
A Further Related Work

Batched algorithms for multi-armed bandits. Batched processing for the stochastic multi-armed
bandit problem has been investigated in the past few years. A special case when there are two bandits

was studied by [39]. They obtain a worst-case regret bound of O
✓⇣

T

log(T )

⌘1/B
log(T )
�min

◆
. [25] studied

the general problem and obtained a worst-case regret bound of O
⇣

K log(K)T 1/B log(T )
�min

⌘
, which was

later improved by [23] to O

⇣
KT

1/B log(T )
�min

⌘
. Furthermore, [23] obtained an instance-dependent

regret bound of
P

j:�j>0 T
1/B

O

⇣
log(T )
�j

⌘
. Our results for batched dueling bandits are of a similar

flavor; that is, we get a similar dependence on T and B. [23] also give batched algorithms for
stochastic linear bandits and adversarial multi-armed bandits.

Adaptivity in combinatorial optimization. Adaptivity and batch processing has been recently
studied for stochastic submodular cover [27, 1, 24, 26], and for various stochastic “maximization”
problems such as knapsack [20, 13], matching [10, 12], probing [30] and orienteering [28, 29, 11].
Recently, there have also been several results examining the role of adaptivity in (deterministic)
submodular optimization; e.g. [8, 6, 9, 7, 17].

B Missing Proofs from §3.1

Proof of Lemma 3.1. Note that E[bpi,j(r)] = pi,j , and applying Hoeffding’s inequality gives

P
�
|bp r+1

i,j
� pi,j |> �i,j(r)

�
 2 exp

�
�2Ni,j(r) · �i,j(r)2

�
 2⌘.

Proof of Lemma 3.2. Applying Lemma 3.1 and taking a union bound over all pairs and batches,
we get that the probability that some estimate is incorrect is at most

�
K

2

�
⇥ B ⇥ 2⌘  1

T
where

⌘ = 1/K2
BT . Thus, P(G)  1

T
.

Proof of Lemma 3.3. In C2B, an arm j is deleted in batch r iff there is an arm i 2 A with bpi,j(r) >
1
2 + 2�i,j(r). If a⇤ is eliminated due to some arm j, then by definition of event G, we get pj,a⇤ >

1
2 + �i,j(r) >

1
2 , a contradiction.

C Missing Proofs from §3.1.1

Proof of Lemma 3.4. For any pair i, j of arms and round r, let Bi,j(r) denote the event that |bpi,j(r)�
pi,j |> ci,j(r). Note that Nij(r) 

P
r

s=1 qs  2qr. For any integer n, let sij(n) denote the sample
average of n independent Bernoulli r.v.s with probability pij . By Hoeffding’s bound,

P[|sij(n)� pij |> c]  2e�2nc2
, for any c 2 [0, 1].

We now bound

P[Bij(r)] 
2qrX

n=0

P[Bij(r) ^ Nij(r) = n]


2qrX

n=0

P

"
|sij(n)� pij |>

r
2 log(2K2qr)

n

#


2qrX

n=0

2 exp

✓
�2n · 2 log(2K

2
qr)

n

◆

 4qr ·
1

(2K2qr)4
 1

4K2 · q2
r

15



The second inequality uses the definition of cij(r) when Nij(r) = n. The last inequality uses K � 2.
Next, by a union bound over arms and rounds, we can write the desired probability as

P(9r � C(�), i, j : Bi,j(r)) 
X

r�C(�)

X

i<j

P(Bi,j(r))


X

r�C(�)

✓
K

2

◆
· 1

4K2 · q2
r


X

r�C(�)

1

8q2
r


X

r�C(�)

1

2q2r
=

1

2q2C(�)
·
✓
1 +

1

q2
+

1

q4
+ · · ·

◆
 1

q2C(�)
 �

(4)

The second inequality above uses the bound on P[Bij(r)]. The first inequality in (4) uses qr =

bqrc � q
r � 1 � q

r

2 as q � 2. The last inequality in (4) uses the definition of C(�).

The lemma now follows by the definition of event ¬E(�) as 9r � C(�), i, j : Bi,j(r).

Proof of Lemma 3.5. Fix any round r � C(�) + 1. Suppose that a⇤ 2 Dr(i) for some other arm i.
This implies that bpi,a⇤(r � 1) > 1

2 + ci,a⇤(r � 1). But under event E(�), we have |bpi,a⇤(r � 1)�
pi,a⇤ | ci,a⇤(r � 1) because r � 1 � C(�). Combined, these two observations imply pi,a⇤ >

1
2 , a

contradiction.

Proof of Lemma 3.7. We first argue that a⇤ is compared to all active arms in each round r � r(�).
By Lemma 3.3, we know a

⇤ 2 A. By Lemma 3.5, we have a
⇤
/2 Dr(j) for all j 6= a

⇤ because
r � r(�) � 1 + C(�). If candidate ir 6= a

⇤, then a
⇤ will be compared to all j 2 A (since

a
⇤
/2 Dr(ir)). On the other hand, if ir = a

⇤, then (1) for any j 2 Dr(a⇤), arm j is only compared to
a
⇤, and (2) for any j 2 A \Dr(a⇤), arm j is compared to all active arms including a

⇤.

Next, we show that for any round r � r(�)+1, arm a
⇤ defeats all other arms, i.e., |Dr(a⇤)|= |A|�1.

This would imply that ir = a
⇤ and a

⇤ is the champion. Consider any arm j 2 A \ a⇤. Since a
⇤ is

compared to all active arms in round r � 1 � r(�), we have

Na⇤,j(r � 1) � q
r�1

>
8

�2
min

· log
�
2K2

qr�1

�
,

where the second inequality is by Lemma 3.6 with r � 1 � r(�). Now, by definition, we have

ca⇤,j(r � 1) =

s
2 log (2K2qr�1)

Na⇤,j(r � 1)
<

s
2 log (2K2qr�1)
8

�2
min

log (2K2qr�1)
=

�min

2
.

Given this, it is easy to show that a⇤ defeats arm j in round r. Conditioned on E(�), we know that
|bpa⇤,j(r � 1)� pa⇤,j | ca⇤,j(r � 1)  �min

2 . Then, we have

bpa⇤,j(r � 1) � pa⇤,j �
�min

2
=

1

2
+�j �

�min

2
� 1

2
+

�min

2
>

1

2
+ ca⇤,j(r � 1).

Therefore, j 2 Dr(a⇤). It now follows that for any round r � r(�) + 1, arm a
⇤ is the champion.

Proof of Theorem 1.1. First, recall that in round r of C2B, any pair is compared qr = bqrc times
where q = T

1/B . Since q
B = T , C2B uses at most B rounds.

For the rest of proof, we fix � > 0. We now analyze the regret incurred by C2B, conditioned on events
G and E(�). Recall that P(G) � 1� 1/T (Lemma 3.2), and P(E(�)) � 1� � (Lemma 3.4). Thus,
P(G \ E(�)) � 1� � � 1/T . Let R1 and R2 denote the regret incurred before and after round r(�)
(see Definition 3.4) respectively.
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Bounding R1. This is the regret incurred up to (and including) round r(�). We upper bound the
regret by considering all pairwise comparisons every round r  r(�).

R1  K
2 ·

X

rr(�)

qr  K
2 ·

X

rr(�)

q
r  2K2 · qr(�)

 2K2 ·max
n
q · 2A logA , q

C(�)+1
o
,

where the last inequality uses Definition 3.4; recall A = 16
�2

min
· log(2K2). Plugging in the value of

C(�)  1 + 1
2 logq(1/�), we obtain

R1  O(K2) ·max

(
q · logK

�2
min

· log
✓
logK

�min

◆
, q

2

r
1

�

)
. (5)

Bounding R2. This is the regret in rounds r � r(�) + 1. By Lemma 3.7, arm a
⇤ is the champion

in all these rounds. So, the only comparisons in these rounds are of the form (a⇤, j) for j 2 A.

Consider any arm j 6= a
⇤. Let Tj be the total number of comparisons that j participates in after round

r(�). Let r be the penultimate round that j is played in. We can assume that r � r(�) (otherwise arm
j will never participate in rounds after r(�), i.e., Tj = 0). As arm j is not eliminated after round r,

bpa⇤,j(r) 
1

2
+ �a⇤,j(r).

Moreover, by E(�), we have bpa⇤,j(r) � pa⇤,j � ca⇤,j(r) because r � r(�) � C(�). So,

1

2
+�j = pa⇤,j  bpa⇤,j(r) + ca⇤,j(r) 

1

2
+ �a⇤,j(r) + ca⇤,j(r).

It follows that

�j  �a⇤,j(r) + ca⇤,j(r) 
3p
2

s
log(2K2BT )

Na⇤,j(r)

where the final inequality follows by definition of c and �. On re-arranging, we get Na⇤,j(r) 
9 log(2K2

BT )
2�2

j
. As r + 1 is the last round that j is played in, and j is only compared to a

⇤ in each
round after r(�),

Tj  Na⇤,j(r + 1)  Na⇤,j(r) + 2q ·Na⇤,j(r) 
15q · log(2K2

BT )

�2
j

.

The second inequality follows since j is compared to a
⇤ in rounds r and r + 1, and the number of

comparisons in round r + 1 is bqr+1c  q · (2qr)  2q ·Na⇤,j(r). Adding over all arms j, the total
regret accumulated beyond round r(�) is

R2 =
X

j 6=a⇤

Tj�j 
X

j 6=a⇤

O

✓
q · log(KT )

�j

◆
. (6)

Combining (5) and (6), and using q = T
1/B , we obtain

R(T )  O

✓
T

1/B · K
2 log(K)

�2
min

· log
✓
logK

�min

◆◆
+ O

 
T

2/B ·K2 ·
r

1

�

!

+
X

j 6=a⇤

O

✓
T

1/B · log(KT )

�j

◆
.

This completes the proof Theorem 1.1.
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D Expected Regret Bound

In this section, we present the proof of Theorem 1.2. We first state the definitions needed in the proof.
Let FX(·) denote the cumulative density function (CDF) of a random variable X; that is, FX(x) =
P(X  x). The inverse CDF of X , denoted F

�1
X

, is defined as F�1
X

(z) = inf{x : P(X  x) � z}
where z 2 [0, 1]. We will use the identity E[X] =

R 1
0 F

�1
X

(z)dz.

Proof of Theorem 1.2. First, note that in round r of C2B, any pair is compared qr = bqrc times where
q = T

1/B . Since q
B = T , C2B uses at most B rounds.

Let R(T ) be the random variable denoting the regret incurred by C2B. By Theorem 1.1, we know
that with probability at least 1� � � 1/T ,

R(T )  O

✓
T

1/B · K
2 log(K)

�2
min

· log
✓
logK

�min

◆◆
+ O

 
T

2/B ·K2 ·
r

1

�

!

+
X

j 6=a⇤

O

✓
T

1/B · log(KT )

�j

◆
.

Thus, F�1
R(T )(1� � � 1/T )  G(�) where

G(�) := A+O

 
T

2/B ·K2 ·
r

1

�

!
+B

where to simplify notation we set A = O

⇣
T

1/B · K
2 log(K)
�2

min
· log

⇣
logK

�min

⌘⌘
and B =

P
j 6=a⇤ O

⇣
T

1/B ·log(KT )
�j

⌘
. Using the identity for expectation of a random variable, we get

E[R(T )] =

Z 1

0
F

�1
R(T )(z)dz

=

Z 1� 1
T

0
F

�1
R(T )(z)dz +

Z
T

1� 1
T

F
�1
R(T )(z)dz

| {z }
T · 1

T =1


Z 1� 1

T

0
F

�1
R(T )(z)dz + 1

=

Z 0

1� 1
T

F
�1
R(T )

✓
1� � � 1

T

◆
(�d�) + 1


Z 1� 1

T

0
G(�)d� + 1

 A+O

⇣
T

2/B ·K2
⌘
+B + 1

where the fourth equality follows by setting 1� q � 1/T = � and the final inequality follows sinceR 1
0

�
1
�

�1/2  2. Thus,

E[R(T )]  O

✓
T

1/B · K
2 log(K)

�2
min

· log
✓
logK

�min

◆◆
+ O

⇣
T

2/B ·K2
⌘

+
X

j 6=a⇤

O

✓
T

1/B · log(KT )

�j

◆
.

This completes the proof of Theorem 1.2.
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E The Batched Algorithm with KL-based Elimination Criterion

In this section, we modify C2B to use a Kullback-Leibler divergence based elimination criterion. We
provide a complete description of the algorithm, denoted C2B-KL, in Algorithm 2. In what follows,
we highlight the main differences of C2B-KL from C2B. Recall the following notation. We use A to
denote the current set of active arms; i.e., the arms that have not been eliminated. We use index r

for rounds or batches. If pair (i, j) is compared in round r, it is compared qr = bqrc times where
q = T

1/B . We define the following quantities at the end of each round r:

• Ni,j(r) is the total number of times the pair (i, j) has been compared.
• bpi,j(r) is the frequentist estimate of pi,j , i.e.,

bpi,j(r) =
# i wins against j until end of round r

Ni,j(r)
. (7)

• A confidence-interval radius for each (i, j) pair:

ci,j(r) =

s
2 log(2K2qr)

Ni,j(r)

• We define a term Ij(r) which, at a high-level, measures how unlikely it is for j to be the
Condorcet winner at the end of batch r:

Ij(r) =
X

i:bpi,j(r)� 1
2

DKL

✓
bpi,j(r),

1

2

◆
·Ni,j(r),

where DKL(p, q) denotes the Kullback–Leibler divergence between two Bernoulli distribu-
tions: B(p) and B(q). We define I

⇤(r) = minj2A Ij(r).

The B-round algorithm, C2B-KL, proceeds exactly as C2B. The only change is in the elimination

criterion, which we describe next.

Elimination Criterion. In round r, if, for any arm j, we have Ij(r) � I
⇤(r) > log(T ) + f(K),

then j is eliminated from A. Here f(K) is a non-negative function of K, independent of r.

The main result of this section is to show that C2B-KL achieves the following guarantee.
Theorem E.1. For any integer B � 1, there is an algorithm for the K-armed dueling bandit problem

that uses at most B rounds. Furthermore, for any � > 0, with probability at least 1 � � � 1
T
·

e
K log(C)�f(K)

, where C is some constant (see Lemma E.2), its regret under the Condorcet condition

is at most

R(T )  O

✓
T

1/B · K
2 log(K)

�2
min

· log
✓
logK

�min

◆◆
+O

 
T

2/B ·K2 ·
r

1

�

!
+
X

j 6=a⇤

O

✓
T

1/B · log(T )
�j

◆

+
X

j 6=a⇤

O

✓
T

1/B · f(K)

�j

◆

Remark. Setting f(K) > K log(C), we get the same asymptotic expected regret bound as in
Theorem 1.2. Following [35], we set f(K) = 0.3K1.01 in our experiments.

We require the following result in the proof of Theorem E.1.
Fact E.1. For any µ and µ2 satisfying 0 < µ2 < µ < 1. Let C1(µ, µ2) = (µ� µ2)2/(2µ(1� µ2)).
Then, for any µ3  µ2,

DKL(µ3, µ)�DKL(µ3, µ2) � C1(µ, µ2) > 0.

The high-level outline of the analysis is exactly the same as that of C2B. For completeness, we provide
the analysis in the following section; however, we skip the proofs of lemmas that follow from the
analysis of C2B.
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Algorithm 2 C2B-KL
1: Input: Arms B, time-horizon T , integer B � 1
2: active arms A B, r  1, emprical probabilities bpi,j(0) = 1

2 for all i, j 2 B2

3: while number of comparisons  T do
4: if A = {i} for some i then play (i, i) for remaining trials
5: Dr(i) {j 2 A : bpi,j(r � 1) > 1

2 + ci,j(r � 1)}
6: ir  argmaxi2A|Dr(i)|
7: for i 2 A \ {ir} do
8: if i 2 Dr(ir) then
9: compare (ir, i) for qr times

10: else
11: for each j 2 A, compare (i, j) for qr times
12: compute bpi,j(r) values
13: if 9j : Ij(r)� I

⇤(r) > log(T ) + f(K) then
14: A A \ {j}
15: r  r + 1

E.1 The Analysis

In this section, we prove the high-probability regret bound for C2B-KL. Recall that q = T
1/B , and

that q � 2. We first show that, with high probability, a⇤ is not eliminated during the execution of the
algorithm. The following lemma formalizes this.

Lemma E.2. Let G denote the event that the best arm a
⇤

is not eliminated during the execution of

C2B-KL. We can bound the probability of G as follows.

P(G)  1

T
· eK log(C)�f(K)

,

where C = maxj C(j)+ 1, is a constant, with C(j) =

0

@ 1

e
DKL(pj,a⇤ ,1/2)�1

+ e
C1(pa⇤,j ,1/2)

✓
e
C1(pa⇤,j ,1/2)�1

◆2

1

A.

Proof. Let nj denote the number of times a⇤ and j are compared. Let bpa⇤,j(nj) denote the frequentist
estimate of pa⇤,j when a

⇤ and j are compared nj times (we will abuse notation and use bpa⇤,j when
nj is clear from context). Let S 2 2[K]\{a⇤} \ ;, and consider vector {nj 2 N : j 2 S}. We
define A =

P
j2S

DKL (bpj,a⇤ , 1/2) · nj . Let D(S; {nj : j 2 S}) denote the event that a⇤ and j are
compared nj times and bpa⇤,j  1/2 for all j 2 S, and that A > log(T ) + f(K). The probability of
this event upper bounds the probability that a⇤ is eliminated (as per our elimination criterion) when
a
⇤ and j are compared nj times, and bpa⇤,j  1/2 for all j 2 S. We will show that

P(D(S; {nj : j 2 S}))  e
�f(K)

T

Y

j2S

⇣
e
�njDKL(pj,a⇤ ,1/2) + nje

C1(pj,a⇤ ,1/2)
⌘

(8)
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where C1(µ1, µ2) = (µ1 � µ2)2/(2µ1(1 � µ2)). Using the above, we first show that by taking a
union bound over all S 2 2[K]\{a⇤} \ ; and {nj : j 2 S}, we obtain the final result. We have

P(G) 
X

S22[K]\{a⇤}\;

X

nj2N|S|

P(D(S; {nj : j 2 S}))


X

S22[K]\{a⇤}\;

X

nj2N|S|

e
�f(K)

T

Y

j2S

⇣
e
�njDKL(pj,a⇤ ,1/2) + nje

C1(pj,a⇤ ,1/2)
⌘

=
e
�f(K)

T

X

S22[K]\{a⇤}\;

Y

j2S

X

nj2N

⇣
e
�njDKL(pj,a⇤ ,1/2) + nje

C1(pj,a⇤ ,1/2)
⌘

(9)

=
e
�f(K)

T

X

S22[K]\{a⇤}\;

Y

j2S

0

B@
1

e
DKL(pj,a⇤ ,1/2) � 1

+
e
C1(pj,a⇤ ,1/2)

⇣
e
C1(pj,a⇤ ,1/2) � 1

⌘2

1

CA (10)

 e
�f(K)

T

X

S22[K]\{a⇤}\;

(C � 1)|S|  e
�f(K)

T
· CK (11)

=
1

T
· eK log(C)�f(K)

where (9) follows by swapping the order of summation and multiplication, (10) uses
P1

n=1 e
�nx =

1/(ex � 1) and
P1

n=1 ne
�nx = e

x
/(ex � 1)2, and (11) follows by letting

C(j) =

0

@ 1

e
DKL(pj,a⇤ ,1/2)�1

+ e
C1(pj,a⇤ ,1/2)

✓
e
C1(pj,a⇤ ,1/2)�1

◆2

1

A, C = maxj C(j)+1 and the binomial theorem.

To complete the proof, we need to prove (8).

For the remainder of this proof, we fix S 2 2[K]\{a⇤} \ ;, and vector {nj 2 N : j 2 S}. Observe that

P(D(S; {nj : j 2 S})) = P (A > log(T ) + f(K)) = P
⇣
T < e

�f(K) · eA
⌘

where we defined A =
P

j2S
DKL (bpj,a⇤ , 1/2) · nj . By Markov’s inequality, we have

P
⇣
e
�f(K) · eA > T

⌘
 E[e�f(K) · eA]

T
=

e
�f(K)

T
· E[eA] (12)

where the last equality follows since f(K) is constant (with respect to {nj} values). So, it suffices to
bound E[eA]. Towards this end, we define the following term:

Pj(xj) = P

✓
bpj,a⇤ � 1

2
and DKL

✓
bpj,a⇤ ,

1

2

◆
� xj

◆
.
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Then, we have

E[eA] =
Z

{xj}2[0,log(2)]|S|
exp

0

@
X

j2S

njxj

1

A
Y

j2S

d(�Pj(xj))

=
Y

j2S

Z

xj2[0,log 2]
e
njxjd(�Pj(xj)) (13)

=
Y

j2S

 
[�enjxjPj(xj)]

log(2)
0 +

Z

xj2[0,log(2)]
nje

njxjPj(xj)dxj

!
(14)

=
Y

j2S

 
Pj(0) +

Z

xj2[0,log(2)]
nje

njxjPj(xj)dxj

!


Y

j2S

 
e
�njDKL(pj,a⇤ ,1/2) +

Z

xj2[0,log(2)]
nje

njxje
�nj(xj+C1(pj,a⇤ ,1/2))

dxj

!
(15)

=
Y

j2S

 
e
�njDKL(pj,a⇤ ,1/2) +

Z

xj2[0,log(2)]
nje

C1(pj,a⇤ ,1/2)
dxj

!


Y

j2S

⇣
e
�njDKL(pj,a⇤ ,1/2) + nje

C1(pj,a⇤ ,1/2)
⌘

where (13) follows from the independence of the comparisons. We obtain (14) by applying integration
by parts, (15) follows from the Chernoff bound and Fact E.1; here C1(µ1, µ2) = (µ1�µ2)2/(2µ1(1�
µ2)), and the final inequality follows by observing that

R
xj2[0,log(2)] nje

C1(pj,a⇤ ,1/2)
dxj =

nje
C1(pj,a⇤ ,1/2) ·

R
xj2[0,log(2)] dxj = nje

C1(pj,a⇤ ,1/2) log(2). Note that log refers to the natural
logarithm, so we have log(2)  1. Combined with (12), this completes the proof of (8).

E.1.1 High-probability Regret Bound

We now prove Theorem E.1. Fix any � > 0. We first define event E(�) as before.
Definition E.1 (Event E(�)). An estimate bpi,j(r) in batch r is weakly-correct if |bpi,j(r) � pi,j |
ci,j(r). Let C(�) := d 12 logq(1/�)e. We say that event E(�) occurs if for each batch r � C(�), every

estimate is weakly-correct.

The next lemma shows that E(�) occurs with probability at least 1� �. Since E(�) does not depend
on the elimination criterion, its proof follows from the analysis of C2B.
Lemma E.3. For all � > 0, we have

P(¬E(�)) = P (9r � C(�), i, j : |bpi,j(r)� pi,j |> ci,j(r))  �.

As before, we analyze our algorithm under both events G and E(�). Recall that, under event G, the
best arm a

⇤ is not eliminated. Conditioned on these, we next show:

• The best arm, a⇤, is not defeated by any arm i in any round r > C(�) (Lemma E.4).
• Furthermore, there exists a round r(�) � C(�) such that arm a

⇤ defeats every other arm, in
every round after r(�) (Lemma E.6).

We re-state the formal lemmas next.
Lemma E.4. Conditioned on G and E(�), for any round r > C(�), arm a

⇤
is not defeated by any

other arm, i.e., a
⇤
/2 [i 6=a⇤Dr(i).

To proceed, we need the following definitions.
Definition E.2. The candidate ir of round r is called the champion if |Dr(ir)|= |A|�1; that is, if ir

defeats every other active arm.
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Definition E.3. Let r(�) � C(�) + 1 be the smallest integer such that

q
r(�) � 2A logA, where A :=

32

�2
min

· log(2K2).

We use the following inequality based on this choice of r(�).
Lemma E.5. The above choice of r(�) satisfies

q
r
>

8

�2
min

· log
�
2K2

qr

�
, 8r � r(�).

Then, we have the following.
Lemma E.6. Conditioned on G and E(�), the best arm a

⇤
is the champion in every round r > r(�).

We are now ready to prove Theorem E.1.

Proof of Theorem E.1. First, recall that in round r of C2B, any pair is compared qr = bqrc times
where q = T

1/B . Since q
B = T , C2B uses at most B rounds.

For the rest of proof, we fix � > 0. We now analyze the regret incurred by C2B, conditioned on
events G and E(�). Recall that P(G) � 1� 1

T
· eK log(C)�f(K) (Lemma E.2), and P(E(�)) � 1� �

(Lemma E.3). Thus, P(G \ E(�)) � 1� � � 1
T
· eK log(C)�f(K). Let R1 and R2 denote the regret

incurred before and after round r(�) (see Definition E.3) respectively.

Bounding R1. We can bound R1 as in the proof of Theorem 1.1; so, we get

R1  O(K2) ·max

(
q · logK

�2
min

· log
✓
logK

�min

◆
, q

2

r
1

�

)
. (16)

Bounding R2. This is the regret in rounds r � r(�) + 1. By Lemma E.6, arm a
⇤ is the champion

in all these rounds. So, the only comparisons in these rounds are of the form (a⇤, j) for j 2 A.

Consider any arm j 6= a
⇤. Let Tj be the total number of comparisons that j participates in after round

r(�). Let r be the penultimate round that j is played in. We can assume that r � r(�) (otherwise arm
j will never participate in rounds after r(�), i.e., Tj = 0). As arm j is not eliminated after round r,

Ij(r)� I
⇤(r)  log(T ) + f(K).

By Lemma E.6, I⇤(r) = 0 (since a
⇤ is the champion, the summation is empty). So, we have

Ij(r)  log(T ) + f(K). Observe that

Ij(r) � DKL

✓
bpa⇤,j(r),

1

2

◆
Na⇤,j(r) (17)

We can lower bound DKL
�
bpa⇤,j(r),

1
2

�
as follows.

DKL

✓
bpa⇤,j(r),

1

2

◆
�
✓
bpa⇤,j(r)�

1

2

◆2

�
✓
pa⇤,j � ca⇤,j(r)�

1

2

◆2

�
✓
�j

2

◆2

where the first inequality follows from Pinsker’s inequality, the second inequality uses Lemma E.3
and the final inequality uses the fact that ca⇤,j(r)  �min

2 , which follows by the choice of r(�).
Plugging this into (17), we get

�2
j

4
·Na⇤,j(r)  log(T ) + f(K)

which on re-arranging gives

Na⇤,j(r) 
4(log(T ) + f(K))

�2
j

.
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As r + 1 is the last round that j is played in, and j is only compared to a
⇤ in each round after r(�),

Tj  Na⇤,j(r + 1)  Na⇤,j(r) + 2q ·Na⇤,j(r) 
12q · (log(T ) + f(K))

�2
j

.

The second inequality follows since j is compared to a
⇤ in rounds r and r + 1, and the number of

comparisons in round r + 1 is bqr+1c  q · (2qr)  2q ·Na⇤,j(r). Adding over all arms j, the total
regret accumulated beyond round r(�) is

R2 =
X

j 6=a⇤

Tj�j 
X

j 6=a⇤

O

✓
q · (log(T ) + f(K))

�j

◆
. (18)

Combining (16) and (18), and using q = T
1/B , we obtain

R(T )  O

✓
T

1/B · K
2 log(K)

�2
min

· log
✓
logK

�min

◆◆
+O

 
T

2/B ·K2 ·
r

1

�

!
+
X

j 6=a⇤

O

✓
T

1/B · log(T )
�j

◆

+
X

j 6=a⇤

O

✓
T

1/B · f(K)

�j

◆

This completes the proof Theorem E.1.

F Hardware Specification for Computational Experiments

We conducted our computations using C++ and Python 2.7 with a 2.3 Ghz Intel Core i5 processor
and 16 GB 2133 MHz LPDDR3 memory.
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