)} \cdot e^A\right)$$

where we defined $A = \sum_{j \in S} D_{\text{KL}}(\widehat{p}_{j,a^*}, 1/2) \cdot n_j$. By Markov's inequality, we have

$$\mathbf{P}\left(e^{-f(K)} \cdot e^A > T\right) \le \frac{\mathbb{E}[e^{-f(K)} \cdot e^A]}{T} = \frac{e^{-f(K)}}{T} \cdot \mathbb{E}[e^A]$$
(12)

where the last equality follows since f(K) is constant (with respect to $\{n_j\}$ values). So, it suffices to bound $\mathbb{E}[e^A]$. Towards this end, we define the following term:

$$P_j(x_j) = \mathbf{P}\left(\widehat{p}_{j,a^*} \ge \frac{1}{2} \text{ and } D_{\mathrm{KL}}\left(\widehat{p}_{j,a^*}, \frac{1}{2}\right) \ge x_j\right).$$

Then, we have

$$\mathbb{E}[e^{A}] = \int_{\{x_{j}\}\in[0,\log(2)]^{|S|}} \exp\left(\sum_{j\in S} n_{j}x_{j}\right) \prod_{j\in S} d(-P_{j}(x_{j}))$$
$$= \prod_{j\in S} \int_{x_{j}\in[0,\log 2]} e^{n_{j}x_{j}} d(-P_{j}(x_{j}))$$
(13)

$$=\prod_{j\in S} \left(\left[-e^{n_j x_j} P_j(x_j) \right]_0^{\log(2)} + \int_{x_j \in [0,\log(2)]} n_j e^{n_j x_j} P_j(x_j) dx_j \right)$$
(14)

$$= \prod_{j \in S} \left(P_{j}(0) + \int_{x_{j} \in [0, \log(2)]} n_{j} e^{n_{j} x_{j}} P_{j}(x_{j}) dx_{j} \right)$$

$$\leq \prod_{j \in S} \left(e^{-n_{j} D_{\text{KL}}\left(p_{j,a^{*}}, 1/2\right)} + \int_{x_{j} \in [0, \log(2)]} n_{j} e^{n_{j} x_{j}} e^{-n_{j} \left(x_{j} + C_{1}\left(p_{j,a^{*}}, 1/2\right)\right)} dx_{j} \right)$$
(15)

$$= \prod_{j \in S} \left(e^{-n_{j} D_{\text{KL}}\left(p_{j,a^{*}}, 1/2\right)} + \int_{x_{j} \in [0, \log(2)]} n_{j} e^{C_{1}\left(p_{j,a^{*}}, 1/2\right)} dx_{j} \right)$$

$$\leq \prod_{j \in S} \left(e^{-n_{j} D_{\text{KL}}\left(p_{j,a^{*}}, 1/2\right)} + n_{j} e^{C_{1}\left(p_{j,a^{*}}, 1/2\right)} \right)$$

where (13) follows from the independence of the comparisons. We obtain (14) by applying integration by parts, (15) follows from the Chernoff bound and Fact E.1 here $C_1(\mu_1, \mu_2) = (\mu_1 - \mu_2)^2/(2\mu_1(1 - \mu_2))$, and the final inequality follows by observing that $\int_{x_j \in [0, \log(2)]} n_j e^{C_1(p_{j,a^*}, 1/2)} dx_j = n_j e^{C_1(p_{j,a^*}, 1/2)} \log(2)$. Note that log refers to the natural logarithm, so we have $\log(2) \leq 1$. Combined with (12), this completes the proof of (8).

E.1.1 High-probability Regret Bound

We now prove Theorem E.1 Fix any $\delta > 0$. We first define event $E(\delta)$ as before.

Definition E.1 (Event $E(\delta)$). An estimate $\hat{p}_{i,j}(r)$ in batch r is weakly-correct if $|\hat{p}_{i,j}(r) - p_{i,j}| \le c_{i,j}(r)$. Let $C(\delta) := \lceil \frac{1}{2} \log_q(1/\delta) \rceil$. We say that event $E(\delta)$ occurs if for each batch $r \ge C(\delta)$, every estimate is weakly-correct.

The next lemma shows that $E(\delta)$ occurs with probability at least $1 - \delta$. Since $E(\delta)$ does not depend on the elimination criterion, its proof follows from the analysis of C2B.

Lemma E.3. For all $\delta > 0$, we have

$$\mathbf{P}(\neg E(\delta)) = \mathbf{P}(\exists r \ge C(\delta), i, j : |\widehat{p}_{i,j}(r) - p_{i,j}| > c_{i,j}(r)) \le \delta.$$

As before, we analyze our algorithm under both events G and $E(\delta)$. Recall that, under event G, the best arm a^* is not eliminated. *Conditioned on these*, we next show:

- The best arm, a^* , is *not defeated* by any arm *i* in any round $r > C(\delta)$ (Lemma E.4).
- Furthermore, there exists a round r(δ) ≥ C(δ) such that arm a* defeats every other arm, in every round after r(δ) (Lemma E.6).

We re-state the formal lemmas next.

Lemma E.4. Conditioned on G and $E(\delta)$, for any round $r > C(\delta)$, arm a^* is not defeated by any other arm, i.e., $a^* \notin \bigcup_{i \neq a^*} D_r(i)$.

To proceed, we need the following definitions.

Definition E.2. The candidate i_r of round r is called the **champion** if $|D_r(i_r)| = |\mathcal{A}| - 1$; that is, if i_r defeats every other active arm.

Definition E.3. Let $r(\delta) \ge C(\delta) + 1$ be the smallest integer such that

$$q^{r(\delta)} \ge 2A \log A$$
, where $A := \frac{32}{\Delta_{\min}^2} \cdot \log(2K^2)$.

We use the following inequality based on this choice of $r(\delta)$.

Lemma E.5. The above choice of $r(\delta)$ satisfies

$$q^r > \frac{8}{\Delta_{\min}^2} \cdot \log\left(2K^2q_r\right), \qquad \forall r \ge r(\delta).$$

Then, we have the following.

Lemma E.6. Conditioned on G and $E(\delta)$, the best arm a^* is the champion in every round $r > r(\delta)$.

We are now ready to prove Theorem E.1

Proof of Theorem E.1. First, recall that in round r of C2B, any pair is compared $q_r = \lfloor q^r \rfloor$ times where $q = T^{1/B}$. Since $q^B = T$, C2B uses at most B rounds.

For the rest of proof, we fix $\delta > 0$. We now analyze the regret incurred by C2B, conditioned on events G and $E(\delta)$. Recall that $\mathbf{P}(G) \ge 1 - \frac{1}{T} \cdot e^{K \log(C) - f(K)}$ (Lemma E.2), and $\mathbf{P}(E(\delta)) \ge 1 - \delta$ (Lemma E.3). Thus, $\mathbf{P}(G \cap E(\delta)) \ge 1 - \delta - \frac{1}{T} \cdot e^{K \log(C) - f(K)}$. Let R_1 and R_2 denote the regret incurred before and after round $r(\delta)$ (see Definition E.3) respectively.

Bounding R_1 . We can bound R_1 as in the proof of Theorem 1.1, so, we get

$$R_1 \le O(K^2) \cdot \max\left\{q \cdot \frac{\log K}{\Delta_{\min}^2} \cdot \log\left(\frac{\log K}{\Delta_{\min}}\right), q^2 \sqrt{\frac{1}{\delta}}\right\}.$$
 (16)

Bounding R_2 . This is the regret in rounds $r \ge r(\delta) + 1$. By Lemma E.6 arm a^* is the champion in all these rounds. So, the only comparisons in these rounds are of the form (a^*, j) for $j \in A$.

Consider any arm $j \neq a^*$. Let T_j be the total number of comparisons that j participates in after round $r(\delta)$. Let r be the penultimate round that j is played in. We can assume that $r \geq r(\delta)$ (otherwise arm j will never participate in rounds after $r(\delta)$, i.e., $T_j = 0$). As arm j is *not* eliminated after round r,

$$I_j(r) - I^*(r) \le \log(T) + f(K).$$

By Lemma E.6, $I^*(r) = 0$ (since a^* is the *champion*, the summation is empty). So, we have $I_j(r) \le \log(T) + f(K)$. Observe that

$$I_j(r) \ge D_{\mathrm{KL}}\left(\widehat{p}_{a^*,j}(r), \frac{1}{2}\right) N_{a^*,j}(r) \tag{17}$$

We can lower bound $D_{\text{KL}}\left(\widehat{p}_{a^*,j}(r), \frac{1}{2}\right)$ as follows.

$$D_{\mathrm{KL}}\left(\widehat{p}_{a^{*},j}(r),\frac{1}{2}\right) \ge \left(\widehat{p}_{a^{*},j}(r) - \frac{1}{2}\right)^{2} \ge \left(p_{a^{*},j} - c_{a^{*},j}(r) - \frac{1}{2}\right)^{2} \ge \left(\frac{\Delta_{j}}{2}\right)^{2}$$

where the first inequality follows from Pinsker's inequality, the second inequality uses Lemma E.3 and the final inequality uses the fact that $c_{a^*,j}(r) \leq \frac{\Delta_{\min}}{2}$, which follows by the choice of $r(\delta)$. Plugging this into (17), we get

$$\frac{\Delta_j^2}{4} \cdot N_{a^*,j}(r) \le \log(T) + f(K)$$

which on re-arranging gives

$$N_{a^*,j}(r) \le \frac{4(\log(T) + f(K))}{\Delta_j^2}$$

As r + 1 is the last round that j is played in, and j is only compared to a^* in each round after $r(\delta)$,

$$T_j \leq N_{a^*,j}(r+1) \leq N_{a^*,j}(r) + 2q \cdot N_{a^*,j}(r) \leq \frac{12q \cdot (\log(T) + f(K))}{\Delta_j^2}.$$

The second inequality follows since j is compared to a^* in rounds r and r + 1, and the number of comparisons in round r + 1 is $\lfloor q^{r+1} \rfloor \leq q \cdot (2q_r) \leq 2q \cdot N_{a^*,j}(r)$. Adding over all arms j, the total regret accumulated beyond round $r(\delta)$ is

$$R_2 = \sum_{j \neq a^*} T_j \Delta_j \le \sum_{j \neq a^*} O\left(\frac{q \cdot (\log(T) + f(K))}{\Delta_j}\right).$$
(18)

Combining (16) and (18), and using $q = T^{1/B}$, we obtain

$$\begin{split} R(T) &\leq O\left(T^{1/B} \cdot \frac{K^2 \log(K)}{\Delta_{\min}^2} \cdot \log\left(\frac{\log K}{\Delta_{\min}}\right)\right) \\ &+ O\left(T^{2/B} \cdot K^2 \cdot \sqrt{\frac{1}{\delta}}\right) + \sum_{j \neq a^*} O\left(\frac{T^{1/B} \cdot \log(T)}{\Delta_j}\right) \\ &+ \sum_{j \neq a^*} O\left(\frac{T^{1/B} \cdot f(K)}{\Delta_j}\right) \end{split}$$
This completes the proof Theorem E.1

Hardware Specification for Computational Experiments F

We conducted our computations using C++ and Python 2.7 with a 2.3 Ghz Intel Core i5 processor and 16 GB 2133 MHz LPDDR3 memory.