
LTMD: Learning Improvement of Spiking Neural
Networks with Learnable Thresholding Neurons and

Moderate Dropout

Siqi Wang∗
Electrical and Electronic Engineering

Nanyang Technological University
Singapore

siqi002@e.ntu.edu.sg

Tee Hiang Cheng
Electrical and Electronic Engineering

Nanyang Technological University
Singapore

ethcheng@ntu.edu.sg

Meng-Hiot Lim
Electrical and Electronic Engineering

Nanyang Technological University
Singapore

emhlim@ntu.edu.sg

Abstract

Spiking Neural Networks (SNNs) have shown substantial promise in processing
spatio-temporal data, mimicking biological neuronal mechanisms, and saving com-
putational power. However, most SNNs use fixed model regardless of their locations
in the network. This limits SNNs’ capability of transmitting precise information
in the network, which becomes worse for deeper SNNs. Some researchers try to
use specified parametric models in different network layers or regions, but most
still use preset or suboptimal parameters. Inspired by the neuroscience observation
that different neuronal mechanisms exist in disparate brain regions, we propose a
new spiking neuronal mechanism, named learnable thresholding, to address this
issue. Utilizing learnable threshold values, learnable thresholding enables flexible
neuronal mechanisms across layers, proper information flow within the network,
and fast network convergence. In addition, we propose a moderate dropout method
to serve as an enhancement technique to minimize inconsistencies between inde-
pendent dropout runs. Finally, we evaluate the robustness of the proposed learnable
thresholding and moderate dropout for image classification with different initial
thresholds for various types of datasets. Our proposed methods produce superior
results compared to other approaches for almost all datasets with fewer timesteps.
Our codes are available at https://github.com/sq117/LTMD.git.

1 Introduction

Modelled after the impulse communication between biological neurons, spiking neural network
(SNN) is a new class of neural network with neurons exhibiting a distinctive binary output property.
SNNs have shown great potential in event-driven data processing, computation reduction, and network
biological plausibility enhancement. However, unoptimized learning algorithm and complex neuronal
dynamics make it challenging to construct high-performance SNN models.

Current SNN training approaches can generally be divided into two categories: ANN-to-SNN
conversion and SNN direct training algorithms based on gradient descent. Both ways only focus

∗corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/sq117/LTMD.git

on adjusting synaptic connections to minimize the error between a model’s output and target values
with the same neuronal model being used across the whole network. However, it has been found
from neuroscience observations that biological neurons’ dynamics vary with their relative locations
in the brain especially for primates [1, 2]. Therefore, using the same neuronal model across the
whole SNN may limit the SNN’s expression ability as compared to allowing heterogenous neuronal
models to be used in the same SNN. Although some researchers have proposed many techniques
to balance presynaptic inputs and neuronal behaviors, for example, threshold regularization [3]
and spike-based normalization [4], they are either targeting at neuronal state distribution or only
applicable for ANN-to-SNN conversion algorithms.

Dropout [5, 6] is a commonly used regularization methodology to train neural networks. As dropping
neurons are randomly selected, each run of network will lead to the input interacting with different
sub-models, which will cause the results in different runs to deviate unpredictably. Consequently,
a regularization technique is needed to minimize the inconsistencies between output probability
distributions during the training phase to improve the performance.

In this paper, we propose a new learnable thresholding mechanism with a moderate dropout method
to enhance the learning of modulated SNNs. The learnable thresholding mechanism can be integrated
with the backpropagation-based SNN direct training algorithm so that neuronal parameters can be
changed dynamically and self-optimize during training. We adapt the DenseNet architecture and
modify the encoding and decoding layers to make the network suitable for diverse datasets. A new
‘moderate dropout’ technique is developed to minimize inconsistencies between network sub-models
generated in different runs. We demonstrate the proposed methods can enhance the SNN’s stability
and performance through evaluation based on static and neuromorphic datasets. To the best of our
knowledge, our proposed SNNs achieve the best or comparable accuracies for all the datasets tested
compared to other state-of-the-art SNNs.

2 Related Work

2.1 ANN-to-SNN Conversion

ANN-to-SNN conversion [7, 4, 8] aims to convert trained ANNs to SNNs by using rate coding
scheme instead of ReLU activation to represent data flowing inside the network [9]. An ANN of the
same structure will be trained first, followed by adjusting the trained synapses for spatio-temporal
data. Many constraints such as bias term needs to be excluded, and only average pooling should be
used, etc. need to be incorporated in the pre-training [10]. However, this indirect training approach
poses a lot of problems, such as temporal information is disregarded during ANN training, long
delay incurred for encoding presynaptic inputs, etc., which seriously limits the network’s application
spectrum. Furthermore, this training method is inappropriate for neuromorphic datasets since only
spatial data can be utilized.

2.2 Direct-Trained Deep SNNs and Neuronal Model

The other method is to train SNNs directly based on gradient descent by backpropagating errors [11]
in both spatial and temporal dimensions. Various strategies have been proposed to realize gradient
value calculation for non-differentiable spike activation. Some recent works apply pseudo derivative
algorithm to replace the non-differentiable spike triggering part of membrane potential curves with
an auxiliary function and report satisfactory results [12, 13, 14]. As both spatial and temporal
information are used in network training, dataset restrictions will not blight direct training method
as in the ANN-to-SNN conversion approach. In addition, simulation latency can be significantly
shortened because more efficient data encoding schemes can be freely used with gradient descent.

The direct supervised learning methods train SNNs based on event-driven data and gradient descent,
which is scalable and thus suitable for deep SNNs. In [15, 10, 16], several approaches to build
deep SNN with direct learning methods are described. It is pointed out in [9] that information
expressiveness loss attributes to step functional activation causes deep SNNs to suffer performance
degradation. Multiple deep network architectures such as VGG [17], ResNet [18, 9], and DenseNet
[19] have been leveraged to SNNs so that spiking neurons can maintain sufficient information for
transmission.

2

(a) Information transmission between neurons. (b) Potential responses with different thresholds.

Figure 1: Illustration of (a) spiking neuron membrane potential update in LIF model. (b) neuron
responses to the same input when using different threshold values.

Spiking neuronal model plays a crucial role in controlling data transmission in SNNs. Inspired
by biological neurons, some researchers add lateral effect to spiking neurons [20, 13]. Some use
parametric neuronal models for different tasks by making time constant to be learnable [21, 22, 23].
One group proposes a network which contains neurons of adaptive thresholds [24], and another
group makes the potential leaky process to be learnable [25]. Better accuracies and higher network
robustness are demonstrated with these neuronal model improvements.

2.3 Dropout

One critical issue in using backpropagation to update synaptic connections is the gradient vanishing
and exploding problem especially for deep networks. To reduce the degradation effect, numerous
optimization techniques such as regularization [3, 6] and normalization [4, 16] have been designed.
Dropout is one of the widely applied regularization methods to prevent overfitting in deep networks.
Neurons will be retained randomly with certain probability and form multiple sub-models for training,
after which the trained network will be generated based on all these sub-models. Some researchers
modify dropout to make it suitable for spatio-temporal data and successfully apply it on SNNs.
However, as spiking neurons have both spatial and temporal connections, this results in sub-models
to exhibit high level of inconsistencies in different sub-model runs.

3 Methods

In this section, we introduce the learnable thresholding mechanism and moderate dropout and expound
the proposed SNN.

3.1 Leaky Integrate-and-Fire Model with Learnable Thresholding

Spiking neurons are the basic elements for information processing and transmission via alternating
the membrane states in SNNs. Many neuronal models have been proposed by neuroscientists to
simulate biological neurons’ behaviors on computers. Due to the complexity of neuronal dynamics in
real nervous systems, there exists trade-offs between biological plausibility and computational cost in
computer simulation. The Leaky Integrate-and-Fire (LIF) is a simple and pre-eminent mathematical
model for modelling such neuronal behaviors as potential update, spike emission, and state reset. It
can be described as

τ
du(t)

dt
= −u(t) + I(t) (1)

where τ is a time constant which represents how fast a neuron’s potential will decay with time, u(t)
and I(t) are the membrane potential and integrated presynaptic input at time t, respectively. In this
work, we set neurons’ initial states and reset potentials to be zero. Fig. 1a illustrates a neuron’s
different behaviors under presynaptic inputs.

To suit computer simulation, we need to temporally discretize the LIF model and spiking neurons’
states. The following numerical representation of a spiking neuron’s potential states can be derived
from Eq. 1:

ut,n
i = κut−1,n

i (1− ot−1,n
i) +

∑
j∈l(n−1)

Wijo
t,n−1
j (2)

ot,ni = f(ut,n
i) (3)

3

where ut,n
i is the membrane potential of postsynaptic neuron i located in layer n at time t, κ is

the decay factor, ot,n−1
j is the output spike from presynaptic neuron j, and l(n− 1) represents all

presynaptic neurons connected to target i. f(u) is the step functional activation to determine if the
target neuron will fire at current timestep, and f(u) = 1 when u ≥ Vth, otherwise f(u) = 0. Eq. 2
describes the membrane potential update and Eq. 3 introduces how spiking neurons emit new spikes.
In the LIF model, a postsynaptic neuron’s state in the previous timestep and presynaptic inputs from
preceding layers spatio-temporally govern the target neuron’s behaviors.

As SNNs need to use backpropagation to update their parameters, we need to circumvent the obstacle
of nondifferentiable activation function f(u). Hence, we adopt the idea of pseudo derivative and
designate an auxiliary rectangular function to serve as the approximated gradient:

f ′(u) =

{
1, |u− Vth| < 0.5

0, otherwise
(4)

By doing so, our SNNs is endowed with the parameter optimization capability through backpropaga-
tion.

Our learnable thresholding mechanism is developed on the basis of LIF model by specifically
considering the diversities among spiking neurons even if they are in the same network. This means
a neuron’s response depends not only on its internal state but also the threshold level. In order
to investigate the effects of different threshold values on neuronal behaviors, we assume that two
presynaptic neurons are connected with one postsynaptic neuron through synapses of weight w1

and w2, respectively. When the postsynaptic neuron receives input spikes from preceding layers,
its internal state will change accordingly based on the weighted input spike trains and the preset
thresholds. As illustrated in Fig. 1a, two presynaptic neurons are triggered at t = {40, 160}
and {200, 240} respectively. According to Eq. 2, the weighted input to postsynaptic neuron is
I(t) = w1

(
δ(t− 40)+ δ(t− 160)

)
+w2

(
δ(t− 200)+ δ(t− 240)

)
, where δ(t) represents the Dirac

delta function. Fig. 1b depicts the postsynaptic neurons’ responses to the same input I(t) when using
different threshold values, showing a trend of decreasing output spike number and lower system
sensitivity to the external stimulations as threshold value becomes higher. The high sensitivity to the
input helps the system to track small and instant input signals while low sensitivity can enhance the
system’s noise tolerance. Thus, considering the effects of various threshold levels on spiking neurons’
behaviors, our learnable thresholding mechanism can achieve optimal sensitivity using the following
modified neuron response function:

ot,ni = g(ut,n
i ,Mn) (5)

where Mn is the threshold value for neurons in the nth layer. g(u,m) = f(u−m), and f(x) is the
same step function with zero valued threshold and follows Eq. 4.

The main idea of learnable thresholding is to analytically find the comprehensive gradient of the loss
function, ∇L(W,M) = [∂L∂W , ∂L

∂M], and then simultaneously update synaptic connections W and the
neuron’s threshold M until convergence. From Eq. 2, 4, and 5, partial derivatives of the loss function
∂L
∂W and ∂L

∂M can be calculated by

∂L
∂Wn

=

T∑
t=1

∂L
∂ot,n

∂ot,n

∂ut,n

∂ut,n

∂Wn
(6)

∂L
∂Mn

=

T∑
t=1

∂L
∂ot,n

∂ot,n

∂Mn
(7)

The term ∂ot,n

∂Mn in Eq. 7 represents the derivative of a neuron’s output with respect to its threshold.

It can be shown that ∂ot,n

∂Mn = ∂f(ut,n−Mn)
∂Mn = −f ′(ut,n −Mn), whose value is determined by the

auxiliary function’s gradient defined in Eq. 4. It can be seen from the above formulae that there is no
restriction on the threshold value M . If the threshold becomes extremely low or high, a neuron will
keep firing or stay silent when receiving the input from presynaptic neurons, causing difficulties in
transmitting information. To ensure threshold values to stay within an appropriate region, we create a
new parameter k to define M using hyperbolic tangent relation, formulated as M = tanh (k). This
stabilizes neuronal activity by avoiding having too many or too few neurons to fire due to extreme

4

threshold levels. With this, Eq. 7 can be expressed as:

∂L
∂kn

=

T∑
t=1

∂L
∂ot,n

∂ot,n

∂Mn

∂Mn

∂kn
= −

T∑
t=1

∂L
∂ot,n

f ′(ut,n − tanh (kn)
)
sech2 (kn) (8)

With this enhancement, a neuron’s threshold M can be trained iteratively using the backpropagation
method and takes a value within the range (−1, 1). Furthermore, the gradient of the hyperbolic
tangent function becomes very small when k becomes infinitely large or small, ensuring that there
will not be any sudden big change on the threshold value and thus achieves the stabilization effect.
Although some recent works have treated threshold level as variable to introduce heterogeneity to
SNN, grim prerequisites such as neuronal states transformation [26] or pre-defined firing count [27]
are required. Some other STDP-based approaches only work on excitatory neurons [28], leading
to slow convergence and heavy computational load to individually update every neuron’s threshold.
However, the proposed strategy provides an easy approach to grant neuronal thresholds with learning
capability under light computational load and can be freely migrated to other gradient descent-based
SNNs, which is exactly the aim of this paper.

Though setting a lower threshold level may have a similar effect as having higher synaptic weights,
changing threshold values has other benefits, for example, the potential decay curve will not be
stretched and the SNN will not overly depend on a subset of synapses for optimization. In this work,
we apply the learnable thresholding mechanism to all neurons and let neurons in the same layer share
the same threshold to reduce total learnable parameters incurred.

3.2 Input Encoding and Network Architecture

Since SNNs are inherently suitable for processing event-driven data, spike trains in neuromorphic
datasets can be directly fed into SNNs without barrier. However, the situation becomes challenging
for static datasets due to lack of temporal information. Rate coding scheme is widely applied in
ANN-to-SNN conversion and some recent works [29, 6] aim to encode input into serial spikes
generated with certain firing probability that is proportional to the original value. One spiking
neuron can encode maximally T + 1 values into distinguishable spike trains of firing probabilities
{0, 1

T , . . . , 1} within simulation window T . Therefore, the rate coding scheme suffers long latency
due to the inevitably long simulation period for maintaining high precision among inputs of a wide
range. In this work, the first layer serves as the encoding layer that directly receives input data and
then, converts data into spike signals before transmitting to the second layer. In other words, there is
no value-to-spike pre-processing step, inputs from dataset can be liberally fed into the network even
if they are not in spike forms. In this way, we can significantly shorten the simulation window, which
makes it possible to apply our SNN for analysis within several timesteps.

DenseNet is proposed in [19] where network layers are densely connected so that data from preceding
layers can be transmitted to subsequent layers directly through dense connections between neurons.
In this work, we leverage the idea and build our SNNs with DenseNet structure to retain information
from degradation caused by the step activation. Our proposed learnable thresholding method is
applied to all neurons in the network and the normal dropout in fully-connected layers is replaced by
our moderate dropout. A detailed structural illustration of our network is shown in Fig. 2.

3.3 Output Decoding and Lateral Interaction

In some works, the first firing neuron in the output layer indicates the predicted result of the network.
However, as neurons’ states are temporally discretized in simulation, there exists a situation in which
more than one output neurons will fire together at the same timestep. To avoid such a situation,
we choose to use a neuron’s potential value instead of firing state for prediction. In this manner, a
network will choose the neuron with the highest internal state as output even if multiple neurons are
triggered simultaneously.

A neuron’s internal state is determined by both environmental stimulus and local effects of its
neighboring neurons. Excitatory and inhibitory interactions within the receptive field are termed as
the lateral interaction property of neurons. Lateral interaction was first introduced to explain an optical
phenomenon that color contrast will be exaggerated to form simultaneous contrast by visual systems
when two color blocks of slightly different gray levels start to connect with each other. Lateral
interactions can avoid information overload by dampening input from some neurons and enhancing

5

Figure 2: Network architecture of the proposed SNNs. The schematic represents data transmission
in one timestep, Nfc, Ndb, and αi(αdb) are the number of fully-connected layers, total dense block
number, and layer iterations in each dense block.

input from others. In this respect, it is used to sharpen the image and enhance system noise tolerance
capability. In this work, we consider the lateral interactions among neurons in fully-connected layers
to enhance system robustness and plausibility. A neuron’s state is dominated by two components:
potential update triggered by previous state or preceding neurons, and interaction with its neighboring
neurons in the same layer. Membrane potential of spiking neurons in fully-connected layers and
neuron’s output can be derived from Eq. 2 and 3 as follows:

ut,n
i = κut−1,n

i

(
1− f(ut−1,n

i)
)
+

∑
j∈lfc(n−1)

Wijo
t,n−1
j +Wrfo

t−1,n
rf (9)

ot,n =

{
ut,n, n ∈ lfc
f(ut,n), otherwise

(10)

where the term Wrfo
t−1,n
rf represents lateral interaction between the target neuron and its surrounding

neurons, and lfc(n− 1) is a set of neurons connected to the target neuron i in fully-connected layer
(n − 1). Wrf is a matrix of lateral interaction learnable weights, whose size defines the width of
the receptive field. As aforementioned, the proposed network uses potential or spike as output in
different layers, following Eq. 10. By integrating the lateral interaction mechanism, the robustness of
the network will be ameliorated because the noise effect vanishes when neuron interactions in a larger
area are considered, especially for neuromorphic datasets that suffer from greater noise disturbances.

3.4 Moderate Dropout

Noting that highly deviatory sub-models generated by dropout will be integrated and scaled, which
may inhibit the constructed SNN’s performance. In our SNN, the last-layer neurons’ time-averaged
potentials can be treated as the probabilities of classifying input pattern to each potential class. As
such, we propose the moderate dropout that aims to minimize inconsistencies between different
sub-models’ output probability distributions. The Kullback-Leibler (KL) divergence score is used
to measure the inconsistence in the output probability distributions of different network runs as
illustrated in Fig. 3. With P and Q being the averaged probability distributions over the entire
simulation period on the same probability space, KL divergence is defined as

DKL(P ∥ Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
(11)

We compare sub-models’ output distributions and incorporate the divergence into the overall loss
of the network to minimize the inconsistencies between output distributions. Therefore, the overall
loss function comprises the loss of actual output distributions against the target labels and the KL
divergence loss between different distributions output by the same model with moderate dropout.

It can be observed from Eq. 11 that the KL divergence, depicting the relative entropy of P with respect
Q, is asymmetric in nature, such that DKL(P ∥ Q) ̸= DKL(Q ∥ P). In this respect, we involve

6

Figure 3: Illustration of KL divergence between different runs of SNN sub-models. Each row of
frames represents one sub-model’s temporally unfolded architecture after neuron dropping. P and Q
are two averaged sub-model output distributions over the entire simulation period T .

both divergences in the network loss calculation. Furthermore, we use one additional parameter γ to
control the impact of moderate dropout in the overall loss function as follows:

Loverall =
1

2
(LP + LQ) + γ

(
DKL(P ∥ Q) +DKL(Q ∥ P)

)
(12)

From the discussion on dropout, it can be seen that the probability p in which neurons are obscured
from the fully-connected layers are stipulated before training and will be kept fixed throughout
the training phase when drawing from the Bernoulli distribution. However, this does not take into
account the membrane potential values of the neurons before deciding to drop from the network,
leading to possible scenarios where essential neurons with high potential are temporarily eliminated
from the network. Especially in our SNNs, the potential values are directly used to represent the
neurons’ states in fully-connected layers. The dropping probability of neurons should be accorded
some flexibility for alteration taking into consideration the neuronal membrane potential values
so that neurons processing larger membrane values can have smaller dropping probabilities. If a
neuron i in fully-connected layer n has a membrane value of un

i , and un
i lies in a distribution with

un
i ∈ (un

min, u
n
max), where un

min and un
max correspond to the minimum and maximum potential

values of neurons in that layer respectively, we can derive the following equation to transform and
scale up the potential value un

i and use it to compute the corresponding dropping probability pni .

pni = pdrop ·
un
max − un

i

un
max − un

mean

(13)

Eq. 13 ensures that a neuron’s transformed dropping probability is inversely proportional to its
membrane potential and the average dropping probability of all neurons in the same layer equals
to the drop rate pdrop, which has been defined before training. In this regard, neuron dropping
probabilities can be altered throughout the training phase, with larger potentials denoting smaller
probabilities, rather than being preset before training in conventional dropout. With the creation of
potential-dependent probability tensor, this can be subsequently placed into the Bernoulli distribution
to generate binary masks for different sub-models. KL divergence between the different output
distributions from sub-model runs is incorporated into the loss function according to Eq. 12, with the
overall objective being to minimize the loss, leading to increased consistencies among different runs
of the network.

7

Table 1: SNN structural parameters.
Dataset Ndb α1 α2 α3 α4 Nfc

Static 3 12 12 24 - 2
Neuromorphic 4 6 12 24 16 2

Table 2: Classification accuracies comparison among proposed methods and state-of-the-art records
on various datasets. Number of timesteps and the highest accuracies achieved are highlighted in
italics (in parentheses) and bold.

Model Method MNIST CIFAR10 N-MNIST DVS-CIFAR10
[31] ANN-to-SNN 98.37% 82.95% - -
[7] ANN-to-SNN - 77.43% - -

[32] ANN-to-SNN - - 95.72% -
[33] ANN-to-SNN - 89.32% - -
[34] ANN-to-SNN 99.10% - - -
[35] ANN-to-SNN 99.44% 88.82% - -
[4] ANN-to-SNN - 91.55% - -

[36] ANN-to-SNN - 93.63% - -
[37] Random Forest - - - 31.00%
[38] SKIM - - 92.87% (360) -
[39] HATS - - - 52.40%
[40] DART - - - 65.78%
[41] Streaming rollout ANN - - - 66.75%
[3] Direct training - - 98.74% (300) -

[15] Hybrid direct training 99.28% (175) - - -
[12] Direct training 99.42% (30) 50.70% (30) 98.78% (30) -
[42] Hybrid direct training 99.49% (400) - 98.88% (500) -
[30] Direct training 99.62% (400) - - -
[10] Direct training - 90.53% (12) 99.53% (8) 60.50% (8)
[16] Direct training - 93.16% (6) - 67.80% (10)
[6] Direct training 99.59% (50) 90.95% (100) 99.09% (100) -

[13] Direct training 99.50% (20) - 99.45% (20) -
[43] Direct training 99.46% (25) - 99.39% (25) -
[44] Direct training - - 96.30% (120) 32.2% (80)
[9] Direct training - - - 70.2% (8)

LTMD Direct training 99.60% (4) 94.19% (4) 99.65% (15) 73.30% (7)

4 Experiment

We evaluate our proposed learnable thresholding and moderate dropout by testing our deep SNNs
of DenseNet architecture for classification tasks using both static and neuromorphic datasets. We
demonstrate the superiority of our methods in terms of inference accuracies and simulation timesteps
by comparing it with other state-of-the-art SNN approaches.

4.1 Empirical Evaluation

Due to the simplicity of MNIST, we specially create an 5-layer fully-connected SNN (input-conv1-
pool1-conv2-pool2-conv3-pool3-fc1-fc2-output) for this dataset. All the other datasets are tested with
deep-layer SNNs of DenseNet architecture. Detailed structures of the DenseNet SNNs we build are
listed in Tab. 1.

We implement the proposed methods in our deep SNNs and test their accuracies for classification tasks
on both static MNIST, CIFAR10 datasets, and neuromorphic N-MNIST, DVS-CIFAR10 datasets. We
set the initial threshold parameter k = 0.5 and moderate dropout impact factor γ = 0.5 for all the
datasets. Dataset description, network parameters, and setting details are given in Appendix. The
results we obtained are shown in Tab. 2, it can be seen that our SNNs outperforms other state-of-
the-art SNNs for all datasets except MNIST. Although our inference accuracy for MNIST is slightly
lower than [30], our SNN achieves a comparable result with much fewer timesteps needed. This
makes our proposed SNN suitable for fast data analysis.

8

Table 3: Inference results using proposed methods.
Dataset LIF LT LTMD

MNIST (step = 4) 99.53% 99.57% 99.60%
CIFAR10 (step = 2) 92.88% 93.51% 93.75%

N-MNIST (step = 15) 99.55% 99.58% 99.65%
DVS-CIFAR10 (step = 7) 71.30% 72.30% 73.30%

10 30 50 70

Epochs

99.3

99.4

99.5

99.6

A
cc

u
ra

cy

LIF

LT

LTMD

(a) MNIST.

80 160 240 320 400

Epochs

90

91

92

93

94

A
cc

u
ra

cy

LIF

LT

LTMD

(b) CIFAR10.

10 20 35 50 65

Epochs

98.8

99

99.2

99.4

99.6
99.7

A
cc

u
ra

cy

LIF

LT

LTMD

(c) N-MNIST.

30 50 100 150 200 250

Epochs

50

55

60

65

70

73

A
cc

u
ra

cy

LIF

LT

LTMD

(d) DVS-CIFAR10.

Figure 4: Inference accuracies with proposed methods implemented. Moving averages of 5 or 20
epoches are used in (a)/(c) and (b)/(d). Light-color curves are the original data.

The number of timesteps used in previous works and ours are compared in Tab. 2. It can be seen
from the table that our SNNs use much fewer timesteps in training and inferencing compared to other
SNNs (whether based on ANN-to-SNN conversion or backpropagation) and our proposed methods
can significantly improve the performance of SNNs in many few timesteps. As a result, our proposed
SNNs not only have a lower respond latency but also need less memory space due to the reduced
temporal states of neurons.

4.2 Simulation Study

In this section, we conduct a series of comprehensive simulation studies to evaluate the effects of the
proposed learnable thresholding and moderate dropout. We train SNNs with LIF and learnable thresh-
olding neurons respectively, followed by integrating moderate dropout. Then, we test and compare
the proposed SNNs’ inference capabilities. As can be observed from Tab. 3 and Fig. 4, accuracies
and convergence speed improve after using learnable thresholding, and are further enhanced with
moderate dropout.

We show the change in network inference result during training to evaluate the effect of different
initial threshold values on our network performance. Fig. 5 shows the high robustness of our proposed
SNNs that comprise learnable thresholding neurons.

To analyze how thresholds change during network convergence, in Fig. 6, we use an 8-layer fully-
connected SNN with 4 different initial thresholds to classify CIFAR10 dataset and plot the threshold
update curves of neurons in different layers during training. It can be seen from the figure that
although different initial threshold values are used, the neurons’ threshold curves tend to converge
after training with learnable thresholding. This shows the robustness of SNNs with learnable
thresholding implemented to the initial threshold setting. Additionally, it can be seen that threshold

80 160 240 320 400

Epochs

89

90

91

92

93

94

A
cc

u
ra

cy

LIF

Learnable Thresholding

(a) CIFAR10 with k =
0.5.

20 100 200 300 400

Epochs

70

75

80

85

90

94

A
cc

u
ra

cy

LIF

Learnable Thresholding

(b) CIFAR10 with k = 0.

20 50 100 150 200 250

Epochs

35

45

55

65

73

A
cc

u
ra

cy

Learnable Thresholding

LIF

(c) DVS-CIFAR10 with
k = 0.5.

20 50 100 150 200 250

Epochs

35

45

55

65

73

A
cc

u
ra

cy

Learnable Thresholding

LIF

(d) DVS-CIFAR10 with
k = 0.

Figure 5: Inference accuracies of LIF and learnable thresholding on different datasets with various
initial thresholds.

9

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.7

T
h
re

sh
o
ld

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.8

1

T
h
re

sh
o
ld

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.8

1

T
h
re

sh
o
ld

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.8

1

T
h
re

sh
o
ld

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.8

1

T
h
re

sh
o
ld

0 50 100 150 200 250

Epochs

0

0.2

0.4

0.6

0.8

1

T
h
re

sh
o
ld

Figure 6: Thresholds change of different layers during network training with different initial threshold
parameter k.

Table 4: Performance evaluation of LTMD with ResNet and VGG architectures.
SNN architecture LIF LT LTMD

ResNet19 91.97% 93.59% 93.78%
VGG16 91.68% 92.10% 92.35%

values increase as the network goes deeper, indicating that information can pass through shallow-
layer neurons to maintain sufficient data flow and be filtered by deep-layer neurons to extract useful
information for classification.

The proposed learnable thresholding scheme is based on gradient descent method to update neuronal
thresholds, which is always functionable when the activation gradient exists among network layers.
And the moderate dropout scheme is a network stability enhancement strategy to be implemented
to replace the original normal dropout in the model. Consequently, these proposed methods are not
restricted to SNNs based on DenseNet architecture. We further conduct ablation study to evaluate
effect of the proposed LTMD on network performance with ResNet and VGG architectures. The
experimental results are shown in Tab. 4. Consistent performance improvement triggered by the
proposed methods can be observed from this table, which verifies the generalized effectiveness of
LTMD.

5 Conclusion

In this work, we propose learnable thresholding to endow spiking neurons with the ability of self-
optimizing their threshold values during training and moderate dropout to enhance model stability by
minimizing inconsistencies between output probability distributions in different sub-model runs. We
construct deep SNNs based on DenseNet architecture and incorporate the aforementioned methods
and obtaining promising results. Our proposed SNNs achieve higher accuracies for almost all the
test datasets with significantly fewer timesteps required, which reflect their excellent classification
capability and low system latency. We demonstrate higher robustness and faster convergence to the
initial threshold for the learnable thresholding mechanism compared to using normal LIF neurons.
The proposed methods’ generalized effectiveness is also illustrated. Last but not least, we show that
SNNs with learnable thresholding neurons have higher thresholds in deep layers after training to
constraint the number of firing neurons, which proves the neuronal heterogeneity and helps to reduce
the amount of computation.

10

References
[1] Deco, G., J. Cruzat, M. L. Kringelbach. Brain songs framework used for discovering the relevant timescale

of the human brain. Nature communications, 10(1):1–13, 2019.

[2] Wang, S., T. H. Cheng, M. H. Lim. A hierarchical taxonomic survey of spiking neural networks. Memetic
Computing, 14(3):335–354, 2022.

[3] Lee, J. H., T. Delbruck, M. Pfeiffer. Training deep spiking neural networks using backpropagation.
Frontiers in neuroscience, 10:508, 2016.

[4] Sengupta, A., Y. Ye, R. Wang, et al. Going deeper in spiking neural networks: VGG and residual
architectures. Frontiers in neuroscience, 13:95, 2019.

[5] Srivastava, N., G. Hinton, A. Krizhevsky, et al. Dropout: A simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[6] Lee, C., S. S. Sarwar, P. Panda, et al. Enabling spike-based backpropagation for training deep neural
network architectures. Frontiers in neuroscience, page 119, 2020.

[7] Cao, Y., Y. Chen, D. Khosla. Spiking deep convolutional neural networks for energy-efficient object
recognition. International Journal of Computer Vision, 113(1):54–66, 2015.

[8] Yu, Q., C. Ma, S. Song, et al. Constructing accurate and efficient deep spiking neural networks with
double-threshold and augmented schemes. IEEE Transactions on Neural Networks and Learning Systems,
2021.

[9] Fang, W., Z. Yu, Y. Chen, et al. Deep residual learning in spiking neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

[10] Wu, Y., L. Deng, G. Li, et al. Direct training for spiking neural networks: Faster, larger, better. In
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pages 1311–1318. 2019.

[11] Thiele, J. C., O. Bichler, A. Dupret. Spikegrad: An ann-equivalent computation model for implementing
backpropagation with spikes. arXiv preprint arXiv:1906.00851, 2019.

[12] Wu, Y., L. Deng, G. Li, et al. Spatio-temporal backpropagation for training high-performance spiking
neural networks. Frontiers in neuroscience, 12:331, 2018.

[13] Cheng, X., Y. Hao, J. Xu, et al. LISNN: Improving spiking neural networks with lateral interactions for
robust object recognition. In IJCAI, pages 1519–1525. 2020.

[14] Perez-Nieves, N., D. Goodman. Sparse spiking gradient descent. Advances in Neural Information
Processing Systems, 34, 2021.

[15] Lee, C., P. Panda, G. Srinivasan, et al. Training deep spiking convolutional neural networks with STDP-
based unsupervised pre-training followed by supervised fine-tuning. Frontiers in neuroscience, 12:435,
2018.

[16] Zheng, H., Y. Wu, L. Deng, et al. Going deeper with directly-trained larger spiking neural networks. arXiv
preprint arXiv:2011.05280, 2020.

[17] Simonyan, K., A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[18] He, K., X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778. 2016.

[19] Huang, G., Z. Liu, L. Van Der Maaten, et al. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 4700–4708. 2017.

[20] She, X., S. Dash, D. Kim, et al. A heterogeneous spiking neural network for unsupervised learning of
spatiotemporal patterns. Frontiers in Neuroscience, 14:1406, 2021.

[21] Fang, W., Z. Yu, Y. Chen, et al. Incorporating learnable membrane time constant to enhance learning of
spiking neural networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2661–2671. 2021.

[22] Zimmer, R., T. Pellegrini, S. F. Singh, et al. Technical report: Supervised training of convolutional spiking
neural networks with PyTorch. arXiv preprint arXiv:1911.10124, 2019.

11

[23] Yin, B., F. Corradi, S. M. Bohté. Effective and efficient computation with multiple-timescale spiking
recurrent neural networks. In International Conference on Neuromorphic Systems 2020, pages 1–8. 2020.

[24] Bellec, G., D. Salaj, A. Subramoney, et al. Long short-term memory and learning-to-learn in networks of
spiking neurons. Advances in neural information processing systems, 31, 2018.

[25] Rathi, N., K. Roy. DIET-SNN: Direct input encoding with leakage and threshold optimization in deep
spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.

[26] Meng, Q., M. Xiao, S. Yan, et al. Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12444–12453. 2022.

[27] Kim, T., S. Hu, J. Kim, et al. Spiking neural network (SNN) with memristor synapses having non-linear
weight update. Frontiers in computational neuroscience, 15:646125, 2021.

[28] Hao, Y., X. Huang, M. Dong, et al. A biologically plausible supervised learning method for spiking neural
networks using the symmetric STDP rule. Neural Networks, 121:387–395, 2020.

[29] Yu, Q., H. Tang, K. C. Tan, et al. A brain-inspired spiking neural network model with temporal encoding
and learning. Neurocomputing, 138:3–13, 2014.

[30] Zhang, W., P. Li. Spike-train level backpropagation for training deep recurrent spiking neural networks.
Advances in neural information processing systems, 32, 2019.

[31] Hunsberger, E., C. Eliasmith. Spiking deep networks with LIF neurons. arXiv preprint arXiv:1510.08829,
2015.

[32] Neil, D., S.-C. Liu. Effective sensor fusion with event-based sensors and deep network architectures. In
2016 IEEE International Symposium on Circuits and Systems (ISCAS), pages 2282–2285. IEEE, 2016.

[33] Esser, S. K., P. A. Merolla, J. V. Arthur, et al. Convolutional networks for fast, energy-efficient neuromor-
phic computing. Proceedings of the national academy of sciences, 113(41):11441–11446, 2016.

[34] Diehl, P. U., G. Zarrella, A. Cassidy, et al. Conversion of artificial recurrent neural networks to spiking
neural networks for low-power neuromorphic hardware. In 2016 IEEE International Conference on
Rebooting Computing (ICRC), pages 1–8. IEEE, 2016.

[35] Rueckauer, B., I.-A. Lungu, Y. Hu, et al. Conversion of continuous-valued deep networks to efficient
event-driven networks for image classification. Frontiers in neuroscience, 11:682, 2017.

[36] Han, B., G. Srinivasan, K. Roy. RMP-SNN: Residual membrane potential neuron for enabling deeper
high-accuracy and low-latency spiking neural network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13558–13567. 2020.

[37] Orchard, G., C. Meyer, R. Etienne-Cummings, et al. HFirst: A temporal approach to object recognition.
IEEE transactions on pattern analysis and machine intelligence, 37(10):2028–2040, 2015.

[38] Cohen, G. K., G. Orchard, S.-H. Leng, et al. Skimming digits: Neuromorphic classification of spike-
encoded images. Frontiers in neuroscience, 10:184, 2016.

[39] Sironi, A., M. Brambilla, N. Bourdis, et al. HATS: Histograms of averaged time surfaces for robust
event-based object classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1731–1740. 2018.

[40] Ramesh, B., H. Yang, G. Orchard, et al. DART: Distribution aware retinal transform for event-based
cameras. IEEE transactions on pattern analysis and machine intelligence, 42(11):2767–2780, 2019.

[41] Kugele, A., T. Pfeil, M. Pfeiffer, et al. Efficient processing of spatio-temporal data streams with spiking
neural networks. Frontiers in Neuroscience, 14:439, 2020.

[42] Jin, Y., W. Zhang, P. Li. Hybrid macro/micro level backpropagation for training deep spiking neural
networks. arXiv preprint arXiv:1805.07866, 2018.

[43] Fang, H., A. Shrestha, Z. Zhao, et al. Exploiting neuron and synapse filter dynamics in spatial temporal
learning of deep spiking neural network. arXiv preprint arXiv:2003.02944, 2020.

[44] Liu, Q., H. Ruan, D. Xing, et al. Effective AER object classification using segmented probability-
maximization learning in spiking neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pages 1308–1315. 2020.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Our methods will induce a bit

more computational load, please see Appendix A.4
(c) Did you discuss any potential negative societal impacts of your work? [No] There is

no potential negative societal impacts of this work
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.
(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3.1, 3.3,

and 3.4.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See the pseudo
code provided in Appendix A.1.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Hyperparameters settings are provided in Appendix A.2.5, A.2.6,
and A.2.7. Full details can be found in code.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We ran experiments for multiple times and please see
Tab. 6 in Appendix A.3 for details.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Number and type of GPUs used in
this work are listed in Tab. 5 in Appendix A.2.8.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	ANN-to-SNN Conversion
	Direct-Trained Deep SNNs and Neuronal Model
	Dropout

	Methods
	Leaky Integrate-and-Fire Model with Learnable Thresholding
	Input Encoding and Network Architecture
	Output Decoding and Lateral Interaction
	Moderate Dropout

	Experiment
	Empirical Evaluation
	Simulation Study

	Conclusion

