
A Implementation Details

A.1 Derivation of Computational Cost

In this section, we derive the computational complexity of the TIP algorithm. For simplicity, we
focus on a single TIP planning iteration as might be done at each replanning in closed-loop control
or at the start of a trial in open-loop control. In order to keep the analysis general, we assume that
the chosen planning algorithm requires p accesses to the model where h actions are sequentially
executed, giving ph total queries per planner execution. We also assume that the numbers of inducing
points and basis functions used in our GP posterior function sampling are constant as are the Monte
Carlo hyperparameters m, n.

The TIP algorithm consists of the following major operations:

• Sample T 0
i

for j 2 [m]: O(nmN) total cost from sampling algorithm, where N is the
dataset size.

• Sample ⌧⇤
ij

for i 2 [n], j 2 [m]: phHnm total cost from running the planner (ph posterior
function queries) H times for each sampled ⌧⇤, where H is the MDP horizon.

• Compute Cholesky decomposition for each D [⌧⇤
ij

. This takes a total of O(nm(N + H)3)
operations as the augmented dataset is of size N + H and Cholesky decompositions are
O(d3) in the matrix size d.

• Compute posterior covariance ⌃S
0 | D [⌧ij for all ⌧ij . This involves several matrix

operations but the most computationally intensive is solving h triangular systems of size
(N + H) ⇥ (N + H), which each take O((N + H)2) time. So the total computation here
is O(pnmh(N + H)2).

• Compute determinants of covariance matrices for each of p queries and nm augmented
datasets D [⌧ij . Each of these operations is over a matrix of size h ⇥ h and therefore costs
O(h3). So the total cost is O(pnmh3).

Summing these costs gives O(nmN + phHnm + nm(N + H)3 + pnmh(N + H)2 +
pnmh3). Clearly the third term dominates the first, the fourth dominates the second, and since
H > h, the fourth dominates the fifth. So, the computational cost can be summarized as
O
�
nm

�
(N + H)3 + ph(N + H)2

��
.

A.2 Wall Times

Though TIP and oTIP are designed for applications where samples are expensive and computation is
relatively inexpensive, we present in this section data on the running time of these methods. We ran
all experiments on a shared research cluster available to us on large machines with hundreds of GB
of memory and between 24 and 88 CPU cores. In general our implementation did not make use of
more than 20 CPU cores concurrently. In Table 3, we give the running time of the phases of the TIP
algorithm. We note that the bulk of the computation in the planning procedure actually goes towards
the just-in-time compilation of the JAX code that computes the cost function C⌧⇤ on sampled future
trajectories. In order to allow for this compilation cost, we modified the iCEM algorithm from [51]
to take fixed batch sizes as the compilation (e.g. for the � tracking problem) takes approximately
90% of the time required for planning. Unfortunately this compilation process must be repeated at
every iteration due to the limitations of the JAX compiler. We believe that a similarly JIT-compiled
implementation of the planning algorithm for sampling ⌧⇤ on posterior samples could lead to a
substantial speedup and a more flexible compiler could do more still.

A.3 GP Model Details

For all of our experiments, we use a squared exponential kernel with automatic relevance determi-
nation [38, 42]. The parameters of the kernel were estimated by maximizing the likelihood of the
parameters after marginalizing over the posterior GP [68].

To optimize the transition function, we simply sampled a set of points from the domain, evaluated the
acquisition function, and chose the maximum of the set. This set was chosed uniformly for every
problem but � + Rotation and Reacher, for which we chose a random subset of [i [j ⌧⇤

ij
(the posterior

16

Control Problem Pendulum Cartpole � Tracking � + Rotation Reacher

Sample ⌧⇤ mn times 24 31 7 25 130
Plan actions that minimize C⌧⇤ 16 15 15 50 295
Total for TIP Iteration 40 46 22 75 425

Evaluation for one episode 5-20 2-10 2-5 3 - 18 100-500

Table 3: Runtime in seconds for the phases of the TIP algorithm on all problems when run on the
authors’ CPU machines. The ranges given show the runtime for the operation at the beginning and at
the end of training, as some operations run longer as more data is added.

Control Problem Pendulum Cartpole � Tracking � + Rotation Reacher

Number of samples 25 30 25 50 100
Number of elites 3 6 3 8 15
Planning horizon 20 15 5 5 15
Number of iCEM iterations 3 5 3 5 5
Replanning Period 6 1 2 1 1

Table 4: Hyperparameters used for optimization in MPC procedure for closed-loop control problems.

samples of the optimal trajectory) since the space of samples is 10-dimensional and uniform random
sampling will not get good coverage of interesting regions of the state space.

A.4 Cost Function Details

We set n = 15 and m = 1 for our Monte Carlo estimate of the cost function for each problem.

A.5 Details on Planning Method

As mentioned in the main text, we use the iCEM method from Pinneri et al. [51] with one major
modification: a fixed sample batch size. This is in order to take advantage of the JIT compilation
features of JAX and avoid recompiling code for each new batch size.

In Tables 4 and 5, we present the hyperparameters used for the planning algorithm across each
problem. The same hyperparameters were used for the TIP, MPC, EIGT , DIP, sDIP, and sTIP
methods. As recommended by the original paper, we use � = 3 for the scaling exponent of the
power spectrum density of sampled noise for action sequences, � = 1.25 for the exponential decay
of population size, and ⇠ = 0.3 for the amount of caching.

B Description of Comparison Methods

We compare against 14 different methods across open and closed-loop problems. Of these, 7 used
the same model and planning algorithm (including hyperparameters) as TIP and oTIP. DIP and
oDIP use the cost function C(⌧) = �H [T (S0) | D] and sDIP (summed DIP) uses the cost function
C(⌧) = �

P
h

i=0 H [T (si, ai) | D]. These are all pure exploration methods, but DIP and oDIP are
more sophisticated in that they plan for future observations with a large amount of joint information

Control Problem Nonlinear Gain 1 Nonlinear Gain 2 Lava Path

Number of samples 50 50 25
Number of elites 6 6 4
Planning horizon 10 10 20
Number of iCEM iterations 6 8 6

Table 5: Hyperparameters used for optimization in MPC procedure for open-loop control problems.

17

as opposed to sTIP which sums the individual information expected at each timestep. oDIP is simply
the open loop variant of DIP. EIGT uses the same objective as sDIP but operates in the TQRL setting,
querying points that approximately maximize the predictive entropy of the dynamics model. BARL
similarly operates in the TQRL setting but uses the EIG⌧⇤ acquisition function from Mehta et al.
[40]. We use the authors’ implementation of that work for comparison. MPC uses Cg from (4) and
plans to directly maximize expected rewards. This method can be seen as quite similar to Kamthe
and Deisenroth [34] and a close cousin of Deisenroth and Rasmussen [21] in that it optimizes the
same objective with a similar model. oMPC is simply the open loop variant of MPC.

Besides these methods which directly compare cost functions, we include 8 additional baselines
from published work. PETS is a method given in Chua et al. [15] which uses a similar cross-entropy
based planner and a probabilistic ensemble of neural networks for an uncertainty-aware estimate of
the dynamics. PETS also plans to minimize Cg. HUCRL [16] learns a policy via backpropagation
through time using a hallucinated perturbation to the dynamics that maximizes discounted rewards
subject to the one-step confidence interval of the dynamics. HUCRL also uses a probabilistic
ensemble of neural networks. Using the same implementation we also tested Thompson Sampling
(TS), which acts optimally according to a network drawn from the posterior over models, and BPTT
which plans to minimize Cg using a neural network policy and backpropagation through time. BPTT
can also be viewed as a cousin of PILCO [21] as it attempts to take stochastic gradients of the
expected cost. We also compare against SAC [27], TD3 [23], and PPO [58]. SAC uses entropy
bonuses to approximate Boltzmann exploration in an actor-critic framework. TD3 and PPO include
various tricks for stable learning and add Ornstein-Uhlenbeck noise in order to explore.

For our FEEF implementation, we took hyperparameters from the most similar comparison environ-
ments in that paper and used them for our results. We tried several values for ‘expl_weight’ in order
to se whether we were inadequately balancing exploration and exploitation. Ultimately we saw an
‘expl_weight’ of 0.1 was the best value.

We used the author’s implementation of RHC. RHC makes strong assumptions on the form of the
reward function by assuming that all problems are regulation problems where the goal is to drive the
system to a given state and keep it there (with some cost for actuation). We were able to pass the
targets for all of our problems (which may change between episodes) to the RHC controller. We did a
light hyperparameter search tuning the number of random Fourier features used in the Bayesian linear
model in this method. Ultimately we were disappointed in the performance of RHC when applied to
our problems. We believe that this might be due to its undirected uncertainty sampling objective and
relatively constrained model of environment dynamics.

C Description of Control Problems

C.1 Plasma Control Problems

The plasma control problems are based on controlling a tokamak, a toroidally shaped device for
confining a thermonuclear plasma using magnetic fields. Achieving net positive energy from fusion
requires confining a plasma at high enough temperature and density long enough for hydrogen
isotopes to collide and fuse. However, as the temperature and density are increased, a wide variety of
instabilities can occur which degrade confinement, leading to a loss of energy. Full physics simulation
of tokamak plasmas requires 10s-1000s of CPU hours to simulate a single trajectory, and often require
hand tuning of different parameters to achieve accurate results. Following the work of Abbate et al.
[2], each of our plasma control problems used neural networks trained on data as the ground truth
dynamics models. We used the MDSPlus tool [62] to fetch historical discharges from the DIII-D
tokamak in San Diego [22]. In total, we trained our models on 1,479 historical discharges. The
data was pre-processed following the procedure outlined in Abbate et al. [2]. We describe how each
environment was constructed in more detail below.

� Tracking In this environment the goal is to adjust the total injected power (PINJ) of the neutral
beams so that the normalized plasma pressure, �N (defined as the ratio of thermal energy in the
plasma to energy in the confining magnetic fields), reaches a target value of 2%. Reliably controlling
plasmas to sustain high performance is a major goal of research efforts for fusion energy, so even this
simple scenario is of interest. The ground-truth dynamics model takes in the current �N and PINJ,
the �N and PINJ at some �t time in the past, and the PINJ at some �t time in the future (we assume

18

that we have complete control over the values of PINJ at all times). Given these inputs, the model
was trained to output what �N will be �t time into the future. In total, the state space is 4D and the
action space is 1D. For this environment, we set �t = 200ms, and we specify the reward function to
be the negative absolute difference between the next �N and the target �N = 2%.

� + Rotation Tracking This environment is a more complicated version of the � tracking envi-
ronment in several ways. First of all, the controller now must simultaneously track both �N and
the core toroidal rotation of the plasma. To do so, the controller is also allowed to set the total
torque injected (TINJ) of the neutral beams (DIII-D has eight neutral beam injectors at different
positions around the tokamak, so it is generally possible to control both total power and total torque
independently). Controlling both of these quantities simultaneously is of interest since rotation shear
often results in better confinement and less chance of instabilities in the plasma [8, 25]. In addition,
we assume a multi-task setting where the requested targets for �N and rotation can be set every
trajectory. Specifically, the �N target is drawn from U(1.5%, 2.5%) and the rotation target is drawn
from U(25, 125) krad/s every trajectory. These targets are appended to the state space.

The learned, ground-truth dynamics model is also more sophisticated here. In addition to the inputs
and outputs used by the � tracking environment model, the inputs for this model also include rotation
and TINJ at times t, t � �t, and t + �t for TINJ only. This model receives additional information
about the plasma (e.g. the shape of the plasma); however, we have assumed these inputs are fixed
to reasonable values in order to avoid partial observability problems. In total, the state space of this
problem is 10D (targets plus current and past observations for �N , rotation, PINJ, and TINJ) and the
action space is 2D (next PINJ and TINJ settings).

C.2 Robotics Problems

Pendulum The pendulum swing-up problem is the standard one found in the OpenAI gym [10].
The state space contains the angle of the pendulum and its first derivative and action space simply the
scalar torque applied by the motor on the pendulum. The challenge in this problem is that the motor
doesn’t have enough torque to simply rotate the pendulum up from all positions and often requires a
back-and-forth swing to achieve a vertically balanced position. The reward function here penalizes
deviation from an upright pole and squared torque.

Cartpole The cartpole swing-up problem has 4-dimensional state (position of the cart and its
velocity, angle of the pole and its angular velocity) and a 1-dimensional action (horizontal force
applied to the cart). Here, the difficulty lies in translating the horizontal motion of the cart into
effective torque on the pole. The reward function is a negative sigmoid function penalizing the
distance betweent the tip of the pole and a centered upright goal position.

Reacher The reacher problem simulates a 2-DOF robot arm aiming to move the end effector to
a randomly resampled target provided. The problem requires joint angles and velocities as well
as an indication of the direction of the goal, giving an 8-dimensional state space along with the
2-dimensional control space.

D Additional Results

Due to space constraints in the main paper, we omitted results for the methods sDIP and BPTT. The
are included alongside the rest in Table 6. They are outperformed across the board by TIP.

E Additional Related Work

E.1 Bayesian Exploration Techniques

Given unlimited computation and an accurate prior, solving the Bayes-adaptive MDP [53] gives
an optimal tradeoff between exploration and exploitation by explicitly accounting for the updated
beliefs that would result from future observations and planning to find actions that result in high
rewards as quickly as can be managed given the current posterior. However, this is computationally
expensive even in small finite MDPs and totally intractable in continuous settings. Kolter and Ng

19

Environment TIP sTIP DIP sDIP MPC PETS SAC TD3 PPO FEEF HUCRL TS BPTT BARL EIGT

Pendulum 21 36 36 46 46 5.6k 7k 26k 14k 800 >50k >50k >50k 21 56
Cartpole 131 141 161 141 201 1.63k 32k 18k >1M >2.5k >6k >6k >6k 111 121
� Tracking 46 76 276 131 76 330 12k 17k 39k 300 480 420 450 186 >1k
� + Rotation 201 >500 >500 >500 >500 400 30k >50k >50k >2k >5k >5k >5k >500 >1k
Reacher 251 >400 >1k >1k 751 700 23k 13k >100k >5k 6.6k 4.5k 3.7k 251 >1.5k

Table 6: Sample Complexity Comparison of All Methods: Median number of samples across 5 seeds
required to reach ‘solved’ performance, averaged across 5 trials. We determine ‘solved’ performance by running
an MPC policy (similar to the one used for evaluation) on the ground truth dynamics to predict actions. We record
> n when the median run is unable to solve the problem by the end of training after collecting n datapoints. The
methods in the rightmost section operate in the TQRL setting and therefore have more flexible access to the
MDP dynamics for data collection.

TIP sTIP BARL DIP EIGT MPC
0

25

50

75

100

125

150

175

Sample Complexity on Pendulum

TIP sTIP BARL DIP EIGT MPC
50

100

150

200

250

300

Sample Complexity on Cartpole

TIP sTIP BARL DIP EIGT MPC

200

400

600

800

1000

1200

1400

Sample Complexity on Reacher

TIP sTIP BARL DIP EIGT MPC
0

200

400

600

800

Sample Complexity on � Tracking

TIP sTIP BARL DIP EIGT MPC

200

400

600

800

1000

Sample Complexity on � + Rotation

Figure 4: Box plots showing sample complexity figures across the 5 random seeds run. Each of these
show for a given training run how many samples were needed to achieve the performance of an MPC
controller given ground truth dynamics averaged across test episodes. We imputed the maximum
number of samples for agents that failed to ever solve the problem on a given run.

[35] and Guez et al. [26] show that even approximating these techniques can result in substantial
theoretical reductions in sample complexity compared to frequentist PAC-MDP bounds as in Kakade
[33]. Another line of work [18, 19] uses the myopic value of perfect information as a heuristic for
similar Bayesian exploration in the tabular MDP setting. Further techniques for exploration include
knowledge gradient policies [57, 56], which approximate the value function of the Bayes-adaptive
MDP and information-directed sampling (IDS) [54], which takes actions based on minimizing the
ratio between squared regret and information gain over dynamics. This was extended to continuous-
state finite-action settings using neural networks in Nikolov et al. [44]. Another very relevant recent
paper [7] gives an acquisition strategy in policy space that iteratively trains a data-collection policy
in the model that trades off exploration against exploitation using methods from active learning.
Achterhold and Stueckler [3] use techniques from BOED to efficiently calibrate a Neural Process
representation of a distribution of dynamics to a particular instance, but this calibration doesn’t
include information about the task. A tutorial on Bayesian RL methods can be found in Ghavamzadeh
et al. [24] for further reference.

E.2 Gaussian Processes (GPs) in Reinforcement Learning

There has been substantial prior work using GPs [52] in reinforcement learning. Most well-known is
PILCO [21], which computes approximate analytic gradients of policy parameters through the GP
dynamics model while accounting for uncertainty. The original work is able to propagate the first
2 moments of the occupancy distribution through time using the GP dynamics and backpropagate
gradients of the rewards to policy parameters. In [69], a method is developed for efficiently sampling
functions from a GP posterior with high accuracy. One application show in their work is a method
of using these samples to backpropagate gradients of rewards through time to policy paramters,

20

which can be interpreted as a different sort of PILCO implementation. Most related to our eventual
MPC-based method is [34], which gives a principled probabilistic model-predictive control algorithm
for GPs. We combine ideas from this paper, PETS [15], and the ability to sample posterior functions
discussed above to give our eventual MPC component as discussed in Section 4.1.

21

	Introduction
	Related Work
	Problem Setting
	Trajectory Information Planning
	Model-Predictive Control in Bayesian Model-Based RL
	A Task-Specific Cost Function based on Trajectory Information
	Computational Cost and Implementation Details

	Experiments
	Conclusion
	Implementation Details
	Derivation of Computational Cost
	Wall Times
	GP Model Details
	Cost Function Details
	Details on Planning Method

	Description of Comparison Methods
	Description of Control Problems
	Plasma Control Problems
	Robotics Problems

	Additional Results
	Additional Related Work
	Bayesian Exploration Techniques
	Gaussian Processes (GPs) in Reinforcement Learning

