
A Appendix

A.1 Algorithms

In this section, we provide the pseudo code of the potential-dependent dropping scheme (Algorithm 1)
and the overall training procedures (Algorithm 2) of SNNs with our proposed methods.

Algorithm 1 Potential-dependent dropping

Input: drop rate pdrop, input X .
Output: dropped input o to the next layer.
Parameter: number of neurons L(n) in layer n.
Training:

1: umax ← max(X)
2: umean ← average(X)
3: for i = 1 to L(n) do
4: ui ← average(Xi(t))
5: pi ← pdrop · umax−ui

umax−umean

6: maski = Bernoulli(pi)
7: for t = 1 to T do
8: oi(t)← maski ·Xi(t)
9: end for

10: end for
11: return o

A.2 Details of Datasets and Training Settings

A.2.1 MNIST

The MNIST dataset contains 60000 images for training and 10000 for testing. Each sample in MNIST
is a gray-scale handwritten digit in size of 28× 28 pixels.

A.2.2 CIFAR10

The CIFAR10 is a collection of 60000 color images, divided into 50000 images for training and
10000 images for testing. All images are equally distributed and labelled as 10 classes. Samples in
CIFAR10 are color images of size 32× 32 and contain 3 RGB channels.

A.2.3 N-MNIST

It is the neuromorphic transformed version of MNIST dataset, composed of event data stored in 2
spike trains per pixel. A saccade moving Dynamic Version Sensor (DVS) is used to capture intensity
change of MNIST pixels displayed on an LCD screen. Intensity increment and decrement are saved
as ON and OFF events in the dataset. Due to the sensor saccade moving, images recorded are slightly
larger than the original MNIST images, in size of 34× 34× 2. Each spike train in N-MNIST lasts
300000µs, and we first reduce the resolution by 1000 times and then divide it into 15 steps. Each
step contains the accumulated events within a period of 20ms in our experiment.

A.2.4 DVS-CIFAR10

DVS-CIFAR10 is converted from its static version CIFAR10. There are 10 classes with 1000 images
each in DVS-CIFAR10. The dataset image consists of 128 × 128 × 2 spike trains and very noisy
background, make it challenging for recognition tasks. We reduce resolution of DVS-CIFAR10 by
1000 times and accumulate events every 20ms.

A.2.5 Loss Function and Optimizer

For all the experiments except N-MNIST in this work, we use cross entropy and stochastic gradient
descent (SGD) optimizer with momentum of 0.9 to calculate the error and iteratively update the
synapses. Specially for N-MNIST dataset, Adam and mean squared error (MSE) are used.
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Algorithm 2 Overall training algorithm

Input: input X , target label vector Y .
Output: layer i synaptic weights Wi, threshold Mi, prediction output P , Q.
Parameter: total number of network layers N , connections within receptive field Wrf .
function NeuronUpdate(u,X, i)

1: for t = 1 to T do
2: u(t) = κu(t− 1) +WiX(t)
3: end for
4: if u(t) ≥Mi then
5: o(t) = 1
6: u(t) = 0
7: else
8: o(t) = 0
9: end if

10: return o
function FCUpdate(u,X, i)
11: for t = 1 to T do
12: u(t) = κu(t− 1) +WiX(t) +Wrfoi(t)
13: end for
14: if u(t) ≥Mi then
15: o(t) = u(t)
16: u(t) = 0
17: else
18: o(t) = 0
19: end if
20: return o
Training:
21: Forward:
22: o1 ← NeuronUpdate(u1, X, i = 1)
23: for i = 2 to N − 2 do
24: oi ← NeuronUpdate(ui, oi−1, i)
25: end for
26: oN−2 ← concatenate(oN−2)
27: oN−1 ← FCUpdate(uN−1, oN−2, N − 1)
28: oN−1 ← PotentialDependentDrop(pdrop, oN−1)
29: oN ← FCUpdate(uN , oN−1, N)
30: P , Q← average(deconcatenate(oN (t)))
31: E ← Loss(P,Q, Y )
32: Backward:
33: ∂L

∂W , ∂L
∂k ← Autograd

Inference:
34: o1 ← NeuronUpdate(u1, X, i = 1)
35: for i = 2 to N − 2 do
36: oi ← NeuronUpdate(ui, oi−1, i)
37: end for
38: for i = N − 1 to N do
39: oi ← FCUpdate(ui, oi−1, i)
40: end for
41: P ← average(deconcatenate(oN (t)))
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A.2.6 Neuron Setting

Neurons in this work share the same decay factor κ = 0.25 and have reset state of 0. As events in
neuromorphic datasets are sparse, we set the overall dropping rate of moderate dropout pdrop = 0.2
for all the experiments so that sufficient spiking neurons can be retained for information processing.

A.2.7 Network Setting

Down sampling layers are used to reduce the feature map size and set with initial output channel =
256 for static datasets and 64 for neuromorphic datasets. Conv pooling layer with kernel size = 3
and stride = 2 is used to reduce the feature map size while maintaining sufficient information of the
original samples. One more Avg pooling layer is used for DVS-CIFAR10 dataset due to its large
sample size. All Conv in dense blocks and transition layers have stride = 1, padding = 1, and
corresponding kernel sizes indicated in Fig. 2. Avg pooling layers in the SNN are configured to have
kernel size = 2 and stride = 2 for reducing feature map sizes. Adaptive avg pooling layer can
ensure output feature is of size 1× 1 to make it manageable for computation. Two FC layers further
reduce the ‘in feature’ to 256 and eventually C, where C is the total number of candidate classes.
Lateral interaction effect with receptive field width drf = 5 is considered in both FC layers. Our
proposed moderate dropout is placed in between the FC layers. In the end, the last output decoding
layer averages the accumulated output potentials followed by the softmax function to give the final
prediction.

A.2.8 Computational Resource

Network models in this work are programmed in Pytroch. All the experiments were conducted on
NVIDIA GeForce RTX 2080 Ti. Some models were trained on multiple GPUs. Detailed information
about number of GPUs we used and batch size for each experiment trial are listed in Tab. 5.

Table 5: Computational resource in experiments.
Model Batch size GPU Total iterations

MNIST (step = 4) 80 2 70
CIFAR10 (step = 2) 64 2 400
CIFAR10 (step = 4) 64 4 400

N-MNIST (step = 15) 40 4 65
DVS-CIFAR10 (step = 7) 40 4 250

A.3 Multiple-trial Experiment Results

Multiple-trial experiments have been conducted and results are reported in Tab. 6, showing the
consistent high performance of our model.

Table 6: Accuracies of LTMD model for different datasets. All values are calculated based on 5 trials.
Model Best record Mean Standard deviation

MNIST (step = 4) 99.60% 99.584% 0.012%
CIFAR10 (step = 4) 94.19% 94.154% 0.0403%

N-MNIST (step = 15) 99.65% 99.614% 0.0206%
DVS-CIFAR10 (step = 7) 73.30% 72.92% 0.319%

A.4 Computational Load of SNN

In Tab. 7, we analyze the training time, number of additions, number of multiplications, and number
of learnable parameters of our SNN on CIFAR10 using 4 timesteps. For ANN, an addition and a
multiplication are combined as multiply-accumulate (MAC) operation and we also provide these
counts in the table. In SNNs, neurons’ outputs are binarized and only one addition operation is needed
if neuron fires. The additions count for SNN is calculated by r× T ×A, where r is the average firing
rate, T is the total timesteps, and A is the addition count in ANN. Average firing rates of neurons
in each layer of SNN with LTMD applied are shown in Fig. 7. It should be noted that our SNN
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Figure 7: Average firing rate of neurons in each layer.

need multiplications because the encoding layer encodes real-value input into spikes and decoding
layer uses neuronal potentials to provide network predictions. The comparison to ANNs indicates
that event-driven SNNs can have significant operation reduction. And the proposed LTMD will only
induce affordable computational load to the system but effectively enhance the performance.

Table 7: The computational load and learnable parameters of SNNs. Percentage increased based on
static thresholding is shown in brackets.

Computational load Static threshold LT LTMD ANN
Training time 5762.92min 5955.76min (+3.35%) 6086.49min (+5.61%)

Learnable parameters 6.82M 6.82M (+0.0015%) 6.82M (+0.0015%)
#Additions 196.83M 214.81M (+9.14%) 212.55M (+7.99%) 648.46M

#Multiplications 28.85M 28.85M (+0%) 28.86M (+0.035%) 648.46M

A.5 Noise Tolerance of Lateral Interactions

To investigate system robustness, we measure normal output decoding (without lateral interaction)
and our model’s performance on test dataset that is appended with Gaussian noise. Tab. 8 shows the
inference accuracies on MNIST test datasets with different level of noise, mean value ranges from 0
to 0.5 with an interval of 0.1.

Table 8: SNN performance under different noise levels.
Model Noise=0 Noise=0.1 Noise=0.2 Noise=0.3 Noise=0.4 Noise=0.5
SNN 99.53% 90.60% 82.33% 75.76% 54.16% 31.56%

SNN&LI 99.60% 96.54% 92.10% 83.61% 69.05% 35.79%

From the table we can conclude that our decoding layer with lateral interaction outperforms the one
without lateral interaction at all noise level situations, especially when noise interference becomes
large.
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