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Abstract

Large pretrained models can be fine-tuned with differential privacy to achieve
performance approaching that of non-private models. A common theme in these
results is the surprising observation that high-dimensional models can achieve
favorable privacy-utility trade-offs. This seemingly contradicts known results on
the model-size dependence of differentially private convex learning and raises the
following research question: When does the performance of differentially private
learning not degrade with increasing model size? We identify that the magnitudes
of gradients projected onto subspaces is a key factor that determines performance.
To precisely characterize this for private convex learning, we introduce a con-
dition on the objective that we term restricted Lipschitz continuity and derive
improved bounds for the excess empirical and population risks that are dimension-
independent under additional conditions. We empirically show that in private
fine-tuning of large language models, gradients obtained during fine-tuning are
mostly controlled by a few principal components. This behavior is similar to con-
ditions under which we obtain dimension-independent bounds in convex settings.
Our theoretical and empirical results together provide a possible explanation for
the recent success of large-scale private fine-tuning. Code to reproduce our results
can be found at https://github.com/lxuechen/private-transformers/
tree/main/examples/classification/spectral_analysis.

1 Introduction

Recent works have shown that large publicly pretrained models can be differentially privately fine-
tuned on small downstream datasets with performance approaching those attained by non-private
models. In particular, past works showed that pretrained BERT [DCLT18] and GPT-2 [RNSS18,
RWC+19] models can be fine-tuned to perform well for text classification and generation under
a privacy budget of ε ∈ [2, 6] [LTLH21, YNB+21]. More recently, it was shown that pretrained
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ResNets [HZRS16] and vision-Transformers [DBK+20] can be fine-tuned to perform well for
ImageNet classification under single digit privacy budgets [DBH+22, MTKC22].

One key ingredient in these successes has been the use of large pretrained models with millions to
billions of parameters. These works generally highlighted the importance of two phenomena: (i)
large pretrained models tend to experience good privacy-utility trade-offs when fine-tuned, and (ii)
the trade-off improves with the improvement of the quality of the pretrained model (correlated with
increase in size). While the power of scale and pretraining have been demonstrated numerous times
in non-private deep learning [KMH+20], one common wisdom in private learning had been that large
models tend to perform worse. This intuition was based on (a) results in differentially private convex
optimization, most of which predicted that errors would scale proportionally with the dimension of
the learning problem in the worst case, and (b) empirical observations that the noise injected to ensure
privacy tends to greatly exceed the gradient in magnitude for large models [YZCL21a, Kam20].

For instance, consider the problem of differentially private convex empirical risk minimization (ERM).
Here, we are given a dataset of n examples D = {sj}nj=1 ∈ Sn, a convex set K ⊆ Rd (not necessarily
bounded), and the goal is to perform the optimization

minimizex∈KF (x;D) =
1

n

n∑
j=1

f(x; sj)

subject to differential privacy, where f(·; s) is convex over K for all s ∈ S . For bounded K, past works
presented matching upper and lower bounds that are dimension-dependent under the usual Lipschitz
assumption on the objective [BST14, CMS11]. These results seem to suggest that the performance of
differentially private ERM algorithms inevitably degrades with increasing problem size in the worst
case, and present a seeming discrepancy between recent empirical results on large-scale fine-tuning.2

To better understand the relation between problem size and the performance of differentially private
learning, we study the following question both theoretically and empirically:

When does the performance of differentially private stochastic gradient descent
(DP-SGD) not degrade with increasing problem dimension?

On the theoretical front, we show that DP-SGD can result in dimension-independent error bounds
even when gradients span the entire ambient space for unconstrained optimization problems. We
identify that the standard dependence on the dimension of the ambient space can be replaced by
the magnitudes of gradients projected onto subspaces of varying dimensions. We formalize this
in a condition that we call restricted Lipschitz continuity and derive refined bounds for the excess
empirical and population risks for DP-SGD when loss functions obey this condition. We show that
when the restricted Lipschitz coefficients decay rapidly, both the excess empirical and population
risks become dimension-independent. This extends a previous work which derived rank-dependent
bounds for learning generalized linear models in an unconstrained space [SSTT21].

Our theoretical results shed light on the recent success of large-scale differentially private fine-tuning.
We empirically show that gradients of language models during fine-tuning are mostly controlled
by a few principal components — a behavior that is similar to conditions under which we obtain
dimension-independent bounds for private convex ERM. This provides a possible explanation for
the observation that densely fine-tuning with DP-SGD need not necessarily experience much worse
performance than sparsely fine-tuning [LTLH21]. Moreover, it suggests that DP-SGD can be adaptive
to problems that are effectively low-dimensional (as characterized by restricted Lipschitz continuity)
without further algorithmic intervention.

We summarize our contributions below.

(1) We introduce a condition on the objective function that we term restricted Lipschitz continuity.
This condition generalizes the usual Lipschitz continuity notion and gives rise to refined analyses
when magnitudes of gradients projected onto diminishing subspaces decay rapidly.

(2) Under restricted Lipschitz continuity, we present refined bounds on the excess empirical and
population risks for DP-SGD when optimizing convex objectives. These bounds generalize

2We judiciously choose to describe the discrepancy as seeming, since the refined analysis presented in the
current work suggests that the discrepancy is likely non-existent.
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previous dimension-independent results [SSTT21] and are broadly applicable to cases where
gradients are full rank but most coordinates only marginally influence the objective.

(3) Our theory sheds light on recent successes of large-scale differentially private fine-tuning of
language models. We show that gradients obtained through fine-tuning mostly lie in a subspace
spanned by a few principal components — a behavior similar to when optimizing a restricted
Lipschitz continuous loss with decaying coefficients. These empirical results provide a possible
explanation for the recent success of large-scale private fine-tuning.

2 Preliminaries

We define the notation used throughout this work and state the problems of differentially private
empirical risk minimization and differentially private stochastic convex optimization. Finally, we give
a brief recap of differentially private stochastic gradient descent, and existing dimension-dependent
and dimension-independent results in the literature.

Notation & Terminology. For a positive integer n ∈ N+, define the shorthand [n] = {1, . . . , n}.
For a vector x ∈ Rd, denote its ℓ2-norm by ∥x∥2. Given a symmetric M ∈ Rd×d, let λ1(M) ≥
λ2(M) ≥ · · · ≥ λd(M) denote its eigenvalues. Given a positive semidefinite matrix A, let ∥x∥A =
(x⊤Ax)1/2 denote the induced Mahalanobis norm. For scalar functions f and g, we write f ≲ g if
there exists a positive constant C such that f(x) ≤ Cg(x) for all input x in the domain.

2.1 Differentially Private Empirical Risk Minimization and Stochastic Convex Optimization

Before stating the theoretical problem of interest, we recall the basic concepts of Lipschitz continuity,
convexity, and approximate differential privacy.
Definition 2.1 (Lipschitz Continuity). The loss function h : K → R is G-Lipschitz with respect to
the ℓ2 norm if for all x, x′ ∈ K, |f(x)− f(x′)| ≤ G∥x− x′∥2.
Definition 2.2 (Convexity). The loss function h : K → R is convex if h(αx + (1 − α)y) ≤
αh(x) + (1− α)h(y), for all α ∈ [0, 1], and x, y in a convex domain K.
Definition 2.3 (Approximate Differential Privacy [DR+14]). A randomized algorithm M is (ε, δ)-
differentially private if for all neighboring datasets D and D′ that differ by a single record and all sets
O ⊂ range(M), the following expression holds

Pr[M(D) ∈ O] ≤ exp(ε) Pr[M(D′) ∈ O] + δ.

In this work, we study both differentially private empirical risk minimization (DP-ERM) for convex
objectives and differentially private stochastic convex optimization (DP-SCO).

In DP-ERM for convex objectives, we are given a dataset D = {sj}j∈[n] ∈ Sn of n examples. Each
per-example loss f(·; sj) is convex over the convex body K ⊆ Rd and G-Lipschitz. We aim to design
an (ε, δ)-DP algorithm that returns a solution xpriv which approximately minimizes the empirical
risk F (x;D) := 1

n

∑
sj∈D f(x; sj). The term Expriv

[
F (xpriv;D)−minx∈K F (x;D)

]
is referred to

as the excess empirical risk.

In DP-SCO, we assume the per-example loss f(·; s) is convex and G-Lipschitz for all s ∈ S, and
we are given n examples drawn i.i.d. from some (unknown) distribution P . The goal is to design an
(ε, δ)-DP algorithm which approximately minimizes the population risk F (x;P) := Es∼P [f(x; s)].
The term Expriv

[
F (xpriv;P)−minx∈K F (x;P)

]
is referred to as the excess population risk.

2.2 Differentially Private Stochastic Gradient Descent

Differentially Private Stochastic Gradient Descent (DP-SGD) [ACG+16, SCS13] is a popular algo-
rithm for DP convex optimization. For the theoretical analysis, we study DP-SGD for unconstrained
optimization. To facilitate analysis, we work with the ℓ2 regularized objective expressed as

Fα(x;D) =
1

n

n∑
j=1

f(x; sj) +
α

2
∥x− x(0)∥22.
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To optimize this objective, DP-SGD independently samples an example in each iteration and updates
the solution by combining the gradient with an isotropic Gaussian whose scale is proportional to G,
the Lipschitz constant of f . Algorithm 1 presents the pseudocode.

Algorithm 1: DP-SGD for optimizing regularized finite-sum objectives

1 Input: Initial iterate x(0), dataset D = {sj}j∈[n], per-step noise magnitude σ, number of updates
T , learning rate η, Lipschitz constant G of f .

2 for t = 1, . . . , T do
3 jt ∼ Uniform([n])

4 x(t) = x(t−1) − η
(
∇f(x(t−1); sjt) + α(x(t−1) − x(0)) +G · ζt

)
, ζt ∼ N (0, σ2Id)

5 end
6 Return: x def

= 1
T

∑T
t=1 x

(t).

It is straightforward to show that Algorithm 1 satisfies differential privacy. The following lemma
quantifies the overall privacy spending and builds on a long line of work on accounting the privacy
loss of compositions [ACG+16, BBG18].
Lemma 2.4 ([KLL21]). There exists constants c1 and c2 such that for n ≥ 10, ε < c1T/n

2 and

δ ∈ (0, 1
2 ], DP-SGD (Algorithm 1) is (ε, δ)-DP whenever σ ≥ c2

√
T log(1/δ)

εn .

2.3 On the Dimension Dependence of Private Learning

Early works on bounding the excess empirical and population risks for privately optimizing convex
objectives focused on a constrained optimization setup where algorithms typically project iterates
back onto a fixed bounded domain after each noisy gradient update. Results in this setting suggested
that risks are inevitably dimension-dependent in the worst case. For instance, it was shown that
the excess empirical risk bound Θ(G ∥K∥2

√
d log(1/δ)n−1ε−1) and excess population risk bound

Θ(G ∥K∥2 (n−1/2 +
√

d log(1/δ)n−1ε−1)) are tight when privately optimizing convex G-Lipschitz
objectives in a convex domain of diameter ∥K∥2 [BST14]. Moreover, the lower bound instances in
these works imply that such dimension-dependent lower bounds also apply when one considers the
class of loss functions whose gradients are low-rank.

The body of work on unconstrained convex optimization is arguably less abundant, with the notable
result that differentially private gradient descent need not suffer from a dimension-dependent penalty
when learning generalized linear models with low-rank data (equivalently stated, when gradients are
low-rank) [SSTT21]. Our main theoretical results (Theorems 3.3 and 3.5) extend this line of work
and show that dimension-independence is achievable under weaker conditions.

3 Refined Dimension-Dependence via Restricted Lipschitz Continuity

In this section, we formally introduce the restricted Lipschitz continuity condition and derive improved
bounds for the excess empirical and population risks for DP-SGD when optimizing convex objectives.
Definition 3.1 (Restricted Lipschitz Continuity). We say that the loss function h : K → R is
restricted Lipschitz continuous with coefficients G0, . . . , Gd, if for all k ∈ [d], there exists an
orthogonal projection matrix Pk with rank k such that

∥(I − Pk)∇h(x)∥2 ≤ Gk,

for all x ∈ K and all subgradients ∇h(x) ∈ ∂h(x).

Note that any G-Lipschitz function is also trivially restricted Lipschitz continuous with coefficients
G = G0 = G1 = · · · = Gd, since orthogonal projections never increase the ℓ2-norm of a vector
(generally, it is easy to see that G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gd = 0). On the other hand, we
expect that a function which exhibits little growth in subspaces of dimension k to have a restricted
Lipschitz coefficient Gd−k of almost 0.

Our bounds on DP convex optimization will characterize errors through the use of restricted Lipschitz
coefficients. We now summarize the main assumptions before presenting the core theoretical results.
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Assumption 3.2. The per-example loss function f(·; s) is convex and G-Lipschitz continuous for all
s ∈ S. The average loss F (·;D) is restricted Lipschitz continuous with coefficients {Gk}dk=1.

3.1 Bounds for Excess Empirical Loss

We present the main theoretical result on DP-ERM for convex objectives. The result consists of two
pieces: Equation (1) is a general bound that is applicable to any sequence of restricted Lipschitz
coefficients; Equation (2) specializes the previous bound when the sequence of coefficients decays
rapidly and demonstrates dimension-independent error scaling.

Theorem 3.3 (Excess Empirical Loss). Let δ ∈ (0, 1
2 ], and ε ∈ (0, 10]. Under Assumption 3.2, for

any positive integer k ∈ [d], setting T = Θ(n2 + d log2 d), σ = Θ

(√
T log(1/δ)

nε

)
, η =

√
D2

T ·G2
0·kσ2

and α = 1
D

√∑S
s=1 s

22sG2
2s−1k, where S = ⌊log(d/k)⌋+ 1, DP-SGD (Algorithm 1) is (ε, δ)-DP,

and

E
[
F (x;D)−min

x
F (x;D)

]
≲

G0D
√
k log(1/δ)

εn
+D

√√√√ S∑
s=1

s22sG2
2s−1k, (1)

where ∥x(0)−argminx F (x;D)∥2 ≤ D, x is the (random) output of DP-SGD (Algorithm 1), and the
expectation is over the randomness of x. Moreover, if for some c > 1/2, we have Gk ≤ G0k

−c for
all k ∈ [d], and in addition n ≥ ε−1

√
log(1/δ), minimizing the right hand side of (1) with respect

to k yields

E
[
F (x;D)−min

x
F (x;D)

]
≲ G0D ·

(√
log(1/δ)

εn

)2c/(1+2c)

. (2)

We include a sketch of the proof techniques in Section 3.3 and defer the full proof to Appendix A.
Remark 3.4. Consider DP-ERM for learning generalized linear models with convex and Lips-
chitz losses. When the (empirical) data covariance is of rank r < d, the span of gradients
span({∇xF (x)}) is also of rank r. Thus, the average loss is restricted Lipschitz continuous with
coefficients where Gr′ = 0 for all r′ > r. Setting k = r in (1) yields the excess empirical risk
bound of order O

(
G0D

√
r · log(1/δ)ε−1n−1

)
. This recovers the previous dimension-independent

result [SSTT21].

The restricted Lipschitz continuity condition can be viewed as a generalized notion of rank. The
result captured in (2) suggests that the empirical loss achieved by DP-SGD does not depend on the
problem dimension if the sequence of restricted Lipschitz coefficients decays rapidly. We leverage
these insights to build intuition for understanding private fine-tuning of language model in Section 4.

3.2 Bounds for Excess Population Loss

For DP-SCO, we make use of the stability of DP-SGD to bound its generalization error [BE02],
following previous works [BFTT19, BFGT20, SSTT21]. The bound on the excess population loss
follows from combining the bounds on the excess empirical risk and the generalization error.

Theorem 3.5 (Excess Population Loss). Let δ ∈ (0, 1
2 ], and ε ∈ (0, 10]. Under Assumption 3.2,

for any positive integer k ∈ [d], by setting T = Θ(n2 + d log2 d), σ = Θ

(√
T log(1/δ)

nε

)
,

η =
√

D2

T ·G2
0(T/n+kσ2)

and α = 1
D

√∑S
s=1 s

22sG2
2s−1k, where S = ⌊log(d/k)⌋ + 1, DP-SGD

(Algorithm 1) is (ε, δ)-DP, and

E
[
F (x;P)−min

x
F (x;P)

]
≲

G0D√
n

+
G0D

√
k log(1/δ)

εn
+D

√√√√ S∑
s=1

s22sG2
2s−1k,
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where ∥x(0) − argminx F (x;P)∥2 ≤ D, x is the (random) output of DP-SGD (Algorithm 1), and
the expectation is over the randomness of x.

Moreover, if for some c > 1/2, we have Gk ≤ G0k
−c for all k ∈ [d], and in addition n >

ε−1
√
log(1/δ), minimizing the above bound with respect to k yields

E
[
F (x;P)−min

x
F (x;P)

]
≲

G0D√
n

+G0D ·

(√
log(1/δ)

εn

)2c/(1+2c)

.

Remark 3.6. Our result on DP-SCO also recovers the DP-SCO rank-dependent result for learning
generalized linear models with convex and Lipschitz losses [SSTT21].
Remark 3.7. When c > 1/2, ε = Θ(1) and δ = 1/poly(n), the population loss matches the
(non-private) informational-theoretical lower bound Ω(G0D/

√
n) [AWBR09].

Remark 3.8. Our results on DP-ERM and DP-SCO naturally generalize to (full-batch) DP-GD.

3.3 Overview of Proof Techniques

The privacy guarantees in Theorems 3.3 and 3.5 follow from Lemma 2.4. It suffices to prove the utility
guarantees. We give an outline of the main proof technique and defer full proofs to the supplementary.
The following is a sketch of the core technique for deriving (2) in Theorem 3.3.

By convexity, the error term of SGD is upper bounded as follows

fj(x
(t))− fj(x

∗) ≤ ∇fj(x
(t))⊤(x(t) − x∗), (3)

where j ∈ [n] is the random index sampled at iteration t. By definition of Gk, we know that there is a
k dimensional subspace U such that the gradient component orthogonal to U is small when Gk is
small. Naïvely, one decomposes the gradient ∇fj(x

(t)) = g1 + g2, where g1 ∈ U and g2 ∈ U⊥, and
separately bounds the two terms g⊤1 (x

(t) − x∗) and g⊤2 (x
(t) − x∗). Since g1 lies in a k dimensional

subspace, one can follow existing arguments on DP-SGD to bound g⊤1 (x
(t) − x∗). Unfortunately,

this argument does not lead to dimension-independence. Although ∥g2∥2 ≤ Gk (which can be small
for large k), the term ∥x(t)−x∗∥2 can be as large as Ω(

√
d) with high probability due to the isotropic

Gaussian noise injected in DP-SGD. Therefore, the naïve upper bound on |g⊤2 (x(t) − x)| can be as
large O(

√
dGk).

Our key idea is to partition the whole space Rd into ⌊log(d/k)⌋+2 orthogonal subspaces, expressing
the error term ∇fj(x

(t))⊤(x(t) − x∗) as the sum of individual terms each of which corresponds to
a projection to a particular subspace. Fix the positive integer k ≤ d, and consider the following
subspaces: Let U0 = range(Pk), Us be the subspace orthogonal to all previous subspaces such
that

⊕s
i=0 Ui ⊇ range(P2sk) for s = 1, 2, · · · , ⌊log(d/k)⌋, and US be the subspace such that the

orthogonal direct sum of all subspaces {Ui}Si=0 is Rd where S = ⌊log(d/k)⌋ + 1. Here, Pi is
the orthogonal projection matrix with rank i promised by Gi in Assumption 3.2. Let Qs be the
orthogonal projection to the subspace Us. Observe that rank(Qs) ≤ 2sk and ∥Qs∇F (x)∥2 ≤
G2s−1k for all x and all s ≥ 1. Rewriting the right hand side of (3) with this decomposition yields

fj(x
(t))− fj(x

∗) ≤

(
Q0∇fj(x

(t)) +
∑
s

Qs∇fj(x
(t))

)⊤

(x(t) − x∗).

On the one hand, if Gk decays rapidly, ∥Ej [Qs∇fj ]∥2 will be small for large s. On the other hand,
we expect ∥Qs(x

(t) − x∗)∥2 to be small for small s where Qs is an orthogonal projection onto a
small subspace. Thus, for each s, ∇fj(x

(t))⊤Qs(x
(t) − x∗) is small either due to a small gradient

(small Qs∇fj in expectation over the random index) or small noise (small Qs(x
(t) − x∗)), since

noise injected in DP-SGD is isotropic. More formally, in Lemma A.1, we show that for any projection
matrix Q with rank r, ∥Q(x(t) − x(0))∥2 can be upper bounded by a term that depends only on r
(rather than d).

4 Numerical Experiments

The aim of this section is twofold. In Section 4.1, we study a synthetic example that matches
our theoretical assumptions and show that DP-SGD attains dimension-independent empirical and
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population loss when the sequence of restricted Lipschitz coefficients decays rapidly—even when
gradients span the entire ambient space. In Section 4.2, we study a stylized example of privately
fine-tuning large language models. Building on the previous theory, we provide insights as to why
dense fine-tuning can yield good performance.

4.1 Synthetic Example: Estimating the Generalized Geometric Median

We privately estimate the geometric median which minimizes the average Mahalanobis distance.
Specifically, let xi ∈ Rd for i ∈ [n] be feature vectors drawn i.i.d. from some distribution Px, each
of which is treated as an individual record. Denote the entire dataset as D = {xi}ni=1. Subject to
differential privacy, we perform the following optimization

min
x∈Rd

Fα(x) =
1

n

n∑
i=1

fi(x) +
α

2

∥∥∥x− x(0)
∥∥∥2
2
=

1

n

n∑
i=1

∥x− xi∥A +
α

2

∥∥∥x− x(0)
∥∥∥2
2
, (4)

where we adopt the shorthand fi(x) = f(x;xi) = ∥x− xi∥A. When A = Id and α = 0 (without
the regularization term), the problem reduces to estimating the usual geometric median (commonly
known as center of mass).

For this example, individual gradients are bounded since ∥∇fi(x)∥2 = ∥A(x− xi)/∥x− xi∥A∥2 ≤
λ1(A

1/2) = G0. More generally, the restricted Lipschitz coefficients of F (x) are the eigenvalues of
A1/2, since

∥Qk∇F (x)∥2 =

∥∥∥∥∥QkA
1/2 1

n

n∑
i=1

A1/2(x− xi)

∥x− xi∥A

∥∥∥∥∥
2

≤ ∥QkA
1/2∥op = λk+1(A

1/2) = Gk,

where Qk = I − Pk is chosen to be the rank (d− k) orthogonal projection matrix that projects onto
the subspace spanned by the bottom (d− k) eigenvectors of A1/2.

To verify our theory, we study the optimization and generalization performance of DP-SGD for
minimizing (4) under Mahalanobis distances induced by different A as the problem dimension
grows. The optimization performance is measured by the final training error, and the generalization
performance is measured by the population quantity Ex∼Px,x[∥x−x∥A], where x denotes the random
output of DP-SGD. We study the dimension scaling behavior for A being one of

Aconst = diag(1, . . . , 1), Asqrt = diag(1, 1/
√
2, . . . , 1/

√
d), Alinear = diag(1, 1/2, . . . , 1/d),

where diag : Rd → Rd×d maps vectors onto square matrices with inputs on the diagonal. In all cases,
the span of gradients span({∇F (x)}) is the ambient space Rd, since A is of full rank. To ensure
the distance from the initial iterate β(0) = 0 to the optimum is the same for problem instances of
different dimensions, we let feature vectors {xi}ni=1 take zero values in any dimension k > dmin,
where dmin is the dimension of the smallest problem in our experiments. Our theoretical bounds
suggest that when the sequence of restricted Lipschitz coefficients is constant (when A = Aconst), the
excess empirical loss grows with the problem dimension, whereas when the sequence of kth-Lipschitz
constants rapidly decays with k (when A = Asqrt or A = Alinear), the excess empirical loss does
not grow beyond a certain problem dimension. Figure 1 empirically captures this phenomenon. We
include additional experimental setup details in Appendix C.

4.2 Why Does Dense Fine-Tuning Work Well for Pretrained Language Models?

Stated informally, our bounds in Theorem 3.5 imply that DP-SGD obtains dimension-independent
errors if gradients approximately reside in a subspace much smaller than the ambient space. Inspired
by these results for the convex case, we now turn to study dense language model fine-tuning [LTLH21]
and provide a possible explanation for their recent intriguing success — fine-tuning gigantic parameter
vectors frequently results in moderate performance drops compared to non-private learning.

In the following, we present evidence that gradients obtained through fine-tuning mostly lie in a small
subspace. We design subsequent experiments to work under a simplified setup. Specifically, we fine-
tune DistilRoBERTa [SDCW19, LOG+19] under ε = 8 and δ = 1/n1.1 for sentiment classification
on the SST-2 dataset [SPW+13]. We reformulate the label prediction problem as templated text
prediction [LTLH21], and fine-tune only the query and value matrices in attention layers.
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(a) empirical loss
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(b) (estimated) population loss

Figure 1: The empirical and population losses grow with increasing problem dimension when the
sequence of restricted Lipschitz coefficients remain constant. On the other hand, these losses remain
almost constant when the sequence of restricted Lipschitz coefficients decays rapidly. Error bars
represent one standard deviation over five runs of DP-SGD with the same hyperparameters which
were tuned on separate validation data. For the same A, the optimal training error minx∈Rd F (x) is
the same for problem instances with different dimensions (thus errors do not scale if learning was
non-private). Each training run was performed with ε = 2, δ = 10−6, and n = 10000.

We focus on fine-tuning these specific parameter matrices due to the success of LoRA for non-private
learning [HSW+21] which focuses on adapting the attention layers. Unlike LoRA, we fine-tune all
parameters in these matrices rather than focusing on low-rank updates. This gives a setup that is
lightweight enough to run spectral analyses computationally tractably but retains enough parameters
(≈ 7 million) such that a problem of similar scale outside of fine-tuning results in substantial losses in
utility.3 For our setup, DP-SGD obtains a dev set accuracy approximately of 90% and 92%, privately
and non-privately, respectively. These numbers are similar to previous results obtained with the same
pretrained model [YNB+21, LTLH21]. We include the full experimental protocol and additional
results in Appendix D.

To provide evidence for the small subspace hypothesis, we sample gradients during fine-tuning
and study their principal components. Specifically, we “over-train” by privately fine-tuning for
r = 2×103 updates and collect all the non-privatized average clipped gradients along the optimization
trajectory. While fine-tuning for 200 and 2k updates have similar final dev set performance under
our hyperparameters, the increased number of steps allows us to collect more gradients around the
converged solution. This yields a gradient matrix H ∈ Rr×p, where p ≈ 7× 106 is the size of the
parameter vector. We perform PCA for H with the orthogonal iteration algorithm [Dem97] and
visualize the set of estimated singular values σi(H) = λi(H

⊤H)1/2 in terms of both (i) the density
estimate, and (ii) their relation with the rank. Figure 2 (a) shows the top 1000 singular values sorted
and plotted against their rank k and the least squares fit on log-transformed inputs and outputs. The
plot displays few large singular values which suggests that gradients are controlled through only
a few principal directions. The linear fit suggests that singular values decay rapidly (at a rate of
approximately k−0.6).

To study the effects that different principal components have on fine-tuning performance, we further
perform the following re-training experiment. Given the principal components, we privately re-fine-
tune with gradients projected onto the top k ∈ {10, 20, 100} components. Note that this projection
applies only to the (non-privatized) average clipped gradients and the isotropic DP noise is still
applied to all dimensions. Figure 2 (b) shows that the original performance can be attained by
optimizing within a subspace of only dimension k = 100, suggesting that most of the dimensions of
the 7 million parameter vector encode a limited learning signal.

While these empirical results present encouraging insights for the dimension-independent performance
of fine-tuning, we acknowledge that this is not a complete validation of the restricted Lipschitz

3For instance, an off-the-shelf ResNet image classifier has 10 to 20+ million parameters. A plethora of works
report large performance drops when training these models from scratch [YZCL21b, LWAFF21, DBH+22].
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continuity condition and fast decay of coefficients (even locally near the optimum). We leave a more
thorough analysis with additional model classes and fine-tuning tasks to future work.
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Figure 2: Gradients obtained through fine-tuning are controlled by a few principal components. Left:
Singular values decay rapidly with their rank. Right: Retraining with gradients projected onto a
subspace (but noise is not projected!) is sufficient to recover original performance.

5 Related Work

DP-ERM and DP-SCO are arguably the most well-studied areas of differential privacy [CMS11,
KST12, BST14, SCS13, WYX17, FTS17, BFTT19, MRTZ17, ZZMW17, WLK+17, FKT20,
INS+19, BFGT20, STT20, LL21, AFKT21, BGN21, GTU22, GLL22]. Tight dependence on the
number of model parameters and the number of samples is known for both DP-ERM [BST14] and
DP-SCO [BFTT19]. In particular, for the error on general convex losses, an explicit polynomial
dependence on the number of optimization variables is necessary. However, it is shown that if
gradients lie in a fixed low-rank subspace M , the dependence on dimension d can be replaced by
rank(M) which can be significantly smaller [JT14, STT20]. We extend this line of work to show
that under a weaker assumption (restricted Lipschitz continuity with decaying coefficients) one can
obtain analogous error guarantees that are independent of d, but do not require the gradients of
the loss to strictly lie in any fixed low-rank subspace M . As a consequence, our results provide
a plausible explanation for the empirical observation that dense fine-tuning can be effective and
that fine-tuning a larger model under DP can generally be more advantageous in terms of utility
than fine-tuning a smaller model [LTLH21, YNB+21]. A concurrent work shows that the standard
dimension dependence of DP-SGD can be replaced by a dependence on the trace of the Hessian
assuming the latter quantity is uniformly bounded [MMZ22].

A complementary line of work designed variants of DP-SGD that either explicitly or implicitly control
the subspace in which gradients are allowed to reside [AGM+21, LVS+21, ADF+21, KDRT21,
YZCL21b]. They demonstrated improved dependence of the error on the dimension if the true
gradients lie in a “near” low-rank subspace. Our results are incomparable to this line of work because
of two reasons: (i) Our algorithm is vanilla DP-SGD and does not track the gradient subspace
either explicitly or implicitly, and hence does not change the optimization landscape. Our improved
dependence on dimensions is an artifact of the analysis. (ii) Our analytical results do not need the
existence of any public data to obtain tighter dependence on dimensions. All prior works mentioned
above need the existence of public data to demonstrate any improvement.

On the empirical front, past works have observed that for image classification tasks, gradients of
ConvNets converge to a small subspace spanned by the top directions of the Hessian. In addition, this
span remains stable for long periods of time during training [GARD18]. While insightful, this line of
work does not look at language model fine-tuning. Another line of work measures for language model
fine-tuning the intrinsic dimension—the minimum dimension such that optimizing in a randomly
sampled subspace of such dimension approximately recovers the original performance [LFLY18,
AZG20]. We note that a small intrinsic dimension likely suggests that gradients are approximately
low rank. Yet, this statement should not be interpreted as a strict implication, since the notion of
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intrinsic dimension is at best vaguely defined (e.g., there’s no explicit failure probability threshold
over the randomly sampled subspace in the original statement), and the definition involves not a fixed
subspace but rather a randomly sampled one.

6 Conclusion

We made an attempt to reconcile two seemingly conflicting results: (i) in private convex optimization,
errors are predicted to scale proportionally with the dimension of the learning problem; while
(ii) in empirical works on large-scale private fine-tuning through DP-SGD, privacy-utility trade-
offs become better with increasing model size. We introduced the notion of restricted Lipschitz
continuity, with which we gave refined analyses of DP-SGD for DP-ERM and DP-SCO. When the
magnitudes of gradients projected onto diminishing subspaces decay rapidly, our analysis showed
that excess empirical and population losses of DP-SGD are independent of the model dimension.
Through preliminary experiments, we gave empirical evidence that gradients of large pretrained
language models obtained through fine-tuning mostly lie in the subspace spanned by a few principal
components. Our theoretical and empirical results together give a possible explanation for recent
successes in large-scale differentially private fine-tuning.

Given our improved upper bounds on the excess empirical and population risks for differentially
private convex learning, it is instructive to ask if such bounds are tight in the mini-max sense. We
leave answering this inquiry to future work. In addition, while we have presented encouraging
empirical evidence that fine-tuning gradients mostly lie in a small subspace, more work is required to
study the robustness of this phenomenon with respect to the model class and fine-tuning problem.
Overall, we hope that our work leads to more research on understanding conditions under which DP
learning does not degrade with increasing problem size, and more generally, how theory can inform
and explain the practical successes of differentially private deep learning.
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