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A Proof of Theorems

A.1 Proof of Theorem 2.4

For the proof of this theorem, we need few auxiliary lemmas, which we state below:

Lemma A.1. Define the extrapolation map y∗t : Rns 7→ R
nt as:

y∗t (v) = argmint∈RntRn(v, t) .

Then under our assumptions on Rn:

• y∗t is Lipschitz with Lipschitz constant LR

µR
.

• For any vector (vs, vt) we have: ∥vt − y∗t (vs)∥
2
≤ 2n

µR
R(vs, vt) .

Lemma A.2. Under Assumption 2.3 we have:

∥f(Xs)− f0(Xs)∥
2
2 ≤

2

µL

L (f(Xs), f0(Xs))

for any function f . Furthermore, if ∂1L and ∂2L denotes the first and second partial derivative of L
respectively, then we have:

|∂1L(a, b)| ≤ LL|a− b| ,

|∂2L(a, b)| ≤ LL|a− b| .

The proof of Lemma A.1 can be found in Section B.1 and the proof of Lemma A.2 can be found in
Section B.2. For the rest of the proof, we introduce some notations for the ease of presentation: for
any two vector v1, v2 of the same dimension we use L(v1, v2) or its partial derivatives to denote the
coordinate wise sum, i.e.,

∑

j L(v1,j , v2,j). From the strong smoothness condition on L we have:

1

nt

L
(

f̂(Xt), f0(Xt)
)

≤
1

nt

L
(

y∗t (f̂(Xs)), f0(Xt)
)

+
1

nt

〈

f̂(Xt)− y∗t (f̂(Xs)), ∂1L
(

y∗t (f̂(Xs)), f0(Xt)
)〉

+
LL

2nt

∥
∥
∥f̂(Xt)− y∗t (f̂(Xs))

∥
∥
∥

2

2
(A.1)

We can further bound the first term on the RHS of the above equation as follows:

1

nt

L
(

y∗t (f̂(Xs)), f0(Xt)
)

≤
1

nt

L
(

y∗t (f̂(Xs)), y
∗
t (f0(Xs))

)

+
1

nt

〈

f0(Xt)− y∗t (f0(Xs)), ∂2L
(

y∗t (f̂(Xs)), y
∗
t (f0(Xs))

)〉

+
LL

2nt

∥f0(Xt)− y∗t (f0(Xs))∥
2

(A.2)
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Combining the bounds on Equations (A.1) and (A.2) we obtain:

1

nt

L
(

f̂(Xt), f0(Xt)
)

≤
1

nt

L
(

y∗t (f̂(Xs)), y
∗
t (f0(Xs))

)

︸ ︷︷ ︸

T1

+
1

nt

〈

f0(Xt)− y∗t (f0(Xs)), ∂2L
(

y∗t (f̂(Xs)), y
∗
t (f0(Xs))

)〉

︸ ︷︷ ︸

T2

+
1

nt

〈

f̂(Xt)− y∗t (f̂(Xs)), ∂1L
(

y∗t (f̂(Xs)), f0(Xt)
)〉

︸ ︷︷ ︸

T3

+
LL

2nt

∥f0(Xt)− y∗t (f0(Xs))∥
2

︸ ︷︷ ︸

T4

+
LL

2nt

∥
∥
∥f̂(Xt)− y∗t (f̂(Xs))

∥
∥
∥

2

︸ ︷︷ ︸

T5

(A.3)

The term T4, T5 can be bounded directly by Lemma A.1 as:

T4 ≤
LL n

µR nt

R (f0(Xs), f0(Xt)) (A.4)

T5 ≤
LL n

µR nt

R
(

f̂(Xs), f̂(Xt)
)

(A.5)

To bound T2, using ab ≤ (a2 + b2)/2 we have:

T2 =
1

nt

〈

f0(Xt)− y∗t (f0(Xs)), ∂2L
(

y∗t (f̂(Xs)), y
∗
t (f0(Xs))

)〉

≤
1

nt

∥f0(Xt)− y∗t (f0(Xs))∥
2
+

1

nt

∥
∥
∥∂2L

(

y∗t (f̂(Xs)), y
∗
t (f0(Xs))

)∥
∥
∥

2

≤
2n

µR nt

R (f0(Xs), f0(Xt)) +
L2
L

4nt

∥
∥
∥y∗t (f̂(Xs))− y∗t (f0(Xs))

∥
∥
∥

2

[Lemma A.2]

≤
2n

µR nt

R (f0(Xs), f0(Xt)) +
L2
LL

2
R

4µ2
R nt

∥
∥
∥f̂(Xs)− f0(Xs)

∥
∥
∥

2

[Lemma A.1]

≤
2n

µR nt

R (f0(Xs), f0(Xt)) +
L2
LL

2
R

2µ2
RµL

×
ns

nt

×
1

ns

L
(

f̂(Xs), f0(Xs)
)

[Lemma A.2]

The bound on T3 follows from a similar line of argument:

T3 =
1

nt

〈

f̂(Xt)− y∗t (f̂(Xs)), ∂1L
(

y∗t (f̂(Xs)), f0(Xt)
)〉

≤
1

nt

∥
∥
∥f̂(Xt)− y∗t (f̂(Xs))

∥
∥
∥

2

+
1

nt

∥
∥
∥∂1L

(

y∗t (f̂(Xs)), f0(Xt)
)∥
∥
∥

2

≤
2n

µR nt

R
(

f̂(Xs), f̂(Xt)
)

+
L2
L

4nt

∥
∥
∥y∗t (f̂(Xs))− f0(Xt)

∥
∥
∥

2

[Lemma A.2]

≤
2n

µR nt

R
(

f̂(Xs), f̂(Xt)
)

+
L2
L

2nt

∥
∥
∥y∗t (f̂(Xs))− y∗t (f0(Xs))

∥
∥
∥

2

+
L2
L

2nt

∥y∗t (f0(Xs))− f0(Xt)∥
2

≤
2n

µR nt

R
(

f̂(Xs), f̂(Xt)
)

+
L2
L n

µR nt

R (f0(Xs), f0(Xt))+

+
L2
LL

2
R

µ2
RµL

×
ns

nt

×
1

ns

L
(

f̂(Xs), f0(Xs)
)

[Lemma A.2]
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Finally to bound T1 we use again Assumption 2.3, i.e., strong convexity and strong smoothness of L
as follows:

T1 =
1

nt

L
(

y∗t (f̂(Xs)), y
∗
t (f0(Xs))

)

≤
LL

2nt

∥
∥
∥y∗t (f̂(Xs))− y∗t (f0(Xs))

∥
∥
∥

2

2

≤
LLL

2
R

2µ2
R nt

∥
∥
∥f̂(Xs)− f0(Xs)

∥
∥
∥

2

2

≤
LLL

2
R

2µ2
R

×
ns

nt

×
1

ns

L
(

f̂(Xs), f0(Xs)
)

Suppose ρn = ns/nt. Then we have n/nt = 1 + ρn. Using this notation and combining the bound
on all {Ti}

5
i=1, we obtain:

1

nt

L
(

f̂(Xt), f0(Xt)
)

≤
LLL

2
R (µL + 3LL)

2µ2
RµL

ρn
1

ns

L
(

f̂(Xs), f0(Xs)
)

+
2 + LL

µR

(1 + ρn)R(f̂(X)) +
2 + LL + L2

L

µR

(1 + ρn)R(f0(X))

≤ αn

[
1

ns

L
(

f̂(Xs), f0(Xs)
)

+ λR(f̂(X))

]

+ βnR(f0(X)) , (A.6)

with the values of αn and βn being:

αn = max

{
LLL

2
R (µL + 3LL)

2µ2
RµL

ρn,
2 + LL

λµR

(1 + ρn)

}

, (A.7)

βn =
2 + LL + L2

L

µR

(1 + ρn) . (A.8)

This completes the proof.

A.2 Proof of Theorem 2.7

First, note that, from Assumption 2.3 we have:

EQ

[

L(f̃(x), f0(x))
]

≤
✘
✘

✘
✘

✘
✘
✘
✘
✘✘✿

0

EQ [L(f0(x)), f0(x))] +

✘
✘
✘

✘
✘

✘
✘
✘
✘
✘
✘
✘

✘
✘
✘
✘✘✿

0

E

[

(f̃(x)− f0(x)))∂1L(f0(x), f0(x))
]

+
LL

2

∥
∥
∥f̃(x)− f0(x)

∥
∥
∥

2

Q

=
LL

2

∥
∥
∥f̂(x)− f0(x)

∥
∥
∥

2

Q
. (A.9)

and

EP

[

L(f̃(x), f0(x))
]

≥
✘
✘
✘
✘
✘
✘

✘
✘

✘✘✿
0

EP [L(f0(x)), f0(x))] +

✘
✘

✘
✘
✘
✘
✘
✘
✘
✘
✘

✘
✘

✘
✘
✘
✘✘✿

0

EP

[

(f̃(x)− f0(x)))∂1L(f0(x), f0(x))
]

+
µL

2

∥
∥
∥f̃(x)− f0(x)

∥
∥
∥

2

P

=
µL

2

∥
∥
∥f̂(x)− f0(x)

∥
∥
∥

2

P
. (A.10)

Therefore, it is enough to bound ∥f̂(x) − f0(x)∥
2
Q. As per Assumption 2.6, R is strongly convex

with respect to its second coordinate, i.e.,

R(f, g) ≥ R(f, g̃) + ∂2R((f, g); g − g̃) +
µR

2
∥g − g̃∥

2
Q .
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We now define an operator M along the line of y∗t as M(f) = argmingR(f, g). As M(f) is the

minimizer over of the second coordinate, we have ∂2R(f,M(f)) = 0 and consequently from the
strong convexity of R we have:

R(f, f) ≥ R(f,M(f)) +
µR

2
∥f −M(f)∥

2
Q .

The above inequality implies:

∥f −M(f)∥
2
Q ≤

2

µL

[R(f, f)−R(f,M(f))] ≤
2

µL

R(f, f) .

which will be used later in our proof.

M is Lipschitz: By definition of M we have ∂2R(f,M(f)) = 0, which further implies
for any two functions f1, f2:

0 = ∂2R((f1,M(f1)); (M(f1)−M(f2)))− ∂2R((f2,M(f2)); (M(f1)−M(f2)))

= ∂2R((f1,M(f1)); (M(f1)−M(f2)))− ∂2R((f1,M(f2)); (M(f1)−M(f2)))

+ ∂2R((f1,M(f2)); (M(f1)−M(f2)))− ∂2R((f2,M(f2)); (M(f1)−M(f2)))

Changing side we obtain:

∂2R((f2,M(f2)); (M(f1)−M(f2)))− ∂2R((f1,M(f2)); (M(f1)−M(f2)))

= ∂2R((f1,M(f1)); (M(f1)−M(f2)))− ∂2R((f1,M(f2)); (M(f1)−M(f2)))

≥ µR ∥M(f1)−M(f2)∥
2
Q (A.11)

where the last inequality follows from the strong convexity of R (Assumption 2.6). Furthermore, we
have:

∂2R((f2,M(f2)); (M(f1)−M(f2)))− ∂2R((f1,M(f2)); (M(f1)−M(f2)))

≤ LR ∥f1 − f2∥P ∥M(f1)−M(f2)∥Q . (A.12)

This follows from the second part of Assumption 2.6. Combining Equation (A.11) and (A.12), we
conclude:

∥M(f1)−M(f2)∥Q ≤
LR

µR

∥f1 − f2∥P .

We now return to the main proof:
∥
∥
∥f̃Q − f0

∥
∥
∥

2

Q
≤

∥
∥
∥f̃Q −M(f̃Q)

∥
∥
∥

2

Q
+
∥
∥
∥M(f̃Q)−M(f0)

∥
∥
∥

2

Q
+ ∥f0 −M(f0)∥

2
Q

≤
2

µR

(

R(f0) +R(f̃Q)
)

+
LR

µR

∥
∥
∥f̃Q − f0

∥
∥
∥

2

P

:= C0

[∥
∥
∥f̃Q − f0

∥
∥
∥

2

P
+ λR(f̃Q)

]

+ C2R(f0)

≤ C1

[

EP

[

L(f̃(x), f0(x))
]

+ λR(f̃Q)
]

+ C2R(f0)

where the first term on the right hand side is the minimum training error (population version, i.e.,
in presence of infinite sample) and the second term quantifies the smoothness of f0 in terms of the
regularizer R. The last inequality follows from the strong convexity of the loss function ((A.10)).

A.3 Proof of Theorem 2.9

In this section, we prove Theorem 2.9. Fix Q ∈ Qϵ. Then there exists some T ≡ T (Q) ∈ Tϵ such
that T#P = Q. Define an operator MT as:

MT (f) = argmingRT (f, g)

where RT (f, g) = Ex∼P

[

(f(x)− g(T (x)))
2
]

. The proof of the strong convexity of RT with

respect to its second coordinate is straightforward as we have the following double Gateaux derivative:

∂2
2R((f, g) : h1, h2) = 2Ex∼P [h1(T (x))h2(T (x))] .
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Fix f ∈ F and define ∆ = f ◦ T −MT (f) ◦ T . A two step Taylor expansion yields:

RT (f, f) = RT (f,MT (f)) +
✘
✘

✘
✘
✘
✘
✘
✘
✘
✘✿

0

∂2RT ((f,MT (f));∆) +
1

2
∂2RT ((f, f

∗);∆,∆)

= RT (f,MT (f)) + E[∆2]

= RT (f,MT (f)) + ∥f −MT (f)∥
2
Q .

where the derivative is canceled because MT (f) is the minimizer. Therefore, we have:

∥f −MT (f)∥
2
Q = RT (f, f)−RT (f,MT (f)) ≤ RT (f, f) . (A.13)

We use the above bound in our subsequent calculation:

∥
∥
∥f̃ − f0

∥
∥
∥

2

Q
≤ 4

[∥
∥
∥f̃ −MT (f̃)

∥
∥
∥

2

Q
+
∥
∥
∥MT (f̃)−MT (f0)

∥
∥
∥

2

Q
+ ∥f0 −MT (f0)∥

2
Q

]

≤ 4

[

RT (f̃ , f̃) +
∥
∥
∥MT (f̃)−MT (f0)

∥
∥
∥

2

Q
+RT (f0, f0)

]

[From (A.13)] (A.14)

We now bound the second term of the RHS of the above equation. Following the similar calculation
as in (A.11) and (A.12) we have for any function f1, f2:

∥M(f1)−M(f2)∥Q ≤ ∥f1 − f2∥P .

In particular for f1 = f̃ and f2 = f0 we have:
∥
∥
∥M(f̃)−M(f0)

∥
∥
∥
Q
≤

∥
∥
∥f̃ − f0

∥
∥
∥
P

. (A.15)

Combining the bound in (A.14) and (A.15) we conclude that for any Q ∈ Qϵ:

∥
∥
∥f̃ − f0

∥
∥
∥

2

Q
≤ 4

[

RT (f̃ , f̃) +RT (f0, f0) +
∥
∥
∥f̃ − f0

∥
∥
∥

2

P

]

Taking the supremum with respect to Q on both sides, we conclude the proof of the theorem.

A.4 Proof of Theorem 3.1

The proof follows from analyzing the characteristic function of Xs and Xt. Note that by definition:

ϕΦXs
(t) = E

[

eit
⊤ΦXs

]

= E

[

eit
⊤(ΦAU+Φb+Φϵ)

]

= ϕU (A
⊤Φ⊤t) ϕϵ(Φ

⊤t) eit
⊤Φb

Similarly, for Xt we have:

ϕΨXt
(t) = E

[

eit
⊤(ΦAU+Φϵ)

]

= ϕU (A
⊤Φ⊤t) ϕϵ(Φ

⊤t) = ϕΦXs
(t) eit

⊤Φb .

Therefore, if ΦXs
L
= ΦXt, ϕΨXt

(t) = ϕΦXs
(t) for all t, which further implies eit

⊤Φb = 1 for all t,
which implies Φb = 0. This completes the proof.

B Proof of Auxiliary Lemmas

B.1 Proof of Lemma A.1

The proof of the second part of the above lemma follows directly from the strong convexity of Rn

with respect to the second coordinate, as the strong convexity assumption yields:

R(vs, vt) ≥ R(vs, y
∗
t (vs)) + ⟨vt − y∗t (vs), ∂tR(vs, y

∗
t (vs))⟩+

µR

2n
∥vt − y∗t (vs)∥

2
.
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The second term of the RHS of the above equation is 0 as ∂tR(vs, y
∗
t (vs)) = 0 (as the derivative of a

smooth function is 0 at minima). Therefore, changing sides of the terms, we conclude:

∥vs − y∗t (vs)∥
2
≤

2n

µR

(R(vs, vt)−R(vs, y
∗
t (vs))) ≤

2n

µR

R(vs, vt)

where the last inequality follows from the non-negativity of Rn. This completes the proof of the
second part of the lemma.

For the first part of the lemma, first note that we have :

⟨y∗t (v2)− y∗t (v1), ∂tRn(v1, y
∗
t (v1))− ∂tRn(v2, y

∗
t (v2))⟩ = 0

as ∂tRn(v1, y
∗
t (v1)) = ∂tRn(v2, y

∗
t (v2)) = 0 (derivative is 0 at minima). Adding and subtracting

∂tRn(v1, y
∗
t (v2)) from the above equation yields:

⟨y∗t (v2)− y∗t (v1), ∂tRn(v1, y
∗
t (v1))− ∂tRn(v1, y

∗
t (v2))

+∂tRn(v1, y
∗
t (v2))− ∂tRn(v2, y

∗
t (v2))⟩ = 0

Changing sides, we have:

⟨y∗t (v2)− y∗t (v1), ∂tRn(v1, y
∗
t (v2))− ∂tRn(v2, y

∗
t (v2))⟩

≥ ⟨y∗t (v2)− y∗t (v1), ∂tRn(v1, y
∗
t (v2))− ∂tRn(v1, y

∗
t (v1))⟩

≥
µR

2n
∥y∗t (v2)− y∗t (v1)∥

2
. (B.1)

On the other hand, a simple application of the Cauchy-Schwarz inequality yields:

⟨y∗t (v2)− y∗t (v1), ∂tRn(v1, y
∗
t (v2))− ∂tRn(v2, y

∗
t (v2))⟩

≤ ∥y∗t (v2)− y∗t (v1)∥ ∥∂tRn(v1, y
∗
t (v2))− ∂tRn(v2, y

∗
t (v2))∥

≤
LR

2n
∥y∗t (v2)− y∗t (v1)∥ ∥v1 − v2∥ . (B.2)

Combining the bounds of Equation (B.1) and (B.2), we have:

∥y∗t (v2)− y∗t (v1)∥ ≤
LR

µR

∥v1 − v2∥ ,

which completes the proof.

B.2 Proof of Lemma A.2

The proof follows directly from the following properties of the L:

1. L(f0(Xs), f0(Xs)) = 0.

2. ∂1L(f0(Xs), f0(Xs)) = ∂2L(f0(Xs), f0(Xs)) = 0

3. L is strongly convex.

From strong convexity of L we have:

L
(

f̂(Xs), f0(Xs)
)

≥ L (f0(Xs), f0(Xs))

+
〈

f̂(Xs)− f0(Xs), ∂1L (f0(Xs), f0(Xs))
〉

+
µL

2

∥
∥
∥f̂(Xs)− f0(Xs)

∥
∥
∥

2

The first and second term on the RHS will be 0 by the first and second properties of L mentioned
above. Therefore, we have:

L
(

f̂(Xs), f0(Xs)
)

≥
µL

2

∥
∥
∥f̂(Xs)− f0(Xs)

∥
∥
∥

2

which completes the proof.
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C Similarity Kernel-based Regularizer

A similarity kernel-based regularizer R is defined as:

R(f, g) = EX∼P
X′∼Q

[
(f(X)− g(X ′))2K(X,X ′)

]

where K is the kernel of similarity. In particular, if an x from the source domain is similar to an x′ in
the target domain in the sense that f0(x) ≈ f0(x

′), then we expect the value of K(x, x′) to be large.
In this section, we show that under some mild regularity condition on K, this regularizer satisfies
Assumption 2.2.

Assumption C.1 (Assumption on kernel). Define KQ(x
′) = Ex∼P [K(x, x′)] and Kmax =

maxx,x′ K(x, x′). Assume that Kmax < ∞ and

inf
h

∥h
√

KQ∥Q

∥h∥Q
≥ ϕ > 0 .

Gateaux derivatives of R(f, g): The first order Gateaux derivative of R in the direction of a function
h is defined as:

∂2R((f, g);h) = lim
t↓0

R(f, g + th)−R(f, g)

t

= 2EX∼P
X′∼Q

[(g(X ′)− f(X))h(X ′)K(X,X ′)]

Similarly, the second order Gateaux derivative at direction (h1, h2) is defined as:

∂2
2R((f, g);h1, h2) = lim

t↓0

∂2R((f, g + th2);h1)− ∂2R((f, g);h1)

t

= 2EX∼P
X′∼Q

[h1(X
′)h2(X

′)KQ(X
′)]

where KQ(X
′) = EX∼P [K(X,X ′)]. Therefore, the strong convexity follows from Assumption C.1.

We next show that R also satisfies the second condition of Assumption 2.6. Towards that direction:

∂2R((f2,M(f2)); (M(f1)−M(f2)))− ∂2R((f1,M(f2)); (M(f1)−M(f2)))

= 2EX∼P
X′∼Q

[(f1(X)− f2(X))(M(f1)(X
′)−M(f2)(X

′))K(X,X ′)]

≤ Kmax ∥f1 − f2∥P ∥M(f1)−M(f2)∥Q .

This concludes that the similarity kernel-based population regularizer R satisfies Assumption 2.6
under Assumption C.1 on the kernel function.

D Population and Sample Version of the Regularizer

In this section, we show that under a fairly general condition, if Rn (the sample version of
the regularization) satisfies Assumptions 2.1 and 2.2 and R is the asymptotic limit of Rn, i.e.,

Rn
a.s.
→ R as ns, nt → ∞, then R will satisfy Assumption 2.5 and 2.6. Towards that if Rn satisfies

Assumption 2.1 for all n, then taking the limit n → ∞, it is immediate that R satisfies Assumption 2.5.

For the other assumption, suppose Rn satisfies the first part of Assumption 2.2, i.e., it is
strongly convex with respect to its second coordinates (the coordinates corresponding to the target
samples), then again, simply taking the limit n → ∞, we conclude that R is also strongly convex
with µR = lim infn→∞ µRn

(as long as µR > 0). By similar argument, the second part of
Assumption 2.6 is also satisfied if Rn satisfies the strong smoothness assumption and LRn

does not
diverge to infinity.
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E Bound for Non-Covariate Shift

In this section, we extend the result of Theorem 2.7 to the setup when the mean function f0 is different
on source and target domain. More precisely, we assume the following data generative process:

ys = fs(xs) + ϵs, yt = ft(xt) + ϵt . (E.1)

The following theorem extends the bounds obtained in Theorem 2.7 for the estimator obtained
via (2.3):

Theorem E.1. Suppose we observe (Y1, X1), . . . , (Xn, Yn) from the source domain and X̃1, . . . , X̃n

from the target domain. The estimator f̃ obtained via Equation (2.3) satisfied the following general-
ization error bound on the target domain:

EQ

[

L(f̃(x), ft(x))
]

≤ C1

[

EP

[

L(f̃(x), fs(x))
]

+ λR(f̃)
]

+ C2 min
{

R(ft) + ∥fs − ft∥
2
P ,R(fs) + ∥fs − ft∥

2
Q

}

,

for some constants C1, C2 mentioned explicitly in the proof.

Proof. The proof is quite similar to the proof of Theorem 2.7, hence we will only highlight here the
key difference for the sake of brevity. From the proof of Theorem 2.7 we have:

EQ

[

L(f̃(x), ft(x))
]

≤
LL

2

∥
∥
∥f̃(x)− ft(x)

∥
∥
∥

2

Q
, (E.2)

EP

[

L(f̃(x), fs(x))
]

≥
µL

2

∥
∥
∥f̃(x)− fs(x)

∥
∥
∥

2

P
(E.3)

∥f −M(f)∥
2
Q ≤

2

µL

[R(f, f)−R(f,M(f))] ≤
2

µL

R(f, f) , (E.4)

∥M(f1)−M(f2)∥Q ≤
LR

µR

∥f1 − f2∥P . (E.5)

An application of triangle inequality yields:

∥
∥
∥f̃ − ft

∥
∥
∥

2

Q
≤ 8

[∥
∥
∥f̃ −M(f̃)

∥
∥
∥

2

Q
+
∥
∥
∥M(f̃)−M(fs)

∥
∥
∥

2

Q
+ ∥M(fs)−M(ft)∥

2
Q + ∥M(ft)− ft∥

2
Q

]

≤
16

µR

(

R(ft) +R(f̃)
)

+
8LR

µR

(∥
∥
∥f̃ − fs

∥
∥
∥

2

P
+ ∥fs − ft∥

2
P

)

:= C̄0

[∥
∥
∥f̃ − fs

∥
∥
∥

2

P
+ λR(f̃)

]

+ C̄2R(ft) + C̄3 ∥fs − ft∥
2
P

≤ C̄1

[

EP

[

L(f̃(x), fs(x))
]

+ λR(f̃)
]

+ C̄2R(ft) + C̄3 ∥fs − ft∥
2
P (E.6)

where the first term on the right hand side is the minimum training error (population version, i.e.,
in presence of infinite sample) and the second term quantifies the smoothness of f0 in terms of the
regularizer R. The last inequality follows from the strong convexity of the loss function (A.10).
Another version of telescoping sum yields:

∥
∥
∥f̃ − ft

∥
∥
∥

2

Q
≤ 8

[∥
∥
∥f̃ −M(f̃)

∥
∥
∥

2

Q
+
∥
∥
∥M(f̃)−M(fs)

∥
∥
∥

2

Q
+ ∥M(fs)− fs∥

2
Q + ∥fs − ft∥

2
Q

]

≤
16

µR

(

R(fs) +R(f̃)
)

+
8LR

µR

∥
∥
∥f̃ − fs

∥
∥
∥

2

P
+ 8 ∥fs − ft∥

2
Q

:= C̃0

[∥
∥
∥f̃ − fs

∥
∥
∥

2

P
+ λR(f̃)

]

+ C̃2R(fs) + C̃3 ∥fs − ft∥
2
Q

≤ C̃1

[

EP

[

L(f̃(x), fs(x))
]

+ λR(f̃)
]

+ C̃2R(fs) + C̃3 ∥fs − ft∥
2
Q (E.7)

Therefore, combining Equations (E.6) and (E.7) yields the result of the theorem.
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F Experimental Details

In Table 3 we compare prediction consistency [3], [14] of the methods compared in Table 1 of the
main text to verify that they also achieve individual fairness as intended.

Table 3: Comparison of prediction consistency in the experiment corresponding to Table 1.

Bios Toxicity

Baseline 94.2%±0.1% 62.1%±1.4%
GLIF 98.8%±0.2% 84.4%±1.3%
SenSeI 97.7%±0.1% 77.3%±4.3%
SenSR 97.6%±0.1% 72.9%±4.4%
CLP 97.4%±0.1% 76.3%±4.8%

We summarize some additional details regarding the implementation of domain adaptation methods
in the experiments in Section 3.1.

• Since the target domains are labeled (they consist of labeled samples from the train data), we also
add a loss term to the objective corresponding to the target domain performance when training the
domain adaptation methods. Recall that the main mechanisms for achieving individual fairness are
the representation alignment regularizers, thus adding loss in the target domain is simply a way to
utilize the available labels to improve performance.

• For DANN, we use a ReLU-activated two-layer base model with 2000 hidden neurons and 768
output neurons. Further, we use a ReLU-activated two-layer base model with 100 hidden neurons
and one logistically activated neuron as the discriminator. As the prediction head, we use a
ReLU-activated two-layer model with 2000 hidden neurons.

• For VADA, we use the same models as for DANN, and the primary difference is the additional
virtual adversarial training (VAT) loss.

• For WDA, we replaced the Wasserstein distance utilized by Shen et al. [12] with the Sinkhorn
divergence [41]. The Sinkhorn divergence is a computationally more efficient analogue of the
Wasserstein distance regularizer. We used the Geomloss package [42] in our code.

G Background on Domain Adaptation and Algorithmic Fairness

Domain adaptation generally refers to the problem of semi-supervised learning under distribution shift.
More precisely, in the semi-supervised setting the learner is given a labeled dataset {(Xi, Yi)}

n
i=1

and an unlabeled dataset {Xi}
m
i=n+1. In domain adaptation, we typically assume the labeled samples

and unlabeled samples are drawn from a source P and target distribution Q that are similar but non-
identical. The goal of the learner is to find a prediction rule f : X → Y such that EQ

[
ℓ(f(X), Y )

]

is small. This goal is impossible without additional assumptions restricting the differences between
P and Q. In light of the available data, a natural assumption is covariate shift: EP

[
Y | X = x

]
=

EQ

[
Y | X = x

]
. The standard approach to this problem is importance weighing [43]. It is based on

the observation that

EQ

[
ℓ(f(X), Y ))

]
= EP

[
w(X)ℓ(f(X), Y )

]
], (G.1)

where w(x) ≜
dQX

dPX

(x) is the likelihood ratio between the marginal distribution of inputs in the

target and that in the source domains. It is possible to estimate w from the inputs in the labeled and
unlabeled datasets [44], which allows the learner to estimate the right side of (G.1).

It is known that many instances of algorithmic bias are caused by distribution shift between the
training data and real-world data encountered by the model during deployment. Broadly speaking,
research has identified two types of algorithmic bias caused by distributional shifts [1]:

1. the model is trained to predict the wrong target;

2. the model is trained to predict the correct target, but its predictions are inaccurate for demographic
groups that are underrepresented in the training data.
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In statistical terms, the first type of algorithmic bias is caused by posterior drift between the training
and real-world data. This leads to a mismatch between the model’s predictions and the correct values
of the target in the real world. The second type of algorithmic biases arises when ML models are
trained or evaluated in non-diverse training data, so the models perform poorly on underserved groups.
In statistical terms, this type of algorithmic bias is caused by covariate shift between the training and
real-world data.

Several prior works study the effects of enforcing algorithmic fairness under distribution shift. Blum et
al. [45] consider the effects of enforcing demographic parity and equalized odds under two forms of
distribution shift they call under-representation bias and labeling bias. Maity et al. [34] consider the
effects of enforcing group fairness in a domain generalization setting when there is subpopulation
shift between the source and target domains. Another line of work considers how fairness guarantees
(instead of performance guarantees) transfer under distribution shift [5], [46], [47]. Singh et al. [48]
and Rezaei et al. [49] consider both transferability of performance and fairness guarantees under
covariate shift.
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