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Abstract

Information-directed sampling (IDS) has revealed its potential as a data-efficient
algorithm [Lu et al., 2021] for reinforcement learning (RL). However, theoretical
understanding of IDS for Markov Decision Processes (MDPs) is still limited.
We develop novel information-theoretic tools to bound the information ratio and
cumulative information gain about the learning target. Our theoretical results shed
light on the importance of choosing the learning target such that the practitioners
can balance the computation and regret bounds. As a consequence, we derive prior-
free Bayesian regret bounds for vanilla-IDS which learns the whole environment
under tabular finite-horizon MDPs. In addition, we propose a computationally-
efficient regularized-IDS that maximizes an additive form rather than the ratio
form and show that it enjoys the same regret bound as vanilla-IDS. With the aid
of rate-distortion theory, we improve the regret bound by learning a surrogate, less
informative environment. Furthermore, we extend our analysis to linear MDPs and
prove similar regret bounds for Thompson sampling as a by-product.

1 Introduction

Information-directed sampling (IDS) is a design principle proposed by [Russo and Van Roy, 2014,
2018] that optimizes the trade-off between information and regret. Comparing with other design
principles such as UCB and Thompson sampling (TS), IDS can automatically adapt to different
information-regret structures. As a result, IDS demonstrates impressive empirical performance [Russo
and Van Roy, 2018] and outperforms UCB and TS in terms of asymptotic optimality [Kirschner et al.,
2021] and minimax optimality in heteroscedastic bandits [Kirschner and Krause, 2018] and sparse
linear bandits [Hao et al., 2021].

In the context of full RL, mutiple works have examined the empirical performance of IDS [Nikolov
et al., 2018, Lu et al., 2021]. However, formal regret guarantee for IDS is still lacking. IDS minimizes
a notion of information ratio that is the ratio of per-episode regret and information gain about the
learning target. While different choices of the learning target could lead to different regret bounds
and computational methods, the most natural choice is the whole environment and we name the
corresponding IDS as vanilla-IDS.

In this work, we prove the first prior-free Õ(
√
S3A2H4L) Bayesian regret bound for vanilla-IDS,

where S is the size of state space, A is the size of action space, H is the length of episodes and L is
the number of episodes. Computationally, vanilla-IDS needs to optimize over the full policy space,
which is not efficient in general. To facilitate the computation, we consider its regularized form,
named regularized-IDS, that can be solved by any dynamic programming solver. By carefully
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choosing the tunable parameter, we prove that regularized-IDS enjoys the same regret bound as
vanilla-IDS.

Although learning the whole environment offers certain computational advantages, the agent could
take too much information to learn the whole environment exactly. A key observation is that different
states may correspond to the same value function which eventually determines the behavior of
the optimal policy. Through the rate-distortion theory, we construct a surrogate environment that
is less informative to learn but enough to identify the optimal policy. As a result, we propose
surrogate-IDS that takes the surrogate environment as the learning target and prove a sharper
Õ(
√
S2A2H4L) bound for tabular MDPs.

In the end, we extend our analysis to linear MDPs where we must learn a surrogate environment due
to potentially infinitely many states and derive a Õ(dH2

√
T ) Bayesian regret bound that matches the

existing minimax lower bound up to a factor of H . As a by-product of our analysis, we also prove
prior-free Bayesian regret bounds for TS under tabular and linear MDPs.

2 Related work

In general, there are two ways to prove Bayesian regret bounds. The first is to introduce confidence
sets such that the Bayesian regret bounds of TS can match the best possible frequentist regret bounds
by UCB [Russo and Van Roy, 2014] and has been extended to RL by Osband et al. [2013], Osband
and Van Roy [2014], Osband et al. [2019]. However, when the best possible bound for UCB is
sub-optimal (for instance, sparse linear bandits [Hao et al., 2021]), this technique yields a sub-optimal
Bayesian regret bound. In addition, this technique can only be used to analyze TS but not IDS.

The second is to decompose the Bayesian regret into an information ratio term and a cumulative
information gain term and bound them by tools from information theory [Russo and Van Roy, 2016].
This technique can be used to analyze both TS [Dong and Van Roy, 2018, Bubeck and Sellke, 2020]
and IDS in bandits setting [Russo and Van Roy, 2014, Liu et al., 2018, Kirschner et al., 2020b, Hao
et al., 2021, 2022], partial monitoring [Lattimore and Szepesvári, 2019, Kirschner et al., 2020a,
Lattimore and Gyorgy, 2021] but not in RL as far as we know. One exception is Lu and Van Roy
[2019], Lu [2020] who bounded the information ratio for a specific Dirichlet prior with additional
assumptions.

Frequentist regret bounds in episodic RL have received considerable attention recently. For tabular
MDPs, several representative works include UCBVI [Azar et al., 2017], optimistic Q-learning [Jin
et al., 2018], RLSVI [Russo, 2019], UCB-Advantage [Zhang et al., 2020], UCB-MQ [Ménard et al.,
2021]. While our regret bounds are not state of the art, the primary goal of this paper is to broaden
the set of efficient RL design principles known to satisfy

√
T regret bounds.

For linear or linear mixture MDPs, several representative works include LSVI-UCB [Jin et al., 2020],
OPPO [Cai et al., 2020], UCRL-VTR [Ayoub et al., 2020, Zhou et al., 2021], RLSVI [Zanette et al.,
2020]. Notably, Zhang [2021], Dann et al. [2021] derived minimax regret bounds for a variant of
TS. Beyond linear cases, several works consider general function approximation based on Bellman
rank [Jiang et al., 2017], eluder dimension [Wang et al., 2020], Bellman-eluder dimension [Jin et al.,
2021] and bilinear class [Du et al., 2021].

It is worth mentioning the recent impressive work by Foster et al. [2021] who proposed a general
Estimation-to-Decisions (E2D) design principle. Although motivated by different design principles,
E2D shares the similar form as regularized-IDS. On one hand, Foster et al. [2021] mainly
focuses on statistical complexity in a minimax sense, while we offer a specific computationally-
efficient algorithm thanks to the chain rule of mutual information and independent priors and derive
corresponding Bayesian regret bounds. On the other hand, while E2D tends to learn the whole
environment, our theory in Section 5 suggests learning a surrogate environment could yield better
regret bounds.
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3 Preliminary

Finite-horizon MDPs The environment is characterized by a finite-horizon time-inhomogeneous
MDP, which is a tuple E = (S,A, H, {Ph}Hh=1, {rh}Hh=1), where S is the countable state space with
|S| = S, A is the finite action space with |A| = A, H is the episode length, Ph : S × A → ∆S is
the transition probability kernel and rh : S ×A → [0, 1] is the reward function. For a finite set S , let
∆S be the set of probability distributions over S. We assume S, A, rh are known and deterministic
while the transition probability kernel is unknown and random. Throughout the paper, we may write
Ph and rh explicitly depend on E when necessary.

Let Θh = [0, 1]S×A×S be the parameter space of Ph and Θ = Θ1 × · · · ×ΘH be the full parameter
space. We assume ρh is the prior probability measure for Ph on Θh with Borel σ-algebra and
ρ = ρ1 ⊗ · · · ⊗ ρH as the product prior probability measure for the whole environment on Θ with
Borel σ-algebra. This ensures the priors over different layers are independent and the prior is assumed
to be known to the learner.

Interaction protocol An agent interacts with a finite-horizon MDP as follows. The initial state
s`1 is assumed to be fixed over episodes. In each episode ` ∈ [L] and each layer h ∈ [H], the agent
observes a state s`h, takes an action a`h, and receives a reward r`h. Then, the environment evolves to a
random next state s`h+1 according to distribution Ph(·|s`h, a`h). The episode terminates when sH+1 is
reached and is reset to the initial state.

Denote H`,h as the history of episode ` up to layer h, e.g., H`,h = (s`1, a
`
1, r

`
1, . . . , s

`
h, a

`
h, r

`
h) and

the set of such possible history is Ωh =
∏h
i=1(S × A× [0, 1]) . Let D` = (H1,H , . . . ,H`−1,H) as

the entire history up to episode ` with D1 = ∅. A policy π is a collection of (possibly randomised)
mappings (π1, . . . , πH) where each πh maps an element from Ωh−1×S to ∆(A) and Π is the whole
policy class. A stationary policy chooses actions based on only the current state and current layer.
The set of such policies is denoted by ΠS where we denote πh(a|s) as the probability that the agent
chooses action a at state s and layer h.

Value function For each h ∈ [H] and a policy π, the value function V Eh,π : S → R is defined as
the expected value of cumulative rewards received under policy π when starting from an arbitrary
state at hth layer; that is,

V Eh,π(s) := EEπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s

]
,

where EEπ denotes the expectation over the sample path generated under policy π and environment E .
We adapt the convention that V EH+1,π(·) = 0. There always exists an optimal policy π∗ which gives
the optimal value V Eh,π∗(s) = maxπ∈ΠS V

E
h,π(s) for all s ∈ S and h ∈ [H]. Note that in the Bayesian

setting, π∗ is a function of E so it is also a random variable. In addition, we define the action-value
function as follows:

QEh,π(s, a) := EEπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s, ah = a

]
,

which satisfies the Bellman equation: QEh,π(s, a) = rh(s, a) + Es′∼Ph(·|s,a)[V
E
h+1,π(s′)]. Further-

more, we denote the state-action occupancy measure as
dEh,π(s, a) = PEπ(sh = s, ah = a) ,

where we denote PEπ as the law of the sample path generated under policy π and environment E .

Bayesian regret The agent interacts with the environment for L episodes and the total number of
steps is T = LH . The expected cumulative regret of an algorithm π = {π`}L`=1 with respect to an
environment E is defined as

RL(E , π) = E

[
L∑
`=1

(
V E1,π∗(s

`
1)− V E1,π`(s

`
1)
)]

,
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where the expectation is taken with respect to the randomness of π`. The Bayesian regret then is
defined as

BRL(π) = E[RL(E , π)] ,

where the expectation is taken with respect to the prior distribution of E . At each episode, TS finds

π`TS = argmax
π∈Π

V E`1,π(s`1) ,

where E` is a sample from the posterior distribution of E , e.g., E` ∼ P(E ∈ ·|D`) .

Notations Let (Ω,F ,P) as a measurable space. A random variable X is a measureable function
X : Ω → E from a set of possible outcomes Ω to a measurable space E. Now P(X ∈ ·) is
a probability measure that maps from F to [0, 1]. D` is another random variable from Ω to a
measurable space Y . Then P(X ∈ ·|D`) is a probability kernel that maps from Ω×F → [0, 1].

We write P`(·) = P(·|D`), E`[·] = E[·|D`] and also define the conditional mutual information
I`(X;Y ) = DKL(P((X,Y ) ∈ ·|D`)||P(X ∈ ·|D`) ⊗ P(Y ∈ ·|D`)). For a random variable χ we
define:

Iπ` (χ;H`,h) = DKL(P`,π((χ,H`,h) ∈ ·)||P`,π(χ ∈ ·)⊗ P`,π(H`,h ∈ ·)) ,
where P`,π is the law of χ and the history induced by policy π interacting with a sample from the
posterior distribution of E given D`. We define Ē` as the mean MDP where for each state-action pair
(s, a), P Ē`h (·|s, a) = E`[P Eh (·|s, a)] is the mean of posterior measure.

4 Learning the whole environment

The core design of IDS for RL relies on a notion of information ratio. The information ratio for a
policy π at episode ` is defined as

Γ`(π, χ) :=
(E`[V E1,π∗(s`1)− V E1,π(s`1)])2

Iπ` (χ;H`,H)
, (4.1)

where χ is the learning target to prioritize information sought by the agent. The choice of χ plays a
crucial role in designing the IDS and could lead to different regret bounds and computational methods.
We first consider the most natural choice of χ which is the whole environment E .

4.1 Vanilla IDS

Vanilla-IDS takes the whole environment E as the learning target and at the beginning of each
episode, the agent computes a stochastic policy:

π`IDS = argmin
π∈Π

[
Γ`(π) :=

(E`[V E1,π∗(s`1)− V E1,π(s`1)])2

Iπ` (E ;H`,H)

]
. (4.2)

Define the worst-case information ratio Γ∗ such that Γ`(π
`
IDS) ≤ Γ∗ for any ` ∈ [L] almost surely.

The next theorem derives a generic regret bound for vanilla-IDS in terms of Γ∗ and the mutual
information between E and the history.

Theorem 4.1. A generic regret bound for vanilla-IDS is

BRL(πIDS) ≤
√

E[Γ∗]I (E ;DL+1)L .

The proof is deferred to Appendix A.1 and follows standard information-theoretical regret decompo-
sition and the chain rule of mutual information that originally was exploited by Russo and Van Roy
[2014]. For tabular MDPs, it remains to bound the E[Γ∗] and I (E ;DL+1) separately.

Lemma 4.2. The worst-case information ratio for tabular MDPs is upper bounded by

E[Γ∗] ≤ 2SAH3 .
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We sketch the main steps of the proof and defer the full proof to Appendix A.2.

Proof sketch. Since vanilla-IDS minimizes the information ratio over all the policies, we can
bound the information ratio of vanilla-IDS by the information ratio of TS.

• Step one. Our regret decomposition uses the value function based on Ē` as a bridge:

E`
[
V E1,π∗(s

`
1)− V E1,π`

TS
(s`1)

]
= E`

[
V E1,π∗(s

`
1)− V Ē`

1,π`
TS

(s`1)
]

︸ ︷︷ ︸
I1

+E`
[
V Ē`

1,π`
TS

(s`1)− V E1,π`
TS

(s`1)
]

︸ ︷︷ ︸
I2

.

Note that conditional on D`, the law of π`TS is the same as the law of π∗ and both π∗ and
π`TS are independent of Ē`. This implies E`[V Ē`1,π`

TS
(s`1)] = E`[V Ē`1,π∗(s

`
1)].

• Step two. Denote ∆Eh(s, a) = Es′∼PEh (·|s,a)[V
E
h+1,π∗(s

′)] − Es′∼P Ēh (·|s,a)[V
E
h+1,π∗(s

′)] as
the value function difference. Inspired by Foster et al. [2021], with the use of state-action
occupancy measure and Lemma D.3, we can derive

I1 =

H∑
h=1

E`

∑
(s,a)

dĒ`h,π∗(s, a)

(E`[dĒ`h,π∗(s, a)])1/2
(E`[dĒ`h,π∗(s, a)])1/2∆Eh(s, a)

 .
Applying the Cauchy–Schwarz inequality and Pinsker’s inequality (see Eqs. (A.2)-(A.4) in
the appendix for details), we can obtain

I1 ≤
√
SAH3

(
H∑
h=1

E`
[
EĒ`
π`

TS

[
1

2
DKL

(
P Eh (·|s`h, a`h)||P Ē`h (·|s`h, a`h)

)]])1/2

,

where we interchange π`TS and π∗ again and EĒ`
π`

TS
is taken with respect to s`h, a

`
h and E` is

taken with respect to π`TS and E .

• Step three. It remains to establish the following equivalence of above KL-divergence and
the information gain (Lemma A.1):

H∑
h=1

E`
[
EĒ`
π`

TS

[
DKL

(
P Eh (·|sh, ah)||P Ē`h (·|sh, ah)

)]]
= Iπ

`
TS
` (E ;H`,H) .

A crucial step is to use the linearity of the expectation and the independence of priors over
different layers (from the product prior as we assumed in Section 3) to show

P`,π`
TS

(sh−1 = s, ah−1 = a) = PĒ`
π`

TS
(sh−1 = s, ah−1 = a) .

Combining Steps 1-3, we can reach the conclusion and the bound for I2 is similar.

The next lemma directly bounds the mutual information for tabular MDPs.

Lemma 4.3. The mutual information can be bounded by

I(E ;DL+1) ≤ 2S2AH log (SLH) .

The proof relies on the construction of Bayes mixture density and a covering set for KL-divergence
and is deferred to Appendix A.3. Combining Theorem 4.1, Lemmas 4.2 and 4.3 yields the following:

Theorem 4.4 (Regret bound for tabular MDPs). Suppose πIDS = {π`IDS}L`=1 is the vanilla IDS policy.
The following Bayesian regret bound holds for tabular MDPs

BRL(πIDS) ≤
√

8S3A2H4L log(SLH) .

Although this regret bound is sub-optimal, this is the first sub-linear prior-free Bayesian regret bound
for vanilla-IDS.
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Remark 4.5. It is worth mentioning that Lu and Van Roy [2019], Lu [2020] also derived Bayesian
regret bound using information-theoretical tools but only hold for a specific Dirichlet prior as
well other distribution-specific assumptions. Their proof heavily exploits the property of Dirichlet
distribution and can not easily be extended to prior-free regret bounds.

In the context of finite-horizon MDPs, Lu et al. [2021] considered a conditional-IDS such that at
each time step, conditional on s`h, conditional-IDS takes the action according to

πh(·|s`h) = argmin
ν∈∆A

(
E`
[
V Eh,π∗(s

`
h)−QEh,π∗(s`h, Ah)

])2

I`
(
χ; (Ah, QEh,π∗(s

`
h, Ah))

) ,

where Ah is sampled from ν. Conditional-IDS defined the information ratio per-step rather than
per-episode such that it only needs to optimize over action space rather than the policy space. This
offers great computational benefits but there is no regret guarantee for conditional-IDS. Recently,
Hao et al. [2022] has demonstrated the theoretical limitation of conditional-IDS in contextual
bandits.

4.2 Regularized IDS

Computing an IDS policy practically usually involves two steps: 1. approximating the information
ratio; 2. optimizing the information ratio. In bandits where the optimal policy is only a function of
action space, optimizing Eq. (4.2) is a convex optimization problem and has an optimal solution with
at most two non-zero components (Russo and Van Roy [2018, Proposition 6]). However in MDPs
where the optimal policy is a mapping from the state space to the action space, vanilla-IDS needs
to traverse two non-zero components over the full policy space which suggests the computational
time might grow exponentially in S and H .

To overcome this obstacle, we propose regularized-IDS that can be efficiently computed by any
dynamic programming solver and enjoy the same regret bound as vanilla-IDS. At each episode `,
regularized-IDS finds the policy:

π`r-IDS = argmax
π∈Π

E`[V E1,π(s`1)] + λI`
(
E ;Hπ`,H

)
, (4.3)

where λ > 0 is a tunable parameter.

To approximate the objective function in Eq. (4.3), we assume the access to a posterior sampling
oracle.
Definition 4.6 (Posterior sampling oracle). Given a prior over E and history D`, the posterior
sampling oracle, SAMP, is a subroutine which returns a sample from the posterior distribution P`(E).
Multiple calls to the procedure result in independent samples.
Remark 4.7. SAMP can be exactly obtained when the conjugate prior such as Dirichlet distribution
is put on the transition kernel. When one uses neural nets to estimate the model, SAMP can be
approximated by epistemic neural networks [Osband et al., 2021a], a general framework to quantify
uncertainty for neural nets. The effectiveness of different epistemic neural networks such as deep
ensemble, dropout and stochastic gradient MCMC has been examined empirically by Osband et al.
[2021b].

We compute π`r-IDS in two steps:

• Firstly, we prove an equivalent form of the objective function in Eq. (4.3) using the chain
rule of mutual information. Define r′h(s, a) as an augmented reward function:

r′h(s, a) = rh(s, a) + λ

∫
DKL

(
P Eh (·|s, a)||P Ē`h (·|s, a)

)
dP`(E) .

Proposition 4.8. The following equivalence holds

E`[V E1,π(s`1)] + λIπ` (E ;H`,H) = EĒ`π

[
H∑
h=1

r′h(sh, ah)

]
.
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The proof is deferred to Appendix A.4.

• Given SAMP, the augmented reward r′h and the MDP Ē` can be well approximated by Monte
Carlo sampling. Therefore, at each episode `, finding π`r-IDS is equivalent to find an optimal
policy based on a computable and augmented MDP {P Ē`h , r′h}Hh=1. This can be solved
efficiently by any dynamic programming solver such as value iteration or policy iteration.

In the end, we show that π`r-IDS enjoys the same regret bound as vanilla-IDS when the tunable
parameter is carefully chosen.
Theorem 4.9. By choosing λ =

√
LE[Γ∗]/I(E ;DL+1), we have

BRL(πr-IDS) ≤
√

3

2
LE[Γ∗]I(E ;DL+1) .

The proof is deferred to Appendix A.5. Let M1,M2 be upper bounds of E[Γ∗] and I(E ;DL+1)
respectively. In practice, we could conservatively choose λ =

√
LM1/M2 such that BRL(πr-IDS) ≤√

3/2M1M2L. From Lemmas 4.2 and 4.3 for tabular MDPs, we could choose M1 = 2SAH3 and
M2 = 2S2AH log(SLH).
Remark 4.10. Russo and Van Roy [2018, Section 9.3] also considered a tunable version of IDS (for
bandits) but took a square form of E`[V E1,π(s`1)]. While this makes no difference in bandits setting, this
prevented us to use dynamic programming solver in RL setting. We are also inspired by Foster et al.
[2021, Section 9.3] who studied the relationship between information ratio and Decision-Estimation
Coefficient.

5 Learning a surrogate environment

When the state space is large, the agent could take too much information to learn exactly the whole
environment E which is reflected through I(E ;DL+1). A key observation is that different states
may correspond to the same value function who eventually determines the behavior of the optimal
policy. Based on the rate-distortion theory developed in Dong and Van Roy [2018], we reduce this
redundancy and construct a surrogate environment that needs less information to learn.

5.1 A rate distortion approach

The rate-distortion theory [Cover and Thomas, 1991] addresses the problem of determining the
minimal number of bits per symbol that should be communicated over a channel, so that the source
(input signal) can be approximately reconstructed at the receiver (output signal) without exceeding an
expected distortion. It was recently introduced to bandits community to develop sharper bounds for
linear bandits [Dong and Van Roy, 2018] and time-sensitive bandits [Russo and Van Roy, 2022]. We
take a similar approach to construct a surrogate environment.

Surrogate environment Suppose there exists a partition {Θk}Kk=1 over Θ such that for any E , E ′ ∈
Θk and any k ∈ [K], we have

V E1,π∗E (s`1)− V E
′

1,π∗E
(s`1) ≤ ε , (5.1)

where ε > 0 is the distortion tolerance and we write the optimal policy explicitly depending on the
environment. Let ζ be a discrete random variable taking values in {1, . . . ,K} that indicates the
region E lies such that ζ = k if and only if E ∈ Θk. Therefore, ζ can be viewed as a statistic of E and
less informative than E if K is small.

The next lemma shows the existence of the surrogate environment based on the partition.
Lemma 5.1. For any partition {Θk}Kk=1 and any ` ∈ [L], we can construct a surrogate environment
Ẽ∗` ∈ Θ which is a random MDP such that the law of Ẽ∗` only depends on ζ and

E`
[
V E1,π∗E (s`1)− V E1,π`

TS
(s`1)

]
− E`

[
V
Ẽ∗`
1,π∗E

(s`1)− V Ẽ
∗
`

1,π`
TS

(s`1)
]
≤ ε . (5.2)

The concrete form of Ẽ∗` is deferred to Eq. (B.1) in the appendix.
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Surrogate IDS We refer the IDS based on the surrogate environment Ẽ∗` as surrogate-IDS that
minimizes

π`s-IDS = argmin
π∈Π

(E`[V E1,π∗(s`1)− V E1,π(s`1)]− ε)2

Iπ` (Ẽ∗` ;H`,H)
, (5.3)

for some parameters ε > 0 the will be chosen later. Denote the surrogate information ratio of TS as

Γ̃ = max
`∈[L]

(
E`
[
V
Ẽ∗`
1,π∗(s

`
1)− V Ẽ

∗
`

1,π`
TS

(s`1)
])2

Iπ
`
TS
` (Ẽ∗` ;H`,H)

.

We first derive a generic regret bound for surrogate IDS in the following theorem.
Theorem 5.2. A generic regret bound for surrogate IDS is

BRL(πs-IDS) ≤
√
E[Γ̃]I(ζ;DL+1)L+ Lε .

We defer the proof to Appendix B.2. Given ζ, we have Ẽ∗` andH`,H are independent under the law
of P`,π`

s-IDS
. By the data processing inequality, the proof uses the fact that

Iπ
`
s-IDS
` (Ẽ∗` ;H`,H) ≤ Iπ

`
s-IDS
` (ζ;H`,H) .

Comparing with regret bound of vanilla-IDS in Lemma 4.1, the regret bound of surrogate-IDS
depends on the information gain about ζ rather than the whole environment E . If there exists a
partition with small covering number K, the agent could pay less information to learn. The second
term Lε is the price of distortions.

In the following, we will bound the E[Γ̃] and I (ζ;DL+1) for tabular and linear MDPs separately.

5.2 Tabular MDPs

We first show the existence of the partition required in Lemma 5.1 for tabular MDPs and an upper
bound of the covering number K.
Lemma 5.3. There exists a partition {Θε

k}Kk=1 over Θ such that for any k ∈ [K] and E1, E2 ∈ Θε
k,

V E11,π∗E1
(s1)− V E21,π∗E1

(s1) ≤ ε ,

and the log covering number satisfies log(K) ≤ SAH log(4H2/ε).

The proof is deferred to Lemma B.3. For tabular MDPs, the mutual information between ζ and the
history can be bounded by

I(ζ;DL+1) ≤ H(ζ) ≤ log(K) ≤ SAH log(4H2/ε) ,

where H(·) is the Shannon entropy. Comparing with Lemma 4.3 when learning the whole environment,
learning the surrogate environment saves a factor of S through the bound of mutual information.
Lemma 5.4. The surrogate information ratio for tabular MDPs is upper bounded by

E[Γ̃] ≤ 2SAH3 .

The proof is the same as Lemma 4.2 and thus is omitted. Putting Lemmas 5.3-5.4 yields an improved
bound for tabular MDPs using surrogate-IDS.
Theorem 5.5 (Improved regret bound for tabular MDPs). By choosing ε = 1/L, the regret bound of
surrogate-IDS for tabular MDPs satisfies

BRL(πs-IDS) ≤
√

2S2A2H4L log(4HL) .

For tabular MDPs, surrogate-IDS improves the regret bound of vanilla-IDS by a factor of S.
However, it is still away from the minimax lower bound by a factor of

√
SAH . We conjecture

surrogate-IDS can achieve the optimal bound with a price of lower order term but leave it as a
future work.
Remark 5.6. Although the existence of Ẽ∗` is established using a constructive argument, finding Ẽ∗`
needs a grid search and is not computationally efficient.
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5.3 Linear MDPs

We extend our analysis to linear MDPs that is a fundamental model to study the theoretical properties
of linear function approximations in RL. All the proofs are deferred to Appendix B.4-B.5.

Definition 5.7 (Linear MDPs [Yang and Wang, 2019, Jin et al., 2020]). Let φ : S × A → Rd be
a feature map which assigns to each state-action pair a d-dimensional feature vector and assume
‖φ(s, a)‖2 ≤ 1. An MDP is called a linear MDP if for any h ∈ [H], there exist d unknown (signed)
measures ψ1

h, . . . , ψ
d
h over S , such that for any (s, a) ∈ S ×A, we have

Ph(·|s, a) = 〈φ(s, a), ψh(·)〉 ,

where ψh = (ψ1
h, . . . , ψ

d
h). Let us denote ΘLin be the parameter space of linear MDPs and assume

‖
∑
s′ ψh(s′)‖

2
≤ Cψ .

Note that the degree of freedom of linear MDPs still depends on S which implies that I(E ;DL+1)
may still scale with S. Therefore, we must learn a surrogate environment rather than the whole
environment for linear MDPs based on the current regret decomposition in Theorem 4.4. We first
show the existence of a partition over linear MDPs with the log covering number only depending on
the feature dimension d.

Lemma 5.8. There exists a partition {Θε
k}Kk=1 over ΘLin such that for any k ∈ [K] and E1, E2 ∈ Θk,

V E11,π∗E1
(s1)− V E21,π∗E1

(s1) ≤ ε ,

and the log covering number satisfies log(K) ≤ Hd log(H2Cψ/ε+ 1).

For linear MDPs, the mutual information can be bounded by

I(ζ;DL+1) ≤ H(ζ) ≤ log(K) ≤ Hd log(H2Cψ/ε+ 1) .

Lemma 5.9. The surrogate information ratio of linear MDPs is upper bounded by E[Γ̃] ≤ 4H3d .

Theorem 5.10 (Regret bound for linear MDPs). By choosing ε = 1/L, the regret bound of surrogate
IDS for linear MDPs satisfies

BRL(πs-IDS) ≤
√

4H4d2L log(H2CψL+ 1) + 1 .

This Bayesian bound improves the O(d3/2H2
√
L) frequentist regret of LSVI-UCB [Jin et al., 2020]

by a factor of
√
d and matches the existing minimax lower bound O(

√
H3d2L) [Zhou et al., 2021] up

to a H factor. However, we would like to emphasize that this is not an apples-to-apples comparison,
since in general frequentist regret bound is stronger than Bayesian regret bound.

5.4 Regret bounds for TS

As a direct application of our rate-distortion analysis, we provide Bayesian regret bounds for Thomp-
son sampling.

Theorem 5.11. A generic regret bound for TS is

BRL(πTS) ≤
√

E[Γ̃]I(ζ;DL+1)L+ Lε .

This implies for tabular and linear MDPs, TS has the same regret bound as surrogate-IDS. Note
that the computation of TS does not need to involve the surrogate environment Ẽ∗` so once the
posterior sampling oracle is available, computing the policy is efficient. Howevern when the worst-
case information ratio cannot be optimally bounded by the information ratio of TS, IDS demonstrates
better regret bounds than TS, such as bandits with graph feedback [Hao et al., 2022] and sparse linear
bandits [Hao et al., 2021].
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6 Conclusion

In this paper, we derive the first prior-free Bayesian regret bounds for information-directed RL under
tabular and linear MDPs. Theoretically, it will be of great interest to see if any version of IDS can
achieve the O(

√
SAH3L) minimax lower bounds for tabular MDPs.
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