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Abstract

This paper investigates the network load balancing problem in data centers (DCs)
where multiple load balancers (LBs) are deployed, using the multi-agent rein-
forcement learning (MARL) framework. The challenges of this problem consist
of the heterogeneous processing architecture and dynamic environments, as well
as limited and partial observability of each LB agent in distributed networking
systems, which can largely degrade the performance of in-production load balanc-
ing algorithms in real-world setups. Centralised-training-decentralised-execution
(CTDE) RL scheme has been proposed to improve MARL performance, yet it
incurs – especially in distributed networking systems, which prefer distributed
and plug-and-play design schemes – additional communication and management
overhead among agents. We formulate the multi-agent load balancing problem
as a Markov potential game, with a carefully and properly designed workload
distribution fairness as the potential function. A fully distributed MARL algorithm
is proposed to approximate the Nash equilibrium of the game. Experimental eval-
uations involve both an event-driven simulator and real-world system, where the
proposed MARL load balancing algorithm shows close-to-optimal performance in
simulations, and superior results over in-production LBs in the real-world system.

1 Introduction

In cloud data centers (DCs) and distributed networking systems, servers are deployed on infrastruc-
tures with multiple processors to provide scalable services [1]. To optimise workload distribution
and reduce additional queuing delay, load balancers (LBs) play a significant role in such systems.
State-of-the-art network LBs rely on heuristic mechanisms [2–5] under the low-latency and high-
throughput constraints of the data plane. However, these heuristics are not adaptive to dynamic
environments and require human interventions, which can lead to most painful mistakes in the
cloud – mis-configurations. RL approaches have shown performance gains in distributed system and
networking problems [6–9], yet applying RL on the network load balancing problem is challenging.

First, unlike traditional workload distribution or task scheduling problem [6, 7], network LBs have
limited observations over the system, including task sizes and actual server load states. Being aware
of only the number of tasks they have distributed, servers can be overloaded by collided elephant
tasks and have degraded quality of service (QoS).

Second, to guarantee high service availability in the cloud, multiple LBs are deployed in DCs.
Network traffic is split among all LBs. This multi-agent setup makes LBs have only partial observation
over the system.

Third, modern DCs are based on heterogeneous hardware and elastic infrastructures [10], where
server capacities vary. It is challenging to assign correct weights to servers according to their actual
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processing capacities, and this process conventionally requires human intervention – which can lead
to error-prone configurations [3, 5].

Algorithm 1 LB System Transition Protocol
1: Initialise server load, Xj(0) 0, 8j 2 [N ]
2: for each time step t do
3: for each LB agent i 2 [M ] do
4: Choose action ↵ij(t) for coming tasks wi(t)
5: end for
6: for each server j do
7: Update workload:

Xj(t) = Xj(t�1)+
P

M

i=1 wi(t)↵ij(t)�vj(t�1)
8: end for
9: end for
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Xj(t) = Xj(t � 1) +
MX

i=1

wi(t)↵ij(t) � vj(t � 1)

Next Timestep: Update Server Load States
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Figure 1: Network load balancing.

Last but not least, given the low-latency and high-throughput constraints in the distributed networking
setup, the interactive training procedure of RL models and the centralised-training-decentralised-
execution (CTDE) scheme [11] can incur additional communication and management overhead.

In this paper, we study the network load balancing problem in multi-agent game theoretical approach,
by formulating it as a Markov potential game through specifying the proper reward function, namely
variance-based fairness. We propose a distributed Multi-Agent RL (MARL) network load balancing
mechanism that is able to exploit asynchronous actions based only on local observations and infer-
ences. Load balancing performance gains are evaluated based on both event-based simulations and
real-world experiments2.

2 Related Work

Network Load Balancing Algorithms. The main goal of network LBs is to fairly distribute
workloads across servers. The system transition protocol of network load balancing system is
described in Alg. 1 and depicted in Fig. 1. Existing load balancing algorithms are sensitive to
partial observations and inaccurate server weights. Equal-Cost Multi-Path (ECMP) LBs randomly
assign servers to new requests [12–14], which makes them agnostic to server load state differences.
Weighted-Cost Multi-Path (WCMP) LBs assign weights to servers proportional to their provisioned
resources (e.g. CPU power) [3, 15–17]. However, the statically assigned weights may not correspond
to the actual server processing capacity. As depicted in Fig. 2a, servers with the same IO speed yet
different CPU capacities have different actual processing speed when applications have different
resource requirements. Active WCMP (AWCMP) is a variant of WCMP and it periodically probe
server utilisation information (CPU/memory/IO usage) [5,18]. However, active probing can cause
delayed observations and incur additional control messages, which degrades the performance of
distributed networking systems. Local Shortest Queue (LSQ) assigns new requests to the server with
the minimal number of ongoing networking connections that are locally observed [19,20]. It does not
concern server processing capacity differences. Shortest Expected Delay (SED) derives the “expected
delay” as locally observed server queue length divided by statically configured server processing
speed [2]. However, LSQ and SED are sensitive to partial observations and misconfigurations. As
depicted in Fig. 2b, the QoS performance of each load balancing algorithm degrades from the ideal
setup (global observations and accurate server weight configurations) when network traffic is split
across multiple LBs or server weights are mis-configured3, which prevails in real-world cloud DCs.

In this paper, we propose a distributed MARL-based load balancing algorithm that considers dynami-
cally changing queue lengths (e.g. sub-ms in modern DC networks [21]), and autonomously adapts to
actual server processing capacities, with no additional communications among LB agents or servers.

Markov Potential Games. A potential game (PG) [22–25] has a special function called potential

function, which specifies a property that any individual deviation of the action for one player will

2Source code and data of both simulation and real-world experiment are open-sourced at
https://github.com/ZhiyuanYaoJ/MARLLB.

3The stochastic Markov model of the simulation is detailed in the App. A
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(a) It is hard to accurately estimate the actual server
processing speeds since it depends on both provi-
sioned resources, and application profiles (App. E.1).

(b) The performance of existing network load balancing
algorithms degrades when observation becomes partial
with multi-agents and weights are mis-configured.

Figure 2: Existing network load balancing algorithms are sub-optimal under real-world setups.

Table 1: Trade-offs among the probing frequency, measurement quality, and communication overhead.
Probing Frequency (/s) 2.22 2.86 4.00 6.67 20.00

RMSE CPU (%) 48.33 44.56 39.84 32.65 21.97
#Job 2.07 1.85 1.61 1.31 0.91

Spearman’s Corr. CPU (%) 0.28 0.40 0.52 0.68 0.85
#Job 0.47 0.56 0.66 0.77 0.89

Communication
Overhead (kbps)

2LB-7server 2.15 2.76 3.86 6.44 9.32
6LB-20server 18.40 23.66 33.12 55.20 165.60

change the value of its own and the potential function equivalently. A desirable property of PG is that
pure NE always exists and coincides with the maximum of potential function in norm-form setting.
Self-play [26] is provably converged for PG. Markov games (MG) is an extension of normal-form
game to a multi-step sequential setting. A combination of PG and MG yields the Markov potential
games (MPG) [27, 28], where pure NE is also proved to exist. Some algorithms [27, 29, 30] lying
in the intersection of game theory and reinforcement learning are proposed for MPG. For example,
independent nature policy gradient is proved to converge to Nash equilibrium (NE) for MPG [27].

Multi-Agent RL. MARL [31] has been viewed as an important avenue for solving different types
of games in recent years. For cooperative settings, a line of work based on joint-value factorisation
have been proposed, involving VDN [32], COMA [11], MADDPG [33], and QMIX [34]. For these
works, a global reward is assigned to players within the team, but individual policies are optimised to
execute individual actions, known as the CTDE setting. MPG satisfies the assumptions of the value
decomposition approach, with the well-specified potential function as the joint rewards. However,
deploying CTDE RL models in real-world distributed system incurs additional communication
latency and management overhead for synchronising agents and aggregating trajectories. These
additional management and communication overheads can incur substantial performance degradation
– constrained throughput and increased latency – especially in data center networks. As listed in
Table 1, when we use active probing to measure server utilisation information, higher probing
frequencies give improved measurement quality–in terms of CPU usage and number of on-going jobs
on the servers. However, higher probing frequencies also incur increased communication overhead,
especially in large-scale data center networks. The detailed experimental setups, as well as both
qualitative and quantitative analysis of the impact of communication overhead, are described in
Sec. E.2.2. By leveraging the special structure of MPG, independent learning approach can be more
efficient due to the decomposition of the joint state and action spaces, which is leveraged in the
proposed methods. Methods like MATRPO [35], IPPO [36] follow a fully decentralised setting, but
for general cooperative games.

In terms of the distribution fairness, FEN [37] is proposed as a decentralised approach for fair
reward distribution in multi-agent systems. They defined the fairness as coefficient of variation and
decompose it for each individual agent. Another work [38] proposes a decentralised learning method
for fair policies in cooperative games. However, the decentralised learning manner in these methods
are not well justified, while in this paper the load balancing problem is formally characterised as a
MPG and the effectiveness of distributed training is verified.
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3 Methods

3.1 Problem Description

We formulate the load balancing problem into a discrete-time dynamic game with strong distributed
and concurrent settings, where no centralised control mechanism exists among agents. We let M
denote the number of LB agents ([M ] denotes the set of LB agents {1, . . . , M}) and N denote
the number of servers ([N ] denotes the set of servers {1, . . . , N}). At each time step (or round)
t 2 H in a horizon H of the game, each LB agent i receives a workload wi(t) 2 W , where W is
the workload distribution, and the LB agent assigns a server to the task using its load balancing
policy ⇡i 2 ⇧, where ⇧ is the load balancing policy profile. At each time-step t, a LB agent i takes
an action ai(t) = {aij(t)}N

j=1, according to which the tasks wi(t) are assigned with distribution
↵i(t). ↵ij(t) is the probability mass of assigning tasks to server j,

P
N

j=1 ↵ij(t) = 1. Therefore,
at each time step, the workload assigned to server j by the i-th LB is wi(t)↵ij(t). During each
time interval, each server j is capable of processing a certain amount of workload vj based on the
property of each server (e.g. provisioned resources including CPU, memory, etc. ). We have server
load state (remaining workload to process) Xj(T ) =

P
T

t=0 max{0,
P

M

i=1 wi(t)↵ij(t) � vj} =

max{0,
P

T

t=0

P
M

i=1 wi(t)↵ij(t) � vjT} =
P

M

i=1 Xij(T )4. Let lj denote the time for a server j to
process all remaining workloads, which is also the potential queuing time for new-coming tasks,
lj(t) =

Xj(t�1)+
PM

i=1 wi(t)↵ij(t)
vj

=
PM

i=1 Xij(t�1)+wi(t)↵ij(t)
vj

=
P

M

i=1 lij(t). Then transition from
time step t to time step t + 1 is given in Alg. 1. Reward: ri(t) = R(l(t), ai(t), �i(t)), where R is the
reward function, l(t) =

P
N

j=1 lj(t) =
P

M

i=1 li(t) denotes the estimated remaining time to process
on each server, and �i(t) is a random variable that makes the process stochastic.
Definition 1. (Makespan) In the selfish load balancing problem, the makespan is defined as:

MS = max
j

(lj), lj =
X

i

lij (1)

The network load balancing problem is featured as multi-commodity flow problems and is NP-hard,
which makes it hard to solve with trivial algorithmic solution within micro-second level [39]. This
problem can be formulated as a constrained optimisation problem for minimizing the makespan over
an horizon t 2 [H]:

minimize

HX

t=h

max
j

lj(t) (2)

s.t. lj(t) =

P
M

i=1(Xij(t� 1) + wi(t)↵ij(t))

vj
,

MX

i=1

wi(t) 
NX

j=1

vj , wi, vj 2 (0,+1) (3)

Xij(T ) =
TX

t=0

max{0, wi(t)↵ij(t)�
vj

M
},

NX

j=1

↵ij(t) = 1, ↵ij 2 [0, 1] (4)

In modern realistic network load balancing system, the arrival of network requests is usually un-
predictable in both its arriving rate and the expected workload, which introduces large stochasticity
into the problem. Moreover, due to the existence of noisy measurements and partial observations,
the estimation of makespan can be inaccurate, which indicates the actual server load states or pro-
cessing capacities are not correctly captured. Instant collisions of elephant workloads or bursts of
mouse workloads often happen, which do not indicate server processing capacity thus misleading
the observation. To solve this issue, we introduce fairness as an alternative of the original objective
makespan. Specifically, makespan is estimated on a per-server level, while the estimation of fairness
can be decomposed to the LB level, which allows evaluating the individual LB performance without
general loss. This is more natural in load balancing system due to the partial observability of LBs.

3.2 Distribution Fairness

We mainly introduce two types of load balancing distribution fairness: (1) variance-based fairness
(VBF) and (2) product-based fairness (PBF). It will be proved that optimization over either fairness
will be sufficient but not necessary for minimising the makespan.

4
Xij(T ) =

P
T

t=0 max{0, wi(t)↵ij(t)�
vj

M
}

4



Definition 2. (Variance-based Fairness) For a vector of time to finish all remaining jobs l =
[l1, . . . , lN ] on each server j 2 [N ], let l(t) = 1

N

P
N

j=1

P
M

i=1 lij(t), the variance-based fairness for

workload distribution is just the negative sample variance of the job time, which is defined as:

F (l) = �
1
N

NX

j=1

✓
lj(t)� l(t)

◆2

= �
1
N

NX

j=1

l
2
j (t) + l

2
(t). (5)

VBF defined per LB is: Fi(li) = � 1
N

P
N

j=1 l2
ij

(t) + l
2
i
(t), where li(t) = 1

N

P
N

j=1 lij(t).

Lemma 3. The VBF for load balancing system satisfies the following property:

F
⇡i,�⇡i
i

(li)� F
⇡̃i,�⇡i
i

(̃li) = F
⇡i,�⇡i(l)� F

⇡̃i,�⇡i (̃l) (6)

This property makes VBF a good choice for the reward function in load balancing tasks. We will see
more discussions in later sections. Proof of the lemma is provided in Appendix B.1.
Proposition 4. Maximising the VBF is sufficient for minimising the makespan, subjective to the load

balancing problem constraints (Eq. (3) and (4)): max F (l) ) min maxj(lj). This also holds for

per-LB VBF as max Fi(li) ) min maxj(li).

Definition 5. (Product-based Fairness [40]) For a vector of time to finish all remaining jobs l =
[l1, . . . , lN ] on each server j 2 [N ], the product-based fairness for workload distribution is defined

as: F (l) = F ([l1, . . . , lN ]) =
Q

j2[N ]
lj

max(l) . PBF defined per LB is: Fi(li) = F ([li1, . . . , liN ]) =
Q

j2[N ]
lij

max(li)
.

Proposition 6. Maximising the product-based fairness is sufficient for minimising the makespan,

subjective to the load balancing problem constraints (Eq. (3) and (4)): max F (l) ) min max(l).

Proofs of proposition 4 and 6 are in Appendix B.1 andB.2, respectively. From proposition 4 and 6,
we know that the two types of fairness can serve as an effective alternative objective for optimising
the makespan, which will be leveraged in our proposed MARL method as valid reward functions.

3.3 Game Theory Framework

Markov game is defined as MG(H, M, S, A⇥M ,P, r⇥M ), where H is the horizon of the game, M
is the number of player in the game, S is the state space, A⇥M is the joint action space of all players,
Ai is the action space of player i, P = {Ph}, h 2 [H] is a collection of transition probability matrices
Ph : S ⇥ A⇥M ! Pr(S), r⇥M = {ri|i 2 [M ]}, ri : S ⇥ A⇥M ! R is the reward function for i-th
player given the joint actions. The stochastic policy space for the i-th player in MG is defined as
⇧i : S ! Pr(Ai), ⇧ = {⇧i}, i 2 [M ].

For the Markov game MG, the state value function V ⇡
i,h

: S ! R and state-action value function
Q⇡

i,h
: S ⇥ A ! R for the i-th player at step h under policy ⇡ 2 ⇧⇥M is defined as:

V
⇡
i,h(s) := E⇡,P

 HX

h0=h

ri,h0(sh0 ,ah0)

����sh = s

�
, Q

⇡
i,h(s,a) := E⇡,P

 HX

h0=h

ri,h0(sh0 ,ah0)

����sh = s, ah = a

�
.

(7)
Definition 7. (✏-approximate Nash equilibrium) Given a Markov game

MG(H, M, S, A⇥M ,P, ⇧⇥M , r⇥M ), let ⇡�i be the policies of the players except for the

i-th player, the policies (⇡⇤
i
, ⇡⇤

�i
) is an ✏-Nash equilibrium if 8i 2 [M ], 9✏ > 0,

V
⇡
⇤
i ,⇡

⇤
�i

i
(s) � V

⇡i,⇡
⇤
�i

i
(s)� ✏, 8⇡i 2 ⇧i. (8)

If ✏ = 0, it is an exact Nash equilibrium.

Definition 8. (Markov Potential Game) A Markov game M(H, M, S, A⇥M ,P, ⇧⇥M , r⇥M ) is a

Markov potential game (MPG) if 8i 2 [M ], ⇡i, ⇡̃i 2 ⇧i, ⇡�i 2 ⇧�i, s 2 S ,

V
⇡i,⇡�i
i

(s)� V
⇡̃i,⇡�i
i

(s) = �
⇡i,⇡�i(s)� �

⇡̃i,⇡�i(s), (9)

where �(·) is the potential function independent of the player index.

Lemma 9. Pure NE (PNE) always exists for PG, local maximisers of potential function are PNE.

PNE also exists for MPG. [22]
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Figure 3: Overview of the proposed distributed MARL framework for network LB.

Theorem 10. Multi-agent load balancing is MPG with the VBF Fi(li) as the reward ri for each LB

agent i 2 [M ], then suppose for 8s 2 S at step h 2 [H], the potential function is time-cumulative

total fairness: �⇡i,�⇡i(s) =
P

H

t=h
F⇡i,�⇡i(l(t)).

The proof of the theorem is based on Lemma 3, and it’s provided in Appendix B.3. This theorem is
essential for establishing our method, since it proves that multi-agent load balancing problem can
be formulated as a MPG with the time-cumulative VBF as its potential function. Also, the choice
of per-LB VBF as reward function for individual agent is critical for making it MPG, it is easy to
verify that PBF cannot guarantee such property. From Lemma 9 we know the maximiser of potential
function is the NE of MPG, and from proposition 4 it is known that maximising the VBF gives the
sufficient condition for minimising the makespan. Therefore, an effective independent optimisation
with respect to the individual reward function specified in the above theorem will lead the minimiser
of makespan for load balancing tasks. The effective independent optimisation here means the NE of
MPG is achieved.

3.4 Distributed LB Method

With the above analysis, the load balancing problem can be formulated as an episodic
version of multi-player partially observable Markov game, which we denote as
POMG(H, M,S, O⇥M ,O⇥M , A⇥M ,P, r⇥M ), where M, H, S, A⇥M and P follow the same
definitions as in Markov game MG, O⇥M contains the observation space Oi for each player,
O = {Oh}, h 2 [H] is a collection of observation emission matrices, Oi,h : S ! Pr(Oi),
r⇥M = {ri|i 2 [M ]}, ri : Oi ⇥ A⇥M ! R is the reward function for i-th LB agent given the joint
actions. The stochastic policy space for the i-th agent in POMG is defined as ⇧i : Oi ! Pr(Ai).
As discussed in Sec. 2, the partial observability comes from the fundamental configuration of network
LBs in DC networks, which allows LBs to observe only a partial of network traffic and does not give
LBs information about the tasks (e.g. expected workload) distributed from each LB. The reward
functions in our experiments are variants of distribution fairness introduced in Sec. 3.2. The potential
functions can be defined accordingly based on the two fairness indices. The overview of the proposed
distributed MARL framework is shown in Fig. 3.

In MPG, independent policy gradient allows finding the maximum of the potential function, which is
the PNE for the game. This inspires us to leverage the policy optimisation in a decomposed manner,
i.e., distributed RL for policy learning of each LB agent. However, due to the partial observability of
the system and the challenge of directly estimating the makespan (Eq. (1)), each agent cannot have a
direct access to the global potential function. To address this problem, the aforementioned fairness
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Algorithm 2 Distributed LB for MPG
1: Initialise:
2: LB policy ⇡✓i and critic Q�i networks, replay buffer Bi, 8i 2 [M ];
3: server processing speed function vj , 8j 2 [N ];
4: initial observed instant queue length on server j by the i-th LB: qij = 0, 8i 2 [M ], j 2 [N ].
5: while not converge do
6: Reset server load state Xj(1) 0, 8j 2 [N ]
7: Each LB agent i (i 2 [M ]) receives individual observation oi(1)
8: for t = 1, . . . , H do
9: Initialise distributed workload mij , wi(t) 0, i 2 [M ], j 2 [N ]

10: Get actions ai(t) {aij(t)}
N

j=1 = ⇡✓i(oi(t)), i 2 [M ]
11: for job w̃ arrived at LB i between timestep [t, t+ 1) do
12: LB i assigns w̃ to server j = argmink2[N ]

qik(t)+1
aik(t)

13: mij  mij + w̃, wi(t) wi(t) + w̃

14: ↵ij(t) 
mij

wi(t)

15: end for
16: for each server j do
17: Update workload: Xij(t+ 1) max{Xij(t) + wi(t)↵ij(t)�

vj

M
, 0}

18: Xj(t+ 1) 
P

M

i=1 Xij(t)
19: end for
20: Each agent receives individual reward ri(t)
21: Each agent i collects observation oi(t+ 1), i 2 [M ]
22: Update replay buffer: Bi = Bi

S
(ai(t� 1), oi(t), ai(t), ri(t), oi(t+ 1)), i 2 [M ]

23: end for

24: Update critics with gradients: r�iE(oi,ai,ri,o
0
i)⇠Bi

✓
Q�i(oi, ai)� ri � �V

�̃i
(o0i)

◆2�

25: where V
�̃i
(o0i) = E(o0i,a

0
i)⇠Bi

[Q
�̃i
(o0i, a

0
i)� ↵ log ⇡✓i(a

0
i|o

0
i)], i 2 [M ]

26: Update policies with gradients: -r✓iEoi⇠Bi [Ea⇠⇡✓i
[↵ log ⇡✓i(ai|oi)�Q�i(oi, ai)]], i 2 [M ]

27: end while
28: return final models of learning agents

(Sec. 3.2) can be deployed as the reward function for each agent, which makes the value function as a
valid alternative for the potential function as an objective. This also transforms the joint objective
(makespan or potential) to individual objectives (per LB fairness) for each agent. Proposition 4 and 6
verify that optimising towards these fairness indices is sufficient for minimising the makespan.

Alg. 2 shows the proposed distributed LB for load balancing problem, which is a partially observ-
able MPG. The distributed policy optimisation is based on Soft Actor-Critic (SAC) [41] algorithm,
which is a type of maximum-entropy RL method. It optimises the objective E[

P
t
�trt + ↵H(⇡✓)],

whereas H(·) is the entropy of the policy ⇡✓. Specifically, the critic Q network is updated with

gradient r�Eo,a

✓
Q�(o, a) � r(o, a) � �Eo0 [V

�̃
(o0)]

◆2�
, where V

�̃
(o0) = Ea0 [Q

�̃
(o0, a0) �

↵ log ⇡✓(a0|o0)] and Q
�̃

is the target Q network; the actor policy ⇡✓ is updated with the gradient
r✓Eo[Ea⇠⇡✓ [↵ log ⇡✓(a|o)�Q�(o, a)]]. Other key elements of RL methods involve the observation,
action and reward function, which are detailed as following.

Observation. Each LB agent partially observes over the traffic that traverses through itself, including
per-server-level and LB-level measurements. For each LB, per-server-level observations consist of –
for each server – the number of on going tasks, and sampled task duration and task completion time
(TCT). Specifically, in Alg. 2 line 12-14, wi is the coming workload on servers assigned by i-th LB,
and it is not observable for LB. qik + 1 is the locally observed number of tasks on k-th server by i-th
LB, due to the real-world constraints of limited observability at the Transport layer. The “+1” is for
taking into account the new-coming task. Observations of task duration and TCT samples, along with
LB-level measurements which sample the task inter-arrival time as an indication of overall system
load state, are reduced to 5 scalars – i.e. average, 90th-percentile, standard deviation, discounted
average and weighted discounted average5 – as inputs for LB agents.

5Discounted average weights are computed as 0.9t
0�t, where t is the sample timestamp and t

0 is the moment
of calculating the reduced scalar.
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(a) Learning curves.
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(b) CDF of TCT.

Figure 4: Experimental results show that the proposed distributed RL framework using proposed
VBF as rewards converges and effectively achieves better load balancing performance (lower TCT
and better QoS) than existing LB algorithms and CTDE RL algorithms.

Action. To bridge the different timing constraints between the control plane and data plane, each LB
agent assigns the j-th server to newly arrived tasks using the ratio of two factors, arg mink2[N ]

qik+1
aik

,
where the number of on-going tasks qik helps track dynamic system server occupation at per-
connection level – which allows making load balancing decision at µs-level speed – and aik is
the periodically updated RL-inferred server processing speed. As in line 14 of Alg. 2, ↵ij(t) is a
statistical estimation of workload assignment distribution at time interval [t, t + 1).

Reward. The individual reward for distributed MPG LB is chosen as the VBF (as Def. 2) of the
discounted average of sampled task duration measured on each LB agent, such that the LB group
jointly optimise towards the potential function defined in Eq. (10). Task duration information is
gathered as the time interval between the end of connection initialisation (e.g. 3-way handshake
for TCP traffic) and the acknowledgement to the first data packet (e.g. the first ACK packet for
TCP traffic). Given the limited and partial observability of LB agents, task duration information
approximates the remaining workload l by measuring the queuing and processing delay for new-
coming tasks on each server. This PBF- and MS-based rewards are also implemented for CTDE
MARL algorithm as a comparison.

Model. The architecture of the proposed RL framework is depicted in Fig. 3. Each LB agent consists
of a replay buffer, and a pair of actor-critic networks, whose architecture is depicted on the top
right. There is also a pair of guiding actor-critic networks, with the same network architectures but
updated in a delayed and soft manner. Each LB agent takes observations oi(t) extracted from the data
plane (e.g. numbers of ongoing tasks {qij}, task duration, TCT) and actions from previous timestep
ai(t � 1) as inputs, and periodically generates new actions ai(t), which is used to update the server
assignment function arg minj2[N ]

qij+1
aij

in the data plane. The gated recurrent units (GRU) [42] are
applied for all agents to leverage the sequential history information for handling partial observability.

4 Evaluation

We developed (i) an event-based simulator (App. C.1) to study the distance between the NE achieved
by the proposed algorithm and the NE achieved by the theoretical optimal load balancing policy
(with perfect observation), and (ii) a realistic testbed (App. C.2) on physical servers in a DC network
providing Apache web services, with real-world network traffic [43], to evaluate the real-world
performance of the proposed algorithm, in comparison with in-production state-of-the-art LB [3].

Moderate-Scale Real-World Testbed: As depicted in Fig. 4a, in a moderate-scale real-world DC
network setup with 2 LB agents and 7 servers, after 120 episodes of training, the proposed distributed
LB (Distr-LB) algorithm is able to learn from the environment based on VBF as rewards, and it
converges to offer better QoS than QMix. Centralised RL agent (Centr-LB) has difficulties to learn
within 120 episodes because of the increased state and action space. An empirical finding is that, by
adding a log term to the VBF-based reward for Distr-LB, we help LB agents to become more sensitive
to close-to-0 VBF during training (rx log f(x) > rxf(x) when f(x) < 1), therefore achieving
better load balancing performance. As depicted in Fig. 4b, when comparing with in-production
LB algorithms (WCMP, LSQ, SED), Distr-LB shows clear performance gains and reduced TCT
for both types of web pages – Wikipedia pages require to query SQL databases thus they are more
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Table 2: Comparison of average QoS (s) in moderate-scale real-world network setup.

Method Period III (758.787 queries/s) Period IV (784.522 queries/s)
Wiki Static Wiki Static

WCMP 0.412 ± 0.101 0.134 ± 0.059 0.834 ± 0.323 0.492 ± 0.276
LSQ 0.620 ± 0.442 0.339 ± 0.316 0.357 ± 0.373 0.173 ± 0.299
SED 0.215 ± 0.210 0.051 ± 0.081 0.346 ± 0.496 0.169 ± 0.330

RLB-SAC [40] Jain 0.193 ± 0.073 0.026 ± 0.022 0.204 ± 0.084 0.039 ± 0.047
G 0.149 ± 0.049 0.015 ± 0.011 0.155 ± 0.052 0.011 ± 0.011

QMix-LB
MS 0.217 ± 0.157 0.048 ± 0.069 0.263 ± 0.202 0.073 ± 0.092

VBF 0.141 ± 0.025 0.008 ± 0.004 0.286 ± 0.162 0.068 ± 0.066
PBF 0.211 ± 0.153 0.047 ± 0.078 0.181 ± 0.042 0.018 ± 0.009

Distr-LB
(this paper)

VBF 0.159 ± 0.054 0.017 ± 0.009 0.196 ± 0.091 0.032 ± 0.033
VBF+logVBF 0.108 ± 0.022 0.004 ± 0.001 0.104 ± 0.013 0.006 ± 0.003

Centr-LB VBF 1.068 ± 0.386 0.570 ± 0.378 1.378 ± 0.377 0.867 ± 0.350
VBF+logVBF 0.759 ± 0.254 0.306 ± 0.222 1.013 ± 0.168 0.520 ± 0.167

Table 3: Comparison of average QoS (s) in moderate-scale simulator for different types of applica-
tions.

50%-CPU+50%-IO 75%-CPU+25%-IO 100%-CPU
Oracle 6.437 ± 1.006 1.469 ± 0.102 1.291 ± 0.075

QMix-LB PBF 10.230 ± 0.108 1.828 ± 0.054 2.200 ± 0.288
VBF 10.936 ± 0.470 2.023 ± 0.255 2.125 ± 0.074

Distr-LB
(this paper)

VBF 10.335 ± 0.362 1.695 ± 0.104 1.643 ± 0.016
VBF+logVBF 8.797 ± 0.459 1.873 ± 0.328 2.004 ± 0.042

CPU-intensive, while static pages are IO-intensive. The comparison of average TCT using different
LB algorithms is shown in Table 2 (99th percentile TCT in Table 12). The proposed Distr-LB
also shows superior performance than the RL-based solution (RLB-SAC) [40] because of (i) a well
designed MARL framework, and (ii) the use of recurrent neural network to handle load balancing
problem as a sequential problem.

NE Gap Evaluation with Simulation: To evaluate the gap between the performance of Distr-LB
and the theoretical optimal policy, we implement in the simulator an Oracle LB, which has perfect
observation (inaccessible in real world) over the system and minimises makespan for each load
balancing decision. Table 3 shows that, for different types of applications, Distr-LB is able to achieve
closer-to-optimal performance than QMix. As the simulator is implemented based on the load
balancing model formulated in this paper, our theoretical analysis can be directly applied, and VBF –
as a potential function – helps independent cooperative LB agents to achieve good performance. The
additional log term shows empirical performance gains in real-world system, yet it is not necessarily
the case in these simulation results. On one hand, the generated traffic of tasks in the simulation
has higher expected workload (> 1s mean and stddev), while the log terms is more sensitive to
close-to-0 variances, which is the case in real-world experimental setups. On the other hand, though
the simulator models the formulated LB problem, it fails to captures the complexity in the real-world
system – e.g. Apache backlog, multi-processing optimisation, context switching, multi-level cache,
network queues etc. For instance, batch processing [44] helps reduce cache and instruction misses, yet
yields similar processing time for different tasks, thus the variance of task processing delay decreases
and becomes closer to 0 in real-world system. The additional log term exaggerates the low variance
differences to better evaluate load balancing decisions. More detailed description about the simulator
implementation can be found in App C.1 and ablation study on reward engineering is presented in
App E.2.1.

Table 4: Comparison of average QoS (s) in large-scale real-world network setup.

Method Period I (2022.855 queries/s) Period II (2071.129 queries/s)
Wiki Static Wiki Static

WCMP 0.473 ± 0.102 0.194 ± 0.090 0.460 ± 0.241 0.239 ± 0.212
LSQ 0.266 ± 0.127 0.063 ± 0.065 0.218 ± 0.246 0.082 ± 0.152
SED 0.169 ± 0.062 0.020 ± 0.025 0.166 ± 0.141 0.050 ± 0.070

RLB-SAC-G [40] 0.182 ± 0.049 0.013 ± 0.009 0.111 ± 0.029 0.010 ± 0.009

QMix-LB VBF 0.181 ± 0.062 0.019 ± 0.020 0.188 ± 0.147 0.052 ± 0.075
PBF 0.210 ± 0.041 0.013 ± 0.006 0.104 ± 0.009 0.005 ± 0.003

Distr-LB
(this paper)

VBF 0.228 ± 0.055 0.019 ± 0.011 0.174 ± 0.102 0.035 ± 0.039
VBF+logVBF 0.161 ± 0.033 0.008 ± 0.003 0.094 ± 0.015 0.004 ± 0.001

9



Table 5: Comparison of 99-th percentile QoS (s) of Wiki pages under different traffic rates using
large-scale real-world setup.

Method Traffic Rate (queries/s)
731.534 1097.3 1463.067 1828.834 2194.601 2377.484 2560.368 2743.251 2926.135

LSQ 0.175
±0.015

0.212
±0.025

0.249
±0.043

0.342
±0.121

0.827
±0.572

2.103
±0.654

10.662
±2.557

17.656
±0.714

17.999
±0.253

SED 0.201
±0.022

0.261
±0.079

0.322
±0.099

0.360
±0.088

0.618
±0.268

2.175
±1.328

11.444
±3.861

22.086
±4.892

22.727
±5.632

Distr-LB
(this paper)

VBF 0.160
±0.010

0.205
±0.036

0.248
±0.086

0.284
±0.113

0.567
±0.306

1.276
±0.647

7.005
±1.147

10.560
±1.042

15.745
±0.254

VBF+logVBF 0.161
±0.008

0.216
±0.052

0.249
±0.068

0.348
±0.122

0.439
±0.121

1.533
±0.670

4.427
±0.443

9.391
±0.329

15.347
±0.572

Table 6: Comparison of 99-th percentile QoS (s) of static pages under different traffic rates using
large-scale real-world setup.

Method Traffic Rate (queries/s)
731.534 1097.3 1463.067 1828.834 2194.601 2377.484 2560.368 2743.251 2926.135

LSQ 0.014
±0.001

0.015
±0.000

0.015
±0.000

0.018
±0.003

0.217
±0.305

0.856
±0.554

11.066
±3.095

16.874
±0.391

17.155
±0.217

SED 0.014
±0.000

0.015
±0.000

0.016
±0.001

0.018
±0.001

0.071
±0.066

1.252
±1.489

11.272
±3.975

21.941
±5.970

20.708
±5.423

Distr-LB
(this paper)

VBF 0.014
±0.000

0.015
±0.000

0.016
±0.001

0.017
±0.000

0.041
±0.025

0.338
±0.364

6.670
±1.152

9.743
±0.863

15.506
±0.056

VBF+logVBF 0.014
±0.000

0.015
±0.001

0.016
±0.000

0.018
±0.002

0.072
±0.087

0.465
±0.403

3.970
±0.545

8.782
±0.187

15.095
±0.497

Large-Scale Real-World Testbed: To evaluate the performance of Distr-LB in large-scale DC
networks in real world, we scale up the real-world testbed to have 6 LB agents and 20 servers and
apply heavier network traffic (> 2000 queries/s) to evaluate the performance of the LB algorithms
that achieved the best performance in moderate scale setups, in comparison with in-production LB
algorithms. The test results after 200 episodes of training are shown in Table 4, where Distr-LB
achieves the best performance in all cases. QMix also outperforms in-production LB algorithms. But
as a CTDE algorithm, similar to the Centr-LB, it requires agents to communicate their trajectories,
which – after 200 episodes of training – become 221MiB communication overhead at the end of
each episode (episodic training), whereas 95%-percentile per-destination-rack flow rate is less than
1MiB/s [45].

Scaling Experiments: Using the same large-scale real-world testbed with 6 LB agents and 20 servers,
we conduct scaling experiments by applying network traces with different traffic rates, comparing 4
LB methods with the best performances. The 99-th percentile QoS for both Wiki and static pages
are shown in Table 5, 6. As listed in Table 5 and 6, under low traffic rates, when servers are all
under utilised, the advantage of our proposed Distr-LB is not obvious because all resources are
over-provisioned. With the increase of traffic rates (till servers are 100% saturated), our methods
outperforms the best classical LB methods. More in-depth discussion and analaysis over the average
job completion time for both types of pages in these scaling experiments are shown in Table 14
and 15 in App. E.2.2).

More details regarding the real-world DC testbed implementation is in App. C.2, training details
are in App. D, complete evaluation results (both moderate-scale and large-scale) are in App. E and
ablation studies – e.g. communication overhead of CTDE and centralised RL in real-world system,
robustness of MARL algorithms in dynamic DC network environments – can be found in App. E.2.

5 Conclusion and Future Work

This paper proposes a distributed MARL approach for multi-agent load balancing problem, based on
Markov potential game formulation. The proposed variance-based fairness for individual LB agent is
critical for this formulation. Through this setting, the redundant communication overhead among
LB agents is removed, thus improving the overall training and deployment efficiency in real-world
systems, with the local observations only. Under such formulation, the effectiveness of our proposed
distributed LB algorithm together with the proposed fairness are both theoretically justified and
experimentally verified. It demonstrates a performance gain over another commonly applied fairness
as well as centralised training methods like QMIX or centralised RL agent, in both simulation and
real-world tests with different scales.
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