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Abstract

Probabilistic circuits (PCs) are a tractable representation of probability distributions
allowing for exact and efficient computation of likelihoods and marginals. There
has been significant recent progress on improving the scale and expressiveness of
PCs. However, PC training performance plateaus as model size increases. We dis-
cover that most capacity in existing large PC structures is wasted: fully-connected
parameter layers are only sparsely used. We propose two operations: pruning

and growing, that exploit the sparsity of PC structures. Specifically, the pruning
operation removes unimportant sub-networks of the PC for model compression
and comes with theoretical guarantees. The growing operation increases model ca-
pacity by increasing the size of the latent space. By alternatingly applying pruning
and growing, we increase the capacity that is meaningfully used, allowing us to
significantly scale up PC learning. Empirically, our learner achieves state-of-the-art
likelihoods on MNIST-family image datasets and on Penn Tree Bank language data
compared to other PC learners and less tractable deep generative models such as
flow-based models and variational autoencoders (VAEs).

1 Introduction

Figure 1: Histogram of parameter values for a state-
of-the-art PC with 2.18M parameters on MNIST.
95% of the parameters have close-to-zero values.

Probabilistic circuits (PCs) [44, 3] are a uni-
fying framework to abstract from a multitude
of tractable probabilistic models. The key
property that separates PCs from other deep
generative models such as flow-based mod-
els [31] and VAEs [19] is their tractability. It
enables them to compute various queries, in-
cluding marginal probabilities, exactly and ef-
ficiently [45]. Therefore, PCs are increasingly
used in inference-demanding applications such
as enforcing algorithmic fairness [2, 4], making
predictions under missing data [6, 18, 23], data
compression [26], and anomaly detection [13].

Recent advancements in PC learning and reg-
ularization [40, 25], and efficient implementa-
tions [33, 30, 8] have been pushing the limits
of PC’s expressiveness and scalability such that
they can even match the performance of less
tractable deep generative models, including flow-based models and VAEs. However, the performance
of PCs plateaus as model size increases. This suggests that to further boost the performance of PCs,
simply scaling up the model size does not suffice and we need to better utilize the available capacity.
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We discover that this might be caused by the fact that the capacity of large PCs is wasted. As shown in
Figure 1, most parameters in a PC with 2.18M parameters have close-to-zero values, which have little
effect on the PC distribution. Since existing PC structures usually have fully-connected parameter
layers [25, 36], this indicates that the parameter values are only sparsely used.

In this work, we propose to better exploit the sparsity of large PC models by two structure learning
primitives — pruning and growing. Specifically, the goal of the pruning operation is to identify
and remove unimportant sub-networks of a PC. This is done by quantifying the importance of PC
parameters w.r.t. a dataset using circuit flows, a theoretically-grounded metric that upper bounds the
drop of log-likelihood caused by pruning. Compared to L1 regularization, the proposed pruning
operator is more informed by the PC semantics, and hence quantifies the global effects of pruning
much more effectively. Empirically, the proposed pruning method achieves a compression rate of
80-98% with at most 1% drop in likelihood on various PCs.

The proposed growing operation increases the model size by copying its existing components and
injecting noise. In particular, when applied to PCs compressed by the pruning operation, growing
produces larger PCs that can be optimized to achieve better performance. Applying pruning and
growing iteratively can greatly refine the structure and parameters of a PC. Empirically, the log-
likelihoods metric can improve by 2% to 10% after a few iterations. Compared to existing PC
learners as well as less tractable deep generative models such as VAEs and flow-based models, our
proposed method achieves state-of-the-art density estimation results on image datasets including
MNIST, EMNIST, FashionMNIST, and the Penn Tree Bank language modeling task.1

2 Probabilistic Circuits

Probabilistic circuits (PCs) [44, 3] model probability distributions with a structured computation
graph. They are an umbrella term for a large family of tractable probabilistic models including
arithmetic circuits [9, 10], sum-product networks (SPNs) [35], cutset networks [36], and-or search
spaces [28], and probabilistic sentential decision diagrams [21]. The syntax and semantics of PCs are
defined as follows.
Definition 1 (Probabilistic Circuit). A PC C :=(G,✓) represents a joint probability distribution p(X)
over random variables X through a directed acyclic (computation) graph (DAG) G parameterized by
✓. Similar to neural networks, each node in the DAG defines a computational unit. Specifically, the
DAG G consists of three types of units — input, sum, and product. Every leaf node in G is an input
unit; every inner unit n (i.e., sum or product) receives inputs from its children in(n), and computes
output, which encodes a probability distribution pn defined recursively as follows:

pn(x) :=

8
><

>:

fn(x) if n is an input unit,Q
c2in(n) pc(x) if n is a product unit,P
c2in(n) ✓c|n · pc(x) if n is a sum unit,

(1)

where fn(x) is a univariate input distribution (e.g, Gaussian, Categorical), and ✓c|n denotes the
parameter that corresponds to edge (n, c) in the DAG. For every sum unit n, its input parameters sum
up to one, i.e.,

P
c2in(n) ✓c|n = 1. Intuitively, a product unit defines a factorized distribution over its

inputs, and a sum unit represents a mixture over its input distributions with weights {✓c|n :c 2 in(n)}.
Finally, the probability distribution of a PC (i.e., pC) is defined as the distribution represented by its
root unit r (i.e., pr(x)), that is, its output neuron. The size of a PC, denoted |C| = |✓|, is the number
of parameters in C. We assume w.l.o.g. that a PC alternates between layers of sum and product units
before reaching its inputs. Figure 2 shows an example of a PC.

Computing the (log)likelihood of a PC C given a sample x is equivalent to evaluating its computation
units in G in a feedforward manner following Equation 1. The key property that separates PCs from
other deep probabilistic models such as flows [14] and VAEs [19] is their tractability, which is the
ability to exactly and efficiently answer various probabilistic queries. This paper focuses on PCs that
support linear time (w.r.t. model size) marginal probability computation, as they are increasingly used
in downstream applications such as data compression [26] and making predictions under missing
data [18], and also achieve on-par expressiveness [26, 25, 24]. To support efficient marginal inference,
PCs need to be smooth and decomposable.

1Code and experiments are available at https://github.com/UCLA-StarAI/SparsePC.

2

https://github.com/UCLA-StarAI/SparsePC


Z1 X1

Z2 X3

X4X2

(a)

.12

.279

.014

0.4

0.6

.388

.066

X1⇠B(.1)X3⇠B(.2)
.9.8

X1⇠B(.7)X3⇠B(.3)
.3.7

.48

.02

0.8

0.2

0.1

0.9

X2⇠B(.6)

X4⇠B(.8)

.6

.8

X2⇠B(.1)
.1

X4⇠B(.2)
.2

(b)

Figure 2: A smooth and decomposable PC (b) and an equivalent Bayesian network (a). The Bayesian
network is over 4 variables X = {X1, X2, X3, X4} and 2 hidden variables Z = {Z1, Z2} with
h = 2 hidden states. The feedforward computation order is from left to right;

J
are input Bernoulli

distributions,
N

are product units, and
L

are sum units; parameter values are annotated in the box.
The probability of each unit given input assignment {X1=0, X2=1, X3=0, X4=1} is labeled red.

(a) PC with fully connected layers (b) PC after pruning operation (c) PC after growing operation

Figure 3: A demonstration of the pruning and growing operation. From 3a to 3b, the red edges are
pruned. From 3b to 3c, the nodes are doubled, and each parameter is copied 3 times.

Definition 2 (Smoothness and Decomposability [11]). The scope �(n) of a PC unit n is the set of
input variables that it depends on; then, (1) a product unit is decomposable if its children have disjoint
scope; (2) a sum unit is smooth if its children have identical scope. A PC is decomposable if all of its
product units are decomposable; a PC is smooth if all of its sum units are smooth.

Decomposability ensures that every product unit encodes a well-defined factorized distribution over
disjoint sets of variables; smoothness ensures that the mixture components of every sum units are
well-defined over the same set of variables. Both structural properties will be the key to guaranteeing
the effectiveness of the structure learning algorithms proposed in the following sections.

3 Probabilistic Circuit Model Compression via Pruning

Figure 1 shows that most parameters in a large PC are very close to zero. Given that these parameters
are weights associated with mixture (sum unit) components, the corresponding edges and sub-circuits
have little impact on the sum unit output. Hence, by pruning away these unimportant components,
it is possible to significantly reduce model size while retaining model expressiveness. Figure 3b
illustrates the result of pruning five (red) edges from the PC in Figure 3a. Given a PC and a dataset,
our goal is to efficiently identify a set of edges to prune, such that the log-likelihood gap between the
pruned PC and the original PC on the given dataset is minimized.

Pruning by parameters. The parameter value statistics in Figure 1 suggest that a natural criterion
is to prune edges by the magnitude of their corresponding parameter. This leads to the EPARAM (edge
parameters) heuristic, which selects the set of edges with the smallest parameters. However, edge
parameters themselves are insufficient to quantify the importance of inputs to a sum unit in the entire
PC’s distribution. The parameters of a sum unit are normalized to be 1 so they only contain local
information about the mixture components. Specifically, ✓c|n merely defines the relative importance
of edge (n, c) in the conditional distribution represented by its corresponding sum unit n, not the
joint distribution of the entire PC. Figure 4a illustrates what happens when the edge with the smallest
parameter is pruned from the PC in Figure 2.
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(a) EPARAM removes the edge with ✓=0.1
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(b) EFLOW removes the edge with ✓=0.2

Figure 4: A case study comparing pruning heuristics (EPARAM and EFLOW) on the PC in Figure 2
given sample {X1=0, X2=1, X3=0, X4=1}. The pruned edges are dashed and parameters are
re-normalized. Compared to the likelihood computed in Figure 2, the changed likelihoods are in red,
showing that pruning by flows results in less likelihood decrease.

Algorithm 1: PC sampling
Input :a PC representing joint probability pC(X)
Output :an instance x sampled from pC

1 Function SAMPLE(n)

2 if n is a an input unit then
3 fn(X) univariate distribution of n; return sample x⇠fn(X)
4 else if n is a product unit then
5 xc  SAMPLE(c) foreach c 2 in(n); return Concatenate({xc}c2in(n))
6 else n is a sum unit
7 sample an input c⇤ proportional to {✓c|n}c2in(n); return SAMPLE(c⇤)
8 return SAMPLE(r) where r is the root of PC C

However, as shown in Figure 4b, pruning another edge delivers better likelihoods as it accounts more
for the “global influence” of edges on the PC’s output. This global influence is highly related to the
probabilistic “circuit flow” semantics of PCs. We will introduce circuit flows later in this section,
along with their corresponding heuristics EFLOW. Before that, we first introduce an intermediate
concept based on the notion of generative significance of PCs.

Pruning by generative significance. A more informed pruning strategy needs to consider the
global impact of edges on the distribution represented by the output of the PC. To achieve this,
instead of viewing the distribution pC in a feedforward manner following Equation 1, we quantify
the significance of a unit or edge by the probability that it will be “activated” when drawing samples
from the PC. Indeed, if the presence of an edge is hardly ever relevant to the generative sampling
process, removing it will not significantly affect the PC’s distribution.

Algorithm 1 shows how to draw samples from a PC distribution through a recursive implementation:
(1) for an input unit n defined on variable X (line 3), the algorithm randomly samples value x
according to its input univariate distribution; (2) for a product unit (line 5), by decomposability its
children have disjoint scope, thus we draw samples from all input units and then concatenate the
samples together; (3) for a sum unit n (line 7), by smoothness its children have identical scope, thus
we first randomly sample one of its input units according to the categorical distribution defined by
sum parameters {✓c|n : c 2 in(n)}, and then sample from this input unit recursively. Besides actually
drawing samples from the PC, we can also compute the probability that n will be visited during the
sampling process. This provides a good measure of the importance of unit n to the PC distribution as
a whole, which we define as the top-down probability.
Definition 3 (Top-down Probability). The top-down probability of each unit n in a PC with parameters
✓ is defined recursively as follows, assuming alternating sum and product layers:

q(n;✓) :=

8
><

>:

1 if n is the root unit,P
m2out(n) q(m;✓) if n is a sum unit,P
m2out(n) ✓n|m · q(m;✓) if n is a product unit,

where out(n) are the units that take n as input in the feedforward computation. Moreover, the
top-down probability of a sum edge (n, c) is defined as q(n, c;✓) = ✓c|n · q(n;✓).
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(a) Comparison of heuristics ERAND, EPARAM, and
EFLOW. Heuristic EFLOW can prune up to 80% of the
parameters without much loglikelihoods decrease.

(b) Histogram of parameters before (the same as in
Figure 1) and after pruning. The parameter values
take higher significance after pruning.

Figure 5: Empirical evaluation of the pruning operation.

The top-down probability of the root is always 1; a product unit passes its top-down probability to
all its inputs, and a sum unit distributes its top-down probability to its inputs proportional to the
corresponding edge weights. Therefore, the top-down probability of a non-root unit is summing over
all probabilities it receives from its outputs.

The top-down probability of all PC units and sum edges can be computed in a single backward pass
over the PC’s computation graph. Following the intuition that the top-down probability defines the
probability that units will be visited during the sampling process, pruning edges with the smallest
top-down probability constitutes a reasonable pruning strategy.

Pruning by circuit flows. The top-down probability q(n;✓) represents the probability of reaching
unit n in an unconditional random sampling process. Despite its ability to capture global information
of PC parameters, the top-down probability is not tailored to a specific dataset. Therefore, to further
utilize the dataset information, we can measure the probability of reaching certain units/edges in the
sampling process conditioning on some instance x being sampled. To bridge this gap, we define
circuit flow as a sample-dependent version of the top-down probability.
Definition 4 (Circuit Flow2). For a given PC with parameters ✓ and example x, the circuit flow of unit
n on example x is the probability that n will be visited during the sampling procedure conditioned
on x being sampled. This can be computed recursively as follows, assuming alternating sum and
product layers:

Fn(x) =

8
><

>:

1 if n is the root unit,P
m2out(n) Fm(x) if n is a sum unit,

P
m2out(n)

✓n|m·pn(x)
pm(x) · Fm(x) if n is a product unit.

Similarly, the edge flow Fn,c(x) on sample x is defined by Fn,c(x) = ✓c|n · pc(x)/pn(x) · Fn(x).
We further define Fn,c(D) =

P
x2D Fn,c(x) as the aggregate edge flow over dataset D.

Effectively, we can think of ✓xn|m := ✓n|m ·pn(x)/pm(x) as the posterior probability of component n
in the mixture of sum unit m conditioned on observing sample x. Then, circuit flow is the top-
down probability under this ✓x reparameterization of the circuit: Fn(x) = q(n;✓x) and Fn,c(x) =
q(n, c;✓x).

Circuit flow Fn(x) defines the probability of reaching unit n in the top-down sampling procedure of
Algorithm 1, given that the sampled instance is x. Therefore, edge flow Fn,c(x) is a natural metric
of the importance of edge (n, c) given x. Intuitively, the aggregate circuit flow measures how many
expected samples “flow” through certain edges. We write EFLOW to refer to the heuristic that prunes
edges with the smallest aggregate circuit flow.

Empirical Analysis. Figure 5a compares the effect of pruning heuristics EPARAM, EFLOW, as
well as an uninformed strategy, prune randomly, which we denote as ERAND. It shows that both
EPARAM and EFLOW are reasonable pruning strategy, however, as we increase the percentage of

2Earlier work defined “circuit flow” or “expected circuit flow” in the context of parameter learning [4, 25, 7],
without observing the connection to sampling. We contribute its more intuitive sampling semantics here.
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pruned parameters, EFLOW has less log-likelihoods drop compared with EPARAM. Using EFLOW
heuristics we can pruning up to 80% of the parameters without much log-likelihoods drop. As
shown in Figure 5b, the parameter distribution is more balanced after pruning compared to Figure 1,
indicating a higher significance of each edge. Section 6 will provide more empirical results. Before
that, we first theoretically verify the effectiveness of the EFLOW heuristic in the next section.

4 Bounding and Approximating the Loss of Likelihood

In this section, we theoretically quantify the impact of edge pruning on model performance. In
particular, we establish an upper bound on the log-likelihood drop �LL on a given dataset D by
comparing (i) the original PC C and (ii) the pruned PC C\E caused by pruning away edges E :

�LL(D, C, E)=LL(D, C)� LL(D, C\E). (2)
We start from the case of pruning one edge (i.e., |E|= 1 in Equation 2). In this case, the loss of
likelihood can be quantified exactly using flows and edge parameters:
Theorem 1 (Log-likelihood drop of pruning one edge). For a PC C and a dataset D, the loss of

log-likelihood by pruning away edge (n, c) is

�LL(D, C, {(n, c)})= 1

|D|
X

x2D
log

✓
1� ✓c|n

1�✓c|n+✓c|n Fn(x)�Fn,c(x)

◆
 �1|D|

X

x2D
log(1�Fn,c(x)).

See proof in Appendix B.1. By computing the second term in Theorem 1, we can pick the edge with
the smallest log-likelihood drop. Additionally, the third term characterizes the log-likelihood drop
without re-normalizing parameters of ✓·|n. It suggests pruning the edge with the smallest edge flow.
A key insight from Theorem 1 is that the log-likelihood drop depends explicitly on the edge flow
Fn,c(x) and unit flow Fn(x). This matches the intuition from Section 3 and suggests that the circuit
flow heuristic proposed in the previous section is a good approximation of the derived upper bound.

Next, we bound the log-likelihood drop of pruning multiple edges.
Theorem 2 (Log-likelihood drop of pruning multiple edges). Let C be a PC and D be a dataset. For

any set of edges E in C, if 8x2D,
P

(n,c)2E Fn,c(x) < 1, the log-likelihood drop by pruning away E
is bounded and approximated by

�LL(D, C, E)  � 1

|D|
X

x

log(1�
X

(n,c)2E

Fn,c(x)) ⇡
1

|D|
X

(n,c)2E

Fn,c(D). (3)

Figure 6: Comparing the actual loglikeli-
hood drop (�LL) and EFLOW heuristics
(the approximated upper bound in Equa-
tion 3). The approximate bound matches
closely to the actual loglikelihood drop.

Proof of this theorem is provided in Appendix B.2. We
first look at the second term of Equation 3. Although
it provides an upper bound to the performance drop, it
cannot be used as a pruning heuristic since the bound
does not decompose over edges. And hence finding the
set of edges with the lowest score requires evaluating
the bound exponentially many times with respect to the
number of pruned edges. Therefore, we do an additional
approximation step of the bound via Taylor expansion,
which leads to the third term of Equation 3. This ap-
proximation matches the EFLOW heuristic by a constant
factor 1/|D|, which theoretically justifies the effective-
ness of the heuristic. Figure 6 empirically compares the
actual log-likelihood drop and the quantity computed
from the circuit flow heuristic (that is, the approximate
upper bound) for different percentages of pruned parame-
ters. We see that the approximate bound matches closely
to the actual log-likelihood drop.

5 Scalable Structure Learning

The pruning operator improves two aspects of PCs. First, as shown in Figure 5b, model parameters
are more balanced after pruning. Second, pruning removes sub-circuits with negligible contributions
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to the model’s distribution. If we treat PCs as hierarchical mixtures of components, pruning can
be regarded as an implicit structure learning step that removes the “unimportant” components for
each mixture. However, since pruning only decreases model capacity, it is impossible to get a more
expressive PC than the original one. To mitigate this problem, we propose a growing operation to
increase the capacity of a PC by introducing more components for each mixture. Pruning and growing
together define a scalable structure learning algorithm for PCs.

n���

c���c

n

Figure 7: Growing operation. Each unit
is doubled, and each parameterized edge
is copied 3 times: (nnew, cnew) (orange),
(nnew, c) (purple), and (n, cnew) (green).

Growing. Growing is an operator that increases model
size by copying its existing components and injecting
noise. As shown in Figure 3, after applying the grow-
ing operation on the original PC in Figure 3b, we can get
a new grown PC as in Figure 7. Specifically, the growing
operation is applied to units, edges, and parameters respec-
tively: (1) for units, growing operates on every PC unit n
and creates another copy nnew; (2) for edges, the sum edge
(n, c) from the original PC (Figure 3b) are copied three
times to the grown PC (Figure 7): from new parent to new
child (nnew, cnew), from old parent to new child (n, cnew),
and from new parent to old child (nnew, c); product edges
are added to connect the copied version of a product unit
and its copied inputs; (3) a new parameter ✓newc|n is a noisy
copy of an old parameter ✓c|n, that is ✓newc|n  ✏ · ✓c|n where ✏ ⇠ N (1,�2) and �2 controls the
Gaussian noise variance. Gaussian noise is added to the copied parameters to ensure that after we
apply the growing operation, parameter learning algorithms can find diverse parameters for different
copies. After a growing operation, the PC size is 4 times the original PC size. Algorithm 3 in
appendix shows a feedforward implementation of the growing operation.

Structure Learning through Pruning and Growing. The proposed pruning and growing algo-
rithms can be applied iteratively to refine the structure and parameters of an initial PC. Specifically,
since the growing operator increases the number of PC parameters by a factor of 4, applying growing
after pruning 75% of the edges from an initial PC keeps the number of parameters unchanged. We
propose a joint structure and parameter learning algorithm for PCs that uses these two operations.
Specifically, starting from an initial PC, we apply 75% pruning, growing, and parameter learning
iteratively until convergence. We utilize HCLTs [25] as initial PC structure as it has the state-of-the-art
likelihood performance. Note that this structure learning pipeline can be applied to any PC structure.

Parameter Estimation. We use a stochastic mini-batch version of Expectation-Maximization
optimization [2]. Specifically, at each iteration, we draw a mini-batch of samples DB , compute
aggregated circuit flows Fn,c(DB) and Fn(DB) of these samples (E-step), and then compute new
parameter ✓newc|n = Fn,c(DB)/Fn(DB). The parameters are then updated with learning rate ↵:
✓t+1  ↵✓new + (1 � ↵)✓t (M-step). Empirically this approach converges faster and is better
regularized compared to full-batch EM.

Parallel Computation. Existing approaches to scaling up learning and inference with PCs, such as
Einsum networks [33], utilize fully connected parametrized layers (Figure 3a) of PC structures such
as HCLT [25] and RatSPN [34]. These structures can be easily vectorized to utilize deep learning
packages such as PyTorch. However, the sparse structure learned by pruning and growing is not
easily vectorized as a dense matrix operation. We therefore implement customized GPU kernels to
parallelize the computation of parameter learning and inference based on Juice.jl [8], an open-source
Julia package for learning PCs. The kernels segment PC units into layers such that the units in each
layer are independent. Thus, the computation can be fully parallelized on the GPU. As a result, we
can train PCs with millions of parameters in less than half an hour.

6 Experiments

We now evaluate our proposed method pruning and growing on two different sets of density estimation
benchmarks: (1) the MNIST-family image generation datasets including MNIST [22], EMNIST [5],
and FashionMNIST [46]; (2) the character-level Penn Tree Bank language modeling task [27].
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Section 6.1 first reports the best results we get on image datasets and language modeling tasks via
the structure learning procedure proposed in Section 5. Section 6.2 then shows the effect of pruning
and growing operations via two detailed experimental settings. It studies two different constrained
optimization problems: finding the smallest PC for a given likelihood via model compression and
finding the best PC of a given size via structure learning.

Settings. For all experiments, we use hidden Chow-Liu Trees (HCLTs) [25] with the number
of latent states in {16, 32, 64, 128} as initial PC structures. We train the parameters of PCs with
stochastic mini-batch EM (cf. Section 5). We perform early stopping and hyperparameter search
using a validation set and report results on the test set. Please refer to Appendix C for more
details. We use mean test set bits-per-dimension (bpd) as the evaluation criteria, where bpd(D, C) =
�LL(D, C)/(log(2) ·m) and m is the number of features in dataset D.

6.1 Density Estimation Benchmarks

Image Datasets. The MNIST-family datasets contain gray-scale pixel images of size 28⇥28 where
each pixel takes values in [0, 255]. We split out 5% of training data as a validation set. We compare
with two competitive PC learning algorithms: HCLT [25] and RatSPN [34], one flow-based model:
IDF [17], and three VAE-based methods: BitSwap [20], BB-ANS [41], and McBits [38]. For a
fair comparison, we implement RatSPN structures ourselves and use the same training pipeline and
EM optimizer as our proposed method. Note that EinsumNet [33] also uses RatSPN structures but
with a PyTorch implementation so its comparison is subsumed by comparison with RatSPN. All 7
methods are tested on MNIST, 4 splits of EMNIST and FashionMNIST. As shown in Table 1, the
best results are bold. We see that our proposed method significantly outperforms all other baselines
on all datasets, and establishes new state-of-the-art results among PCs, flows, and VAE models. More
experiment details are in Appendix C.

Table 1: Density estimation performance on MNIST-family datasets in test set bpd.
Dataset Sparse PC (ours) HCLT RatSPN IDF BitSwap BB-ANS McBits

MNIST 1.14 1.20 1.67 1.90 1.27 1.39 1.98
EMNIST(MNIST) 1.52 1.77 2.56 2.07 1.88 2.04 2.19
EMNIST(Letters) 1.58 1.80 2.73 1.95 1.84 2.26 3.12
EMNIST(Balanced) 1.60 1.82 2.78 2.15 1.96 2.23 2.88
EMNIST(ByClass) 1.54 1.85 2.72 1.98 1.87 2.23 3.14
FashionMNIST 3.27 3.34 4.29 3.47 3.28 3.66 3.72

Language Modeling Task. We use the Penn Tree Bank dataset with standard processing
from Mikolov et al. [29], which contains around 5M characters and a character-level vocabulary size
of 50. The data is split into sentences with a maximum sequence length of 288. We compare with
three competitive normalizing-flow-based models: Bipartite flow [42] and latent flows [48] including
AF/SCF and IAF/SCF, since they are the only comparable work with non-autoregressive language
modeling. As shown in Table 2, the proposed method outperforms all three baselines.

Table 2: Character-level language modeling results on Penn Tree Bank in test set bpd.
Dataset Sparse PC (ours) Bipartite flow [42] AF/SCF [48] IAF/SCF [48]

Penn Tree Bank 1.35 1.38 1.46 1.63

6.2 Evaluating Pruning and Growing

What is the Smallest PC for the Same Likelihood? We evaluate the ability of pruning based
on circuit flows to do effective model compression by iteratively pruning a k-fraction of the PC
parameters and then fine-tuning them until the final training log-likelihood does not decrease by more
than 1%. Specifically, we take pruning percentage k from {0.05, 0.1, 0.3}. As shown in Figure 8,
we can achieve a compression rate of 80-98% with negligible performance loss on PCs. Besides, by
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fixing the number of latent parameters (x-axis) and comparing bpp across different numbers of latent
states (legend), we discover that compressing a large PC to a get smaller PC yields better likelihoods
compared to directly training an HCLT with the same number of parameters from scratch. This can
be explained by the sparsity of compressed PC structures, as well as a smarter way of finding good
parameters: learning a better PC with larger size and compressing it down to a smaller one.

Figure 8: Model compression via pruning and finetuning. We report the training set bpd (y-axis) in
terms of the number of parameters (x-axis) for different numbers of latent states. For each curve,
compression starts from the right (initial PC #Params |Cinit|) and ends at the left (compressed PC
#Params |Ccom|); compression rate (1 - |Ccom| / |Cinit|) is annotated next to each curve.

What is the Best PC for the Same Size? We evaluate structure learning that combines pruning
and growing as proposed in Section 5. Starting from an initial HCLT, we iteratively prune 75% of
the parameters, grow again, and fine-tune until meeting the stopping criteria. As shown in Figure 9,
our method consistently improve the likelihoods of initial PCs for different numbers of latent states
among all datasets.

Figure 9: Structure learning via 75% pruning, growing and finetuning. We report bpd (y-axis) on
both train (red) and test set (green) in terms of the number of latent states (x-axis). For each curve,
training starts from the top (large bpd) and ends at the bottom (small bpd).

7 Related Work

Improving the expressiveness of PCs has been a central topic in the literature. Predominant works
focus on the structure learning algorithms that iteratively modify PC structures to progressively fit the
data [7, 24, 15]. Alternatively, a recent trend is to construct PCs with good initial structures and only
perform parameter learning afterwards [36, 1, 47]. For example, EiNets [33], RAT-SPNs [34], and
XPCs [12] use randomly generated structures, HCLTs [25] and ID-SPNs [37] define PCs dependent
on the pairwise correlation on variables, and learn direct and indirect variable correlations among
variables. There are also a few works that boost PC performance with the expressive power of neural
networks. CSPNs [39] harness neural networks to learn expressive conditional density estimators,
and HyperSPN [40] utilizes neural networks for better PC regularization.

Pruning and growing have been introduced in deep neural networks to exploit sparsity [16]. Similar
strategies can be adopted in probabilistic circuits. Patil et al. [32] prune decision trees according
to validation accuracy reduction. ResSPNs uses the lottery ticket hypothesis for weight pruning to
gain more compact PCs [43]. However, the neural network pruning methods and above PC pruning
methods mainly focus on pruning by parameters. In contrast to these, our work develops better
pruning strategies based on semantic properties of PCs.

8 Conclusions

We propose structure learning of probabilistic circuits by combining pruning and growing operations
to exploit the sparsity of PC structures. We show significant empirical improvements in the density
estimation tasks of PCs compared to existing PC learners and competing flow-based models and VAEs.
All our Sparse-PC learning and inference algorithms are available as GPU-parallel implementations.
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