A Further Related Work

Batched algorithms for multi-armed bandits. Batched processing for the stochastic multi-armed bandit problem has been investigated in the past few years. A special case when there are two bandits was studied by [39]. They obtain a worst-case regret bound of $O\left(\left(\frac{T}{\log (T)}\right)^{1 / B} \frac{\log (T)}{\Delta_{\min }}\right)$. [25] studied the general problem and obtained a worst-case regret bound of $O\left(\frac{K \log (K) T^{1 / B} \log (T)}{\Delta_{\min }}\right)$, which was later improved by [23] to $O\left(\frac{K T^{1 / B} \log (T)}{\Delta_{\min }}\right)$. Furthermore, [23] obtained an instance-dependent regret bound of $\sum_{j: \Delta_{j}>0} T^{1 / B} O\left(\frac{\log (T)}{\Delta_{j}}\right)$. Our results for batched dueling bandits are of a similar flavor; that is, we get a similar dependence on T and B. [23] also give batched algorithms for stochastic linear bandits and adversarial multi-armed bandits.

Adaptivity in combinatorial optimization. Adaptivity and batch processing has been recently studied for stochastic submodular cover [27, 1, 24, 26], and for various stochastic "maximization" problems such as knapsack [20, 13], matching [10, 12], probing [30] and orienteering [28, 29, 11]. Recently, there have also been several results examining the role of adaptivity in (deterministic) submodular optimization; e.g. [8, 6, 9, 7, 17].

B Missing Proofs from $\$ 3.1$

Proof of Lemma 3.1. Note that $\mathbb{E}\left[\widehat{p}_{i, j}(r)\right]=p_{i, j}$, and applying Hoeffding's inequality gives

$$
\mathbf{P}\left(\left|\widehat{p}_{i, j}^{r+1}-p_{i, j}\right|>\gamma_{i, j}(r)\right) \leq 2 \exp \left(-2 N_{i, j}(r) \cdot \gamma_{i, j}(r)^{2}\right) \leq 2 \eta .
$$

Proof of Lemma 3.2. Applying Lemma 3.1 and taking a union bound over all pairs and batches, we get that the probability that some estimate is incorrect is at most $\binom{K}{2} \times B \times 2 \eta \leq \frac{1}{T}$ where $\eta=1 / K^{2} B T$. Thus, $\mathbf{P}(\bar{G}) \leq \frac{1}{T}$.

Proof of Lemma 3.3. In C2B, an arm j is deleted in batch r iff there is an arm $i \in \mathcal{A}$ with $\widehat{p}_{i, j}(r)>$ $\frac{1}{2}+2 \gamma_{i, j}(r)$. If a^{*} is eliminated due to some arm j, then by definition of event G, we get $p_{j, a^{*}}>$ $\frac{1}{2}+\gamma_{i, j}(r)>\frac{1}{2}$, a contradiction.

C Missing Proofs from $\$ 3.1 .1$

Proof of Lemma 3.4. For any pair i, j of arms and round r, let $B_{i, j}(r)$ denote the event that $\mid \widehat{p}_{i, j}(r)-$ $p_{i, j} \mid>c_{i, j}(r)$. Note that $N_{i j}(r) \leq \sum_{s=1}^{r} q_{s} \leq 2 q_{r}$. For any integer n, let $s_{i j}(n)$ denote the sample average of n independent Bernoulli r.v.s with probability $p_{i j}$. By Hoeffding's bound,

$$
\mathbf{P}\left[\left|s_{i j}(n)-p_{i j}\right|>c\right] \leq 2 e^{-2 n c^{2}}, \quad \text { for any } c \in[0,1]
$$

We now bound

$$
\begin{aligned}
\mathbf{P}\left[B_{i j}(r)\right] & \leq \sum_{n=0}^{2 q_{r}} \mathbf{P}\left[B_{i j}(r) \wedge N_{i j}(r)=n\right] \\
& \leq \sum_{n=0}^{2 q_{r}} \mathbf{P}\left[\left|s_{i j}(n)-p_{i j}\right|>\sqrt{\frac{2 \log \left(2 K^{2} q_{r}\right)}{n}}\right] \leq \sum_{n=0}^{2 q_{r}} 2 \exp \left(-2 n \cdot \frac{2 \log \left(2 K^{2} q_{r}\right)}{n}\right) \\
& \leq 4 q_{r} \cdot \frac{1}{\left(2 K^{2} q_{r}\right)^{4}} \leq \frac{1}{4 K^{2} \cdot q_{r}^{2}}
\end{aligned}
$$

The second inequality uses the definition of $c_{i j}(r)$ when $N_{i j}(r)=n$. The last inequality uses $K \geq 2$. Next, by a union bound over arms and rounds, we can write the desired probability as

$$
\begin{align*}
\mathbf{P}\left(\exists r \geq C(\delta), i, j: B_{i, j}(r)\right) & \leq \sum_{r \geq C(\delta)} \sum_{i<j} \mathbf{P}\left(B_{i, j}(r)\right) \\
& \leq \sum_{r \geq C(\delta)}\binom{K}{2} \cdot \frac{1}{4 K^{2} \cdot q_{r}^{2}} \leq \sum_{r \geq C(\delta)} \frac{1}{8 q_{r}^{2}} \\
& \leq \sum_{r \geq C(\delta)} \frac{1}{2 q^{2 r}}=\frac{1}{2 q^{2 C(\delta)}} \cdot\left(1+\frac{1}{q^{2}}+\frac{1}{q^{4}}+\cdots\right) \leq \frac{1}{q^{2 C(\delta)}} \leq \delta \tag{4}
\end{align*}
$$

The second inequality above uses the bound on $\mathbf{P}\left[B_{i j}(r)\right]$. The first inequality in (4) uses $q_{r}=$ $\left\lfloor q^{r}\right\rfloor \geq q^{r}-1 \geq \frac{q^{r}}{2}$ as $q \geq 2$. The last inequality in (4) uses the definition of $C(\delta)$.
The lemma now follows by the definition of event $\neg E(\delta)$ as $\exists r \geq C(\delta), i, j: B_{i, j}(r)$.

Proof of Lemma 3.5. Fix any round $r \geq C(\delta)+1$. Suppose that $a^{*} \in D_{r}(i)$ for some other arm i. This implies that $\widehat{p}_{i, a^{*}}(r-1)>\frac{1}{2}+c_{i, a^{*}}(r-1)$. But under event $E(\delta)$, we have $\mid \widehat{p}_{i, a^{*}}(r-1)-$ $p_{i, a^{*}} \mid \leq c_{i, a^{*}}(r-1)$ because $r-1 \geq C(\delta)$. Combined, these two observations imply $p_{i, a^{*}}>\frac{1}{2}$, a contradiction.

Proof of Lemma 3.7. We first argue that a^{*} is compared to all active arms in each round $r \geq r(\delta)$. By Lemma 3.3, we know $a^{*} \in \mathcal{A}$. By Lemma 3.5, we have $a^{*} \notin D_{r}(j)$ for all $j \neq a^{*}$ because $r \geq r(\delta) \geq 1+C(\delta)$. If candidate $i_{r} \neq a^{*}$, then a^{*} will be compared to all $j \in \mathcal{A}$ (since $a^{*} \notin D_{r}\left(i_{r}\right)$). On the other hand, if $i_{r}=a^{*}$, then (1) for any $j \in D_{r}\left(a^{*}\right)$, arm j is only compared to a^{*}, and (2) for any $j \in \mathcal{A} \backslash D_{r}\left(a^{*}\right)$, arm j is compared to all active arms including a^{*}.

Next, we show that for any round $r \geq r(\delta)+1$, arm a^{*} defeats all other arms, i.e., $\left|D_{r}\left(a^{*}\right)\right|=|\mathcal{A}|-1$. This would imply that $i_{r}=a^{*}$ and a^{*} is the champion. Consider any arm $j \in \mathcal{A} \backslash a^{*}$. Since a^{*} is compared to all active arms in round $r-1 \geq r(\delta)$, we have

$$
N_{a^{*}, j}(r-1) \geq q^{r-1}>\frac{8}{\Delta_{\min }^{2}} \cdot \log \left(2 K^{2} q_{r-1}\right)
$$

where the second inequality is by Lemma 3.6 with $r-1 \geq r(\delta)$. Now, by definition, we have

$$
c_{a^{*}, j}(r-1)=\sqrt{\frac{2 \log \left(2 K^{2} q_{r-1}\right)}{N_{a^{*}, j}(r-1)}}<\sqrt{\frac{2 \log \left(2 K^{2} q_{r-1}\right)}{\frac{8}{\Delta_{\min }^{2}} \log \left(2 K^{2} q_{r-1}\right)}}=\frac{\Delta_{\min }}{2}
$$

Given this, it is easy to show that a^{*} defeats arm j in round r. Conditioned on $E(\delta)$, we know that $\left|\widehat{p}_{a^{*}, j}(r-1)-p_{a^{*}, j}\right| \leq c_{a^{*}, j}(r-1) \leq \frac{\Delta_{\min }}{2}$. Then, we have

$$
\widehat{p}_{a^{*}, j}(r-1) \geq p_{a^{*}, j}-\frac{\Delta_{\min }}{2}=\frac{1}{2}+\Delta_{j}-\frac{\Delta_{\min }}{2} \geq \frac{1}{2}+\frac{\Delta_{\min }}{2}>\frac{1}{2}+c_{a^{*}, j}(r-1)
$$

Therefore, $j \in D_{r}\left(a^{*}\right)$. It now follows that for any round $r \geq r(\delta)+1$, arm a^{*} is the champion.

Proof of Theorem 1.1. First, recall that in round r of C2B, any pair is compared $q_{r}=\left\lfloor q^{r}\right\rfloor$ times where $q=T^{1 / B}$. Since $q^{B}=T$, C2B uses at most B rounds.

For the rest of proof, we fix $\delta>0$. We now analyze the regret incurred by C2B, conditioned on events G and $E(\delta)$. Recall that $\mathbf{P}(G) \geq 1-1 / T$ (Lemma 3.2), and $\mathbf{P}(E(\delta)) \geq 1-\delta$ (Lemma 3.4). Thus, $\mathbf{P}(G \cap E(\delta)) \geq 1-\delta-1 / T$. Let R_{1} and R_{2} denote the regret incurred before and after round $r(\delta)$ (see Definition 3.4) respectively.

Bounding R_{1}. This is the regret incurred up to (and including) round $r(\delta)$. We upper bound the regret by considering all pairwise comparisons every round $r \leq r(\delta)$.

$$
\begin{aligned}
R_{1} & \leq K^{2} \cdot \sum_{r \leq r(\delta)} q_{r} \leq K^{2} \cdot \sum_{r \leq r(\delta)} q^{r} \leq 2 K^{2} \cdot q^{r(\delta)} \\
& \leq 2 K^{2} \cdot \max \left\{q \cdot 2 A \log A, q^{C(\delta)+1}\right\}
\end{aligned}
$$

where the last inequality uses Definition 3.4 , recall $A=\frac{16}{\Delta_{\min }^{2}} \cdot \log \left(2 K^{2}\right)$. Plugging in the value of $C(\delta) \leq 1+\frac{1}{2} \log _{q}(1 / \delta)$, we obtain

$$
\begin{equation*}
R_{1} \leq O\left(K^{2}\right) \cdot \max \left\{q \cdot \frac{\log K}{\Delta_{\min }^{2}} \cdot \log \left(\frac{\log K}{\Delta_{\min }}\right), q^{2} \sqrt{\frac{1}{\delta}}\right\} . \tag{5}
\end{equation*}
$$

Bounding R_{2}. This is the regret in rounds $r \geq r(\delta)+1$. By Lemma 3.7, arm a^{*} is the champion in all these rounds. So, the only comparisons in these rounds are of the form $\left(a^{*}, j\right)$ for $j \in \mathcal{A}$.
Consider any arm $j \neq a^{*}$. Let T_{j} be the total number of comparisons that j participates in after round $r(\delta)$. Let r be the penultimate round that j is played in. We can assume that $r \geq r(\delta)$ (otherwise arm j will never participate in rounds after $r(\delta)$, i.e., $T_{j}=0$). As arm j is not eliminated after round r,

$$
\widehat{p}_{a^{*}, j}(r) \leq \frac{1}{2}+\gamma_{a^{*}, j}(r)
$$

Moreover, by $E(\delta)$, we have $\widehat{p}_{a^{*}, j}(r) \geq p_{a^{*}, j}-c_{a^{*}, j}(r)$ because $r \geq r(\delta) \geq C(\delta)$. So,

$$
\frac{1}{2}+\Delta_{j}=p_{a^{*}, j} \leq \widehat{p}_{a^{*}, j}(r)+c_{a^{*}, j}(r) \leq \frac{1}{2}+\gamma_{a^{*}, j}(r)+c_{a^{*}, j}(r)
$$

It follows that

$$
\Delta_{j} \leq \gamma_{a^{*}, j}(r)+c_{a^{*}, j}(r) \leq \frac{3}{\sqrt{2}} \sqrt{\frac{\log \left(2 K^{2} B T\right)}{N_{a^{*}, j}(r)}}
$$

where the final inequality follows by definition of c and γ. On re-arranging, we get $N_{a^{*}, j}(r) \leq$ $\frac{9 \log \left(2 K^{2} B T\right)}{2 \Delta_{j}^{2}}$. As $r+1$ is the last round that j is played in, and j is only compared to a^{*} in each round after $r(\delta)$,

$$
T_{j} \leq N_{a^{*}, j}(r+1) \leq N_{a^{*}, j}(r)+2 q \cdot N_{a^{*}, j}(r) \leq \frac{15 q \cdot \log \left(2 K^{2} B T\right)}{\Delta_{j}^{2}}
$$

The second inequality follows since j is compared to a^{*} in rounds r and $r+1$, and the number of comparisons in round $r+1$ is $\left\lfloor q^{r+1}\right\rfloor \leq q \cdot\left(2 q_{r}\right) \leq 2 q \cdot N_{a^{*}, j}(r)$. Adding over all arms j, the total regret accumulated beyond round $r(\delta)$ is

$$
\begin{equation*}
R_{2}=\sum_{j \neq a^{*}} T_{j} \Delta_{j} \leq \sum_{j \neq a^{*}} O\left(\frac{q \cdot \log (K T)}{\Delta_{j}}\right) \tag{6}
\end{equation*}
$$

Combining (5) and (6), and using $q=T^{1 / B}$, we obtain

$$
\begin{aligned}
R(T) \leq O\left(T^{1 / B} \cdot \frac{K^{2} \log (K)}{\Delta_{\min }^{2}} \cdot \log \left(\frac{\log K}{\Delta_{\min }}\right)\right) & +O\left(T^{2 / B} \cdot K^{2} \cdot \sqrt{\frac{1}{\delta}}\right) \\
& +\sum_{j \neq a^{*}} O\left(\frac{T^{1 / B} \cdot \log (K T)}{\Delta_{j}}\right)
\end{aligned}
$$

This completes the proof Theorem 1.1

D Expected Regret Bound

In this section, we present the proof of Theorem 1.2 . We first state the definitions needed in the proof. Let $F_{X}(\cdot)$ denote the cumulative density function (CDF) of a random variable X; that is, $F_{X}(x)=$ $\mathbf{P}(X \leq x)$. The inverse CDF of X, denoted F_{X}^{-1}, is defined as $F_{X}^{-1}(z)=\inf \{x: \mathbf{P}(X \leq x) \geq z\}$ where $z \in[0,1]$. We will use the identity $\mathbb{E}[X]=\int_{0}^{1} F_{X}^{-1}(z) d z$.

Proof of Theorem 1.2 First, note that in round r of C2B, any pair is compared $q_{r}=\left\lfloor q^{r}\right\rfloor$ times where $q=T^{1 / B}$. Since $q^{B}=T$, C2B uses at most B rounds.
Let $R(T)$ be the random variable denoting the regret incurred by C2B. By Theorem 1.1 , we know that with probability at least $1-\delta-1 / T$,

$$
\begin{aligned}
R(T) \leq O\left(T^{1 / B} \cdot \frac{K^{2} \log (K)}{\Delta_{\min }^{2}} \cdot \log \left(\frac{\log K}{\Delta_{\min }}\right)\right) & +O\left(T^{2 / B} \cdot K^{2} \cdot \sqrt{\frac{1}{\delta}}\right) \\
& +\sum_{j \neq a^{*}} O\left(\frac{T^{1 / B} \cdot \log (K T)}{\Delta_{j}}\right)
\end{aligned}
$$

Thus, $F_{R(T)}^{-1}(1-\delta-1 / T) \leq G(\delta)$ where

$$
G(\delta):=A+O\left(T^{2 / B} \cdot K^{2} \cdot \sqrt{\frac{1}{\delta}}\right)+B
$$

where to simplify notation we set $A=O\left(T^{1 / B} \cdot \frac{K^{2} \log (K)}{\Delta_{\min }^{2}} \cdot \log \left(\frac{\log K}{\Delta_{\min }}\right)\right)$ and $B=$ $\sum_{j \neq a^{*}} O\left(\frac{T^{1 / B} \cdot \log (K T)}{\Delta_{j}}\right)$. Using the identity for expectation of a random variable, we get

$$
\begin{aligned}
\mathbb{E}[R(T)] & =\int_{0}^{1} F_{R(T)}^{-1}(z) d z \\
& =\int_{0}^{1-\frac{1}{T}} F_{R(T)}^{-1}(z) d z+\underbrace{\int_{1-\frac{1}{T}}^{T} F_{R(T)}^{-1}(z) d z}_{\leq T \cdot \frac{1}{T}=1} \\
& \leq \int_{0}^{1-\frac{1}{T}} F_{R(T)}^{-1}(z) d z+1 \\
& =\int_{1-\frac{1}{T}}^{0} F_{R(T)}^{-1}\left(1-\delta-\frac{1}{T}\right)(-d \delta)+1 \\
& \leq \int_{0}^{1-\frac{1}{T}} G(\delta) d \delta+1 \\
& \leq A+O\left(T^{2 / B} \cdot K^{2}\right)+B+1
\end{aligned}
$$

where the fourth equality follows by setting $1-q-1 / T=\delta$ and the final inequality follows since $\int_{0}^{1}\left(\frac{1}{\delta}\right)^{1 / 2} \leq 2$. Thus,

$$
\begin{aligned}
\mathbb{E}[R(T)] \leq O\left(T^{1 / B} \cdot \frac{K^{2} \log (K)}{\Delta_{\min }^{2}} \cdot \log \left(\frac{\log K}{\Delta_{\min }}\right)\right) & +O\left(T^{2 / B} \cdot K^{2}\right) \\
& +\sum_{j \neq a^{*}} O\left(\frac{T^{1 / B} \cdot \log (K T)}{\Delta_{j}}\right)
\end{aligned}
$$

This completes the proof of Theorem 1.2

E The Batched Algorithm with KL-based Elimination Criterion

In this section, we modify C2B to use a Kullback-Leibler divergence based elimination criterion. We provide a complete description of the algorithm, denoted C2B-KL, in Algorithm 2 In what follows, we highlight the main differences of C2B-KL from C2B. Recall the following notation. We use \mathcal{A} to denote the current set of active arms; i.e., the arms that have not been eliminated. We use index r for rounds or batches. If pair (i, j) is compared in round r, it is compared $q_{r}=\left\lfloor q^{r}\right\rfloor$ times where $q=T^{1 / B}$. We define the following quantities at the end of each round r :

- $N_{i, j}(r)$ is the total number of times the pair (i, j) has been compared.
- $\widehat{p}_{i, j}(r)$ is the frequentist estimate of $p_{i, j}$, i.e.,

$$
\begin{equation*}
\widehat{p}_{i, j}(r)=\frac{\# i \text { wins against } j \text { until end of round } r}{N_{i, j}(r)} \tag{7}
\end{equation*}
$$

- A confidence-interval radius for each (i, j) pair:

$$
c_{i, j}(r)=\sqrt{\frac{2 \log \left(2 K^{2} q_{r}\right)}{N_{i, j}(r)}}
$$

- We define a term $I_{j}(r)$ which, at a high-level, measures how unlikely it is for j to be the Condorcet winner at the end of batch r :

$$
I_{j}(r)=\sum_{i: \widehat{p}_{i, j}(r) \geq \frac{1}{2}} D_{\mathrm{KL}}\left(\widehat{p}_{i, j}(r), \frac{1}{2}\right) \cdot N_{i, j}(r)
$$

where $D_{\mathrm{KL}}(p, q)$ denotes the Kullback-Leibler divergence between two Bernoulli distributions: $B(p)$ and $B(q)$. We define $I^{*}(r)=\min _{j \in \mathcal{A}} I_{j}(r)$.
The B-round algorithm, C2B-KL, proceeds exactly as C2B. The only change is in the elimination criterion, which we describe next.

Elimination Criterion. In round r, if, for any arm j, we have $I_{j}(r)-I^{*}(r)>\log (T)+f(K)$, then j is eliminated from \mathcal{A}. Here $f(K)$ is a non-negative function of K, independent of r.

The main result of this section is to show that C2B-KL achieves the following guarantee.
Theorem E.1. For any integer $B \geq 1$, there is an algorithm for the K-armed dueling bandit problem that uses at most B rounds. Furthermore, for any $\delta>0$, with probability at least $1-\delta-\frac{1}{T}$. $e^{K \log (C)-f(K)}$, where C is some constant (see Lemma E.2), its regret under the Condorcet condition is at most

$$
\begin{aligned}
R(T) \leq O\left(T^{1 / B} \cdot \frac{K^{2} \log (K)}{\Delta_{\min }^{2}} \cdot \log \left(\frac{\log K}{\Delta_{\min }}\right)\right)+O\left(T^{2 / B} \cdot K^{2} \cdot \sqrt{\frac{1}{\delta}}\right) & +\sum_{j \neq a^{*}} O\left(\frac{T^{1 / B} \cdot \log (T)}{\Delta_{j}}\right) \\
& +\sum_{j \neq a^{*}} O\left(\frac{T^{1 / B} \cdot f(K)}{\Delta_{j}}\right)
\end{aligned}
$$

Remark. Setting $f(K)>K \log (C)$, we get the same asymptotic expected regret bound as in Theorem 1.2 Following [35], we set $f(K)=0.3 K^{1.01}$ in our experiments.
We require the following result in the proof of Theorem E. 1 .
Fact E.1. For any μ and μ_{2} satisfying $0<\mu_{2}<\mu<1$. Let $C_{1}\left(\mu, \mu_{2}\right)=\left(\mu-\mu_{2}\right)^{2} /\left(2 \mu\left(1-\mu_{2}\right)\right)$. Then, for any $\mu_{3} \leq \mu_{2}$,

$$
D_{K L}\left(\mu_{3}, \mu\right)-D_{K L}\left(\mu_{3}, \mu_{2}\right) \geq C_{1}\left(\mu, \mu_{2}\right)>0
$$

The high-level outline of the analysis is exactly the same as that of C2B. For completeness, we provide the analysis in the following section; however, we skip the proofs of lemmas that follow from the analysis of C2B.

```
Algorithm 2 C2B-KL
    Input: Arms \(\mathcal{B}\), time-horizon \(T\), integer \(B \geq 1\)
    active arms \(\mathcal{A} \leftarrow \mathcal{B}, r \leftarrow 1\), emprical probabilities \(\widehat{p}_{i, j}(0)=\frac{1}{2}\) for all \(i, j \in \mathcal{B}^{2}\)
    while number of comparisons \(\leq T\) do
        if \(\mathcal{A}=\{i\}\) for some \(i\) then play \((i, i)\) for remaining trials
        \(D_{r}(i) \leftarrow\left\{j \in \mathcal{A}: \widehat{p}_{i, j}(r-1)>\frac{1}{2}+c_{i, j}(r-1)\right\}\)
        \(i_{r} \leftarrow \arg \max _{i \in \mathcal{A}}\left|D_{r}(i)\right|\)
        for \(i \in \mathcal{A} \backslash\left\{i_{r}\right\}\) do
            if \(i \in D_{r}\left(i_{r}\right)\) then
                compare \(\left(i_{r}, i\right)\) for \(q_{r}\) times
            else
                    for each \(j \in \mathcal{A}\), compare \((i, j)\) for \(q_{r}\) times
        compute \(\widehat{p}_{i, j}(r)\) values
        if \(\exists j: I_{j}(r)-I^{*}(r)>\log (T)+f(K)\) then
            \(\mathcal{A} \leftarrow \mathcal{A} \backslash\{j\}\)
            \(r \leftarrow r+1\)
```


E. 1 The Analysis

In this section, we prove the high-probability regret bound for C2B-KL. Recall that $q=T^{1 / B}$, and that $q \geq 2$. We first show that, with high probability, a^{*} is not eliminated during the execution of the algorithm. The following lemma formalizes this.

Lemma E.2. Let G denote the event that the best arm a^{*} is not eliminated during the execution of C2B-KL. We can bound the probability of \bar{G} as follows.

$$
\mathbf{P}(\bar{G}) \leq \frac{1}{T} \cdot e^{K \log (C)-f(K)}
$$

where $C=\max _{j} C(j)+1$, is a constant, with $C(j)=\left(\frac{1}{e^{D_{K L}\left(p_{j, a^{*}, 1 / 2}\right)}-1}+\frac{\left.e^{C_{1}\left(p_{a^{*}, j}, 1 / 2\right.}\right)}{\left(e^{C_{1}\left(p_{a^{*}, j}, 1 / 2\right.}-1\right)^{2}}\right)$.

Proof. Let n_{j} denote the number of times a^{*} and j are compared. Let $\widehat{p}_{a^{*}, j}\left(n_{j}\right)$ denote the frequentist estimate of $p_{a^{*}, j}$ when a^{*} and j are compared n_{j} times (we will abuse notation and use $\widehat{p}_{a^{*}, j}$ when n_{j} is clear from context). Let $S \in 2^{[K] \backslash\left\{a^{*}\right\}} \backslash \emptyset$, and consider vector $\left\{n_{j} \in \mathbb{N}: j \in S\right\}$. We define $A=\sum_{j \in S} D_{\mathrm{KL}}\left(\widehat{p}_{j, a^{*}}, 1 / 2\right) \cdot n_{j}$. Let $D\left(S ;\left\{n_{j}: j \in S\right\}\right)$ denote the event that a^{*} and j are compared n_{j} times and $\widehat{p}_{a^{*}, j} \leq 1 / 2$ for all $j \in S$, and that $A>\log (T)+f(K)$. The probability of this event upper bounds the probability that a^{*} is eliminated (as per our elimination criterion) when a^{*} and j are compared n_{j} times, and $\widehat{p}_{a^{*}, j} \leq 1 / 2$ for all $j \in S$. We will show that

$$
\begin{equation*}
\mathbf{P}\left(D\left(S ;\left\{n_{j}: j \in S\right\}\right)\right) \leq \frac{e^{-f(K)}}{T} \prod_{j \in S}\left(e^{-n_{j} D_{\mathrm{KL}}\left(p_{j, a^{*}}, 1 / 2\right)}+n_{j} e^{C_{1}\left(p_{j, a^{*}}, 1 / 2\right)}\right) \tag{8}
\end{equation*}
$$

where $C_{1}\left(\mu_{1}, \mu_{2}\right)=\left(\mu_{1}-\mu_{2}\right)^{2} /\left(2 \mu_{1}\left(1-\mu_{2}\right)\right)$. Using the above, we first show that by taking a union bound over all $S \in 2^{[K] \backslash\left\{a^{*}\right\}} \backslash \emptyset$ and $\left\{n_{j}: j \in S\right\}$, we obtain the final result. We have

$$
\begin{align*}
\mathbf{P}(\bar{G}) & \leq \sum_{S \in 2^{[K] \backslash\left\{a^{*}\right\}} \backslash \backslash \emptyset n_{j} \in \mathbb{N}^{|S|}} \sum_{\sum_{S \in 2^{[K] \backslash\left\{a^{*}\right\}} \backslash \emptyset} \sum_{n_{j} \in \mathbb{N}^{|S|}} \frac{e^{-f(K)}}{T} \prod_{j \in S}\left(e^{-n_{j} D_{\mathrm{KL}}\left(p_{j, a^{*}, 1 / 2}\right)}+n_{j} e^{C_{1}\left(p_{j, a^{*}, 1 / 2}\right)}\right)} \\
& \leq \frac{e^{-f(K)}}{T} \sum_{S \in 2^{[K] \backslash\left\{a^{*}\right\}} \backslash \emptyset} \prod_{j \in S} \sum_{n_{j} \in \mathbb{N}}\left(e^{-n_{j} D_{\mathrm{KL}}\left(p_{j, a^{*}, 1 / 2}\right)}+n_{j} e^{C_{1}\left(p_{j, a^{*}, 1 / 2}\right)}\right) \\
& =\frac{e^{-f(K)}}{T} \sum_{S \in 2^{\left[K \backslash \backslash\left\{a^{*}\right\}\right.} \backslash \emptyset} \prod_{j \in S}\left(\frac{1}{e^{D_{\mathrm{KL}}\left(p_{j, a^{*}, 1 / 2}\right.}-1}+\frac{e^{C_{1}\left(p_{j, a^{*}, 1 / 2}\right)}}{\left(e^{C_{1}\left(p_{j, a^{*}, 1 / 2}\right)}-1\right)^{2}}\right) \tag{9}\\
& \leq \frac{e^{-f(K)}}{T} \sum_{S \in 2^{[K] \backslash\left\{a^{*}\right\}} \backslash \emptyset}(C-1)^{|S|} \leq \frac{e^{-f(K)}}{T} \cdot C^{K} \tag{10}\\
& =\frac{1}{T} \cdot e^{K \log (C)-f(K)} \tag{11}
\end{align*}
$$

where $\sqrt{9}$ follows by swapping the order of summation and multiplication, 10) uses $\sum_{n=1}^{\infty} e^{-n x}=$ $1 /\left(e^{x}-1\right)$ and $\sum_{n=1}^{\infty} n e^{-n x}=e^{x} /\left(e^{x}-1\right)^{2}$, and (11) follows by letting
$\left.C(j)=\left(\frac{1}{e^{D_{\mathrm{KL}}\left(p_{j, a^{*}, 1 / 2}\right)}-1}+\frac{e^{C_{1}\left(p_{j, a^{*}, 1 / 2}\right)}}{\left(e^{C_{1}\left(p_{j, a^{*}}, 1 / 2\right.}\right)}-1\right)^{2}\right), C=\max _{j} C(j)+1$ and the binomial theorem. To complete the proof, we need to prove (8).
For the remainder of this proof, we fix $S \in 2^{[K] \backslash\left\{a^{*}\right\}} \backslash \emptyset$, and vector $\left\{n_{j} \in \mathbb{N}: j \in S\right\}$. Observe that

$$
\mathbf{P}\left(D\left(S ;\left\{n_{j}: j \in S\right\}\right)\right)=\mathbf{P}(A>\log (T)+f(K))=\mathbf{P}\left(T<e^{-f(K)} \cdot e^{A}\right)
$$

where we defined $A=\sum_{j \in S} D_{\mathrm{KL}}\left(\widehat{p}_{j, a^{*}}, 1 / 2\right) \cdot n_{j}$. By Markov's inequality, we have

$$
\begin{equation*}
\mathbf{P}\left(e^{-f(K)} \cdot e^{A}>T\right) \leq \frac{\mathbb{E}\left[e^{-f(K)} \cdot e^{A}\right]}{T}=\frac{e^{-f(K)}}{T} \cdot \mathbb{E}\left[e^{A}\right] \tag{12}
\end{equation*}
$$

where the last equality follows since $f(K)$ is constant (with respect to $\left\{n_{j}\right\}$ values). So, it suffices to bound $\mathbb{E}\left[e^{A}\right]$. Towards this end, we define the following term:

$$
P_{j}\left(x_{j}\right)=\mathbf{P}\left(\widehat{p}_{j, a^{*}} \geq \frac{1}{2} \text { and } D_{\mathrm{KL}}\left(\widehat{p}_{j, a^{*}}, \frac{1}{2}\right) \geq x_{j}\right)
$$

Then, we have

$$
\begin{align*}
\mathbb{E}\left[e^{A}\right] & =\int_{\left\{x_{j}\right\} \in[0, \log (2)]^{|S|}} \exp \left(\sum_{j \in S} n_{j} x_{j}\right) \prod_{j \in S} d\left(-P_{j}\left(x_{j}\right)\right) \\
& =\prod_{j \in S} \int_{x_{j} \in[0, \log 2]} e^{n_{j} x_{j}} d\left(-P_{j}\left(x_{j}\right)\right) \tag{13}\\
& =\prod_{j \in S}\left(\left[-e^{n_{j} x_{j}} P_{j}\left(x_{j}\right)\right]_{0}^{\log (2)}+\int_{x_{j} \in[0, \log (2)]} n_{j} e^{n_{j} x_{j}} P_{j}\left(x_{j}\right) d x_{j}\right) \tag{14}\\
& =\prod_{j \in S}\left(P_{j}(0)+\int_{x_{j} \in[0, \log (2)]} n_{j} e^{n_{j} x_{j}} P_{j}\left(x_{j}\right) d x_{j}\right) \\
& \left.\leq \prod_{j \in S}\left(e^{-n_{j} D_{\mathrm{KL}}\left(p_{j, a^{*}}, 1 / 2\right)}+\int_{x_{j} \in[0, \log (2)]} n_{j} e^{n_{j} x_{j}} e^{-n_{j}\left(x_{j}+C_{1}\left(p_{j, a^{*}, 1 / 2}\right)\right.}\right) d x_{j}\right) \tag{15}\\
& =\prod_{j \in S}\left(e^{-n_{j} D_{\mathrm{KL}}\left(p_{j, a^{*}}, 1 / 2\right)}+\int_{x_{j} \in[0, \log (2)]} n_{j} e^{C_{1}\left(p_{j, a^{*}, 1 / 2}\right)} d x_{j}\right) \\
& \leq \prod_{j \in S}\left(e^{-n_{j} D_{\mathrm{KL}}\left(p_{j, a^{*}, 1 / 2}\right)}+n_{j} e^{C_{1}\left(p_{j, a^{*}, 1 / 2}\right)}\right)
\end{align*}
$$

where (13) follows from the independence of the comparisons. We obtain (14) by applying integration by parts, (15) follows from the Chernoff bound and Fact E. 1 . here $C_{1}\left(\mu_{1}, \mu_{2}\right)=\left(\mu_{1}-\mu_{2}\right)^{2} /\left(2 \mu_{1}(1-\right.$ $\left.\mu_{2}\right)$), and the final inequality follows by observing that $\int_{x_{j} \in[0, \log (2)]} n_{j} e^{C_{1}\left(p_{j, a^{*}, 1 / 2}\right)} d x_{j}=$ $n_{j} e^{C_{1}\left(p_{j, a^{*}}, 1 / 2\right)} \cdot \int_{x_{j} \in[0, \log (2)]} d x_{j}=n_{j} e^{C_{1}\left(p_{j, a^{*}}, 1 / 2\right)} \log (2)$. Note that \log refers to the natural \log arithm, so we have $\log (2) \leq 1$. Combined with (12), this completes the proof of (8).

E.1.1 High-probability Regret Bound

We now prove Theorem E. 1 . Fix any $\delta>0$. We first define event $E(\delta)$ as before.
Definition E. 1 (Event $E(\delta)$). An estimate $\widehat{p}_{i, j}(r)$ in batch r is weakly-correct if $\left|\widehat{p}_{i, j}(r)-p_{i, j}\right| \leq$ $c_{i, j}(r)$. Let $C(\delta):=\left\lceil\frac{1}{2} \log _{q}(1 / \delta)\right\rceil$. We say that event $E(\delta)$ occurs iffor each batch $r \geq C(\delta)$, every estimate is weakly-correct.

The next lemma shows that $E(\delta)$ occurs with probability at least $1-\delta$. Since $E(\delta)$ does not depend on the elimination criterion, its proof follows from the analysis of C2B.
Lemma E.3. For all $\delta>0$, we have

$$
\mathbf{P}(\neg E(\delta))=\mathbf{P}\left(\exists r \geq C(\delta), i, j:\left|\widehat{p}_{i, j}(r)-p_{i, j}\right|>c_{i, j}(r)\right) \leq \delta
$$

As before, we analyze our algorithm under both events G and $E(\delta)$. Recall that, under event G, the best arm a^{*} is not eliminated. Conditioned on these, we next show:

- The best arm, a^{*}, is not defeated by any arm i in any round $r>C(\delta)$ (Lemma E.4).
- Furthermore, there exists a round $r(\delta) \geq C(\delta)$ such that arm a^{*} defeats every other arm, in every round after $r(\delta)$ (Lemma E.6).

We re-state the formal lemmas next.
Lemma E.4. Conditioned on G and $E(\delta)$, for any round $r>C(\delta)$, arm a^{*} is not defeated by any other arm, i.e., $a^{*} \notin \cup_{i \neq a^{*}} D_{r}(i)$.

To proceed, we need the following definitions.
Definition E.2. The candidate i_{r} of round r is called the champion if $\left|D_{r}\left(i_{r}\right)\right|=|\mathcal{A}|-1$; that is, if i_{r} defeats every other active arm.

Definition E.3. Let $r(\delta) \geq C(\delta)+1$ be the smallest integer such that

$$
q^{r(\delta)} \geq 2 A \log A, \quad \text { where } A:=\frac{32}{\Delta_{\min }^{2}} \cdot \log \left(2 K^{2}\right)
$$

We use the following inequality based on this choice of $r(\delta)$.
Lemma E.5. The above choice of $r(\delta)$ satisfies

$$
q^{r}>\frac{8}{\Delta_{\min }^{2}} \cdot \log \left(2 K^{2} q_{r}\right), \quad \forall r \geq r(\delta)
$$

Then, we have the following.
Lemma E.6. Conditioned on G and $E(\delta)$, the best arm a^{*} is the champion in every round $r>r(\delta)$.
We are now ready to prove Theorem E. 1 .
Proof of Theorem E.1. First, recall that in round r of C2B, any pair is compared $q_{r}=\left\lfloor q^{r}\right\rfloor$ times where $q=T^{1 / B}$. Since $q^{B}=T$, C2B uses at most B rounds.

For the rest of proof, we fix $\delta>0$. We now analyze the regret incurred by C 2 B , conditioned on events G and $E(\delta)$. Recall that $\mathbf{P}(G) \geq 1-\frac{1}{T} \cdot e^{K \log (C)-f(K)}$ (LemmaE.2), and $\mathbf{P}(E(\delta)) \geq 1-\delta$ (Lemma E.3). Thus, $\mathbf{P}(G \cap E(\delta)) \geq 1-\delta-\frac{1}{T} \cdot e^{K \log (C)-f(K)}$. Let R_{1} and R_{2} denote the regret incurred before and after round $r(\delta)$ (see Definition E.3) respectively.

Bounding R_{1}. We can bound R_{1} as in the proof of Theorem 1.1; so, we get

$$
\begin{equation*}
R_{1} \leq O\left(K^{2}\right) \cdot \max \left\{q \cdot \frac{\log K}{\Delta_{\min }^{2}} \cdot \log \left(\frac{\log K}{\Delta_{\min }}\right), q^{2} \sqrt{\frac{1}{\delta}}\right\} \tag{16}
\end{equation*}
$$

Bounding R_{2}. This is the regret in rounds $r \geq r(\delta)+1$. By Lemma E.6. arm a^{*} is the champion in all these rounds. So, the only comparisons in these rounds are of the form $\left(a^{*}, j\right)$ for $j \in \mathcal{A}$.

Consider any arm $j \neq a^{*}$. Let T_{j} be the total number of comparisons that j participates in after round $r(\delta)$. Let r be the penultimate round that j is played in. We can assume that $r \geq r(\delta)$ (otherwise arm j will never participate in rounds after $r(\delta)$, i.e., $T_{j}=0$). As arm j is not eliminated after round r,

$$
I_{j}(r)-I^{*}(r) \leq \log (T)+f(K)
$$

By Lemma E.6, $I^{*}(r)=0$ (since a^{*} is the champion, the summation is empty). So, we have $I_{j}(r) \leq \log (T)+f(K)$. Observe that

$$
\begin{equation*}
I_{j}(r) \geq D_{\mathrm{KL}}\left(\widehat{p}_{a^{*}, j}(r), \frac{1}{2}\right) N_{a^{*}, j}(r) \tag{17}
\end{equation*}
$$

We can lower bound $D_{\mathrm{KL}}\left(\widehat{p}_{a^{*}, j}(r), \frac{1}{2}\right)$ as follows.

$$
D_{\mathrm{KL}}\left(\widehat{p}_{a^{*}, j}(r), \frac{1}{2}\right) \geq\left(\widehat{p}_{a^{*}, j}(r)-\frac{1}{2}\right)^{2} \geq\left(p_{a^{*}, j}-c_{a^{*}, j}(r)-\frac{1}{2}\right)^{2} \geq\left(\frac{\Delta_{j}}{2}\right)^{2}
$$

where the first inequality follows from Pinsker's inequality, the second inequality uses LemmaE. 3 and the final inequality uses the fact that $c_{a^{*}, j}(r) \leq \frac{\Delta_{\min }}{2}$, which follows by the choice of $r(\delta)$. Plugging this into (17), we get

$$
\frac{\Delta_{j}^{2}}{4} \cdot N_{a^{*}, j}(r) \leq \log (T)+f(K)
$$

which on re-arranging gives

$$
N_{a^{*}, j}(r) \leq \frac{4(\log (T)+f(K))}{\Delta_{j}^{2}}
$$

As $r+1$ is the last round that j is played in, and j is only compared to a^{*} in each round after $r(\delta)$,

$$
T_{j} \leq N_{a^{*}, j}(r+1) \leq N_{a^{*}, j}(r)+2 q \cdot N_{a^{*}, j}(r) \leq \frac{12 q \cdot(\log (T)+f(K))}{\Delta_{j}^{2}}
$$

The second inequality follows since j is compared to a^{*} in rounds r and $r+1$, and the number of comparisons in round $r+1$ is $\left\lfloor q^{r+1}\right\rfloor \leq q \cdot\left(2 q_{r}\right) \leq 2 q \cdot N_{a^{*}, j}(r)$. Adding over all arms j, the total regret accumulated beyond round $r(\delta)$ is

$$
\begin{equation*}
R_{2}=\sum_{j \neq a^{*}} T_{j} \Delta_{j} \leq \sum_{j \neq a^{*}} O\left(\frac{q \cdot(\log (T)+f(K))}{\Delta_{j}}\right) \tag{18}
\end{equation*}
$$

Combining (16) and (18), and using $q=T^{1 / B}$, we obtain

$$
\begin{aligned}
R(T) \leq O\left(T^{1 / B} \cdot \frac{K^{2} \log (K)}{\Delta_{\min }^{2}} \cdot \log \left(\frac{\log K}{\Delta_{\min }}\right)\right)+O\left(T^{2 / B} \cdot K^{2} \cdot \sqrt{\frac{1}{\delta}}\right) & +\sum_{j \neq a^{*}} O\left(\frac{T^{1 / B} \cdot \log (T)}{\Delta_{j}}\right) \\
& +\sum_{j \neq a^{*}} O\left(\frac{T^{1 / B} \cdot f(K)}{\Delta_{j}}\right)
\end{aligned}
$$

This completes the proof TheoremE. 1

F Hardware Specification for Computational Experiments

We conducted our computations using C++ and Python 2.7 with a 2.3 Ghz Intel Core $i 5$ processor and 16 GB 2133 MHz LPDDR3 memory.

