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Abstract

Sliced Wasserstein distances preserve properties of classic Wasserstein distances
while being more scalable for computation and estimation in high dimensions. The
goal of this work is to quantify this scalability from three key aspects: (i) empirical
convergence rates; (ii) robustness to data contamination; and (iii) efficient com-
putational methods. For empirical convergence, we derive fast rates with explicit
dependence of constants on dimension, subject to log-concavity of the population
distributions. For robustness, we characterize minimax optimal, dimension-free ro-
bust estimation risks, and show an equivalence between robust sliced 1-Wasserstein
estimation and robust mean estimation. This enables lifting statistical and al-
gorithmic guarantees available for the latter to the sliced 1-Wasserstein setting.
Moving on to computational aspects, we analyze the Monte Carlo estimator for the
average-sliced distance, demonstrating that larger dimension can result in faster
convergence of the numerical integration error. For the max-sliced distance, we
focus on a subgradient-based local optimization algorithm that is frequently used in
practice, albeit without formal guarantees, and establish an O(ϵ−4) computational
complexity bound for it. Our theory is validated by numerical experiments, which
altogether provide a comprehensive quantitative account of the scalability question.

1 Introduction

Sliced Wasserstein distances consider the average or maximum of Wasserstein distances between
one-dimensional projections of the two distributions. Formally, for 1 ≤ p <∞, they are defined as

Wp(µ, ν) :=

[∫
Sd−1

Wp
p(p

θ
♯µ, p

θ
♯ν)dσ(θ)

]1/p
and Wp(µ, ν) := max

θ∈Sd−1
Wp(p

θ
♯µ, p

θ
♯ν), (1)

where pθ♯µ is the pushforward of µ under the projection pθ : x 7→ θ⊺x from Rd to R and σ is the
uniform distribution on the unit sphere Sd−1 in Rd. Sliced Wasserstein distances were introduced
in [49] as a means to mitigate the computational burden of evaluating classic Wp, which rapidly
becomes excessive as d grows. Indeed, sliced distances are readily computable using the closed-form
expression for Wp between distributions on R (as the Lp norm between quantile functions). Further,
Wp and Wp are metrics on Pp(Rd) and generate the same topology as classic Wp [10, 44, 6, 42]. As
such, the sliced distances have been applied to various statistical inference and machine learning tasks,
including barycenter computation [49, 9], generative modeling [18, 17, 44, 58], autoencoders [29],
differential privacy [50], Bayesian computation [41] and topological data analysis [12].
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1.1 Statistical, Robustness, and Computational Aspects of Sliced Distances

In practice, the sliced Wasserstein distances in (1) must be approximated from two aspects: (i) empiri-
cally estimate the population measures µ and ν, and (ii) employ numerical integration or optimization
methods to compute the average- or max-sliced distances, respectively. While these approximations
are implemented in all but every application of sliced distances, formal guarantees concerning their
accuracy are partial or even missing. For the estimation error, the question boils down to quantifying
the rate at which Wp(µ̂n, µ) and Wp(µ̂n, µ) decay to 0, where µ̂n is the empirical distribution of n
independent observations from µ.1 These rates are known to adapt to the low-dimensionality of the
projected distribution, but previously derived rates do not seem to be sharp [35], rely on high-level
assumptions that may be hard to verify in practice [47], or hide dimension-dependent constants
whose characterization is crucial for understanding the scalability of sliced distances [42]. More
recently, [37] showed that near-parametric rates (i.e., up to polylogarithmic factors) are achievable
for the average-sliced p-Wasserstein distance in the two-sample case, under the alternative (µ ̸= ν).
Limit distributions for sliced Wasserstein distances were studied in [37, 21, 60, 59], but these results
inherently neglect constants and dependence on dimension.

Concerning robust estimation, while these aspects were studied for classic Wasserstein distances
[4, 45, 40, 30, 53, 46], they were not considered under sliced Wp. Improvement in robustness to
outliers due to projection-averaging was demonstrated for the Cramér-von Mises statistic in the
context of multivariate two-sample testing [27]. It therefore stands to reason that similar gains
would emerge for Wasserstein distances, which is especially appealing since robust estimation of
classic Wp in high dimensions is hard. Indeed, [46] showed that when an ϵ-fraction of data is
contaminated, Wp admits worst-case estimation risk

√
dϵ1/p−1/2 over distributions with bounded

covariance. Consequently, obtaining accurate estimates of Wp from contaminated data is infeasible
in high dimensions when ϵ = Ω(1), which further motivates exploring robustness under slicing.

From the computational standpoint, the average-sliced distance Wp is typically computed using Monte
Carlo (MC) integration [28, 42]. The accuracy of this approach strongly depends on the variance of the
function θ 7→ Wp

p(p
θ
♯µ, p

θ
♯ν) when θ is uniformly distributed on Sd−1, which may scale badly with d.

A bound on the MC integration error in terms of this variance was provided in [42] but without further
analysis to control it by basic properties of the population distribution or characterize its dependence
on d. Accordingly, the accuracy of the MC-based approach for computing Wp stands unresolved.
Recently, [43] used the conditional central limit theorem [51] to derive a Gaussian approximation
of W2 that can be computed in closed form. The accuracy of this approximation may improve as
d → ∞, contingent on certain weak dependence assumptions on the data distribution. A popular
approach for computing the max-sliced distance is the heuristic alternating optimization procedure
from [28, 17], which, however, lacks formal convergence guarantees. More recently, computational
aspects of the so-called “projection-robust” Wasserstein distance, which considers projections to
k-dimensional subspaces, were explored in [48, 34, 25].2 As maximization of projected distance is a
non-convex and non-smooth optimization problems, these works considered convex relaxations [48]
or entropic regularization [34, 25] to prove approximate convergence to a stationary point.

1.2 Contributions

The goal of this paper is to close the aforementioned gaps by (i) deriving fast empirical convergence
rates for sliced distances with explicit dimension dependence; (ii) characterizing minimax optimal
robust estimation rates with improved dependence on dimension; and (iii) providing formal guarantees
for frequently used methods for computing both the average- and max-sliced Wp. Focusing on log-
concave distributions, we show that both average- and max-sliced empirical distances converge as
n−1/max{2,p}, which is sharp as it matches lower bounds from [8]. Furthermore, we characterize
the constant in terms of d and elementary properties of the population distribution (e.g., mean,
moments, covariance matrix). Our derivation leverages the machinery of [8] for analyzing empirical
convergence of Wasserstein distances between log-concave measures on R. To that end, we show that
log-concavity is preserved under projections and derive lower bounds on the Cheeger constant of the
projected distribution. Our results elucidate scaling rates of d with n for which (high-dimensional)
empirical convergence holds true, thereby addressing the scalability of empirical estimates question.

1The two-sample setting, which concerns the convergence Wp(µ̂n, ν̂n) and Wp(µ̂n, ν̂n) towards the corre-
sponding distance between the population measures, is also of interest.

2Despite the name “projection-robust”, these works do not explore robust estimation.
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For robustness guarantees, we formalize minimax risk for robust estimation under sliced Wp with total
variation (TV) contamination and prove that Wp enjoys a dimension-free risk of ϵ1/p−1/q when clean
distributions have bounded qth moments for q > p and the corruption level is at most ϵ. Wp admits
a strictly smaller risk which scales at the same rate when q = O(1). In contrast, the comparable
risk for classic Wp in this setting acquires an extra

√
d factor. Using the framework of generalized

resilience [61], we extend these guarantees to the finite-sample setting with adversarial corruptions,
obtaining matching rates up to an added empirical approximation term. Furthermore, when p = 1,
we prove equivalence between standard mean resilience [55] and resilience w.r.t. W1, allowing one to
lift statistical and algorithmic guarantees for robust mean estimation to the sliced W1 setting.

Lastly, we provide formal guarantees for popular methods for computing Wp and Wp, which were
until now lacking. Our analysis relies on showing that wp : θ 7→ Wp(p

θ
♯µ, p

θ
♯ν) and its pth power

are Lipschitz continuous on Sd−1 and deriving sharp bounds on their Lipschitz constants. Having
that, we analyze the MC estimator for the average-sliced distance, and use concentration of Lipschitz
functions on the unit sphere to bound the variance of wpp . The obtained bound reveals that higher
dimension can in fact shrink the MC error when the covariance matrices have bounded operator
norms. We numerically verify this surprising observation on synthetic examples.

For the max-sliced distance, we analyze the heuristic algorithm from [17, 28], which utilizes alternat-
ing subgradient-based optimization. We observe that in addition to being Lipschitz continuous, the
optimization objective for p = 2 is weakly convex with easily computable gradients. This lets us cast
the algorithm from [17, 28] under the proximal stochastic subgradient optimization framework of [14],
from which we obtain local solutions for w2(θ) withO(ϵ−4) computational complexity. An empirical
comparison with the more advanced approaches of [34, 25] for computing the projection-robust
Wasserstein distance (with k = 1 to match the sliced framework) based on Riemannian optimization
reveals that our subgradient-based method is significantly faster in terms of iteration complexity and
computation time. We also consider global optimization by showing that Wp computation matches
the framework of [36] for Lipschitz function optimization over convex domains. Adapting their LIPO
algorithm to our problem, we obtain a provably consistent algorithm for computing Wp. However,
the number of function evaluations that LIPO requires grows exponentially with dimension, which
renders the locally optimal subgradient method preferable when dimension is large.

2 Background and Preliminaries

Notation. We use ∥ · ∥ for the Euclidean norm in Rd. The operator norm for matrices is ∥ · ∥op.
The unit sphere in Rd is denoted by Sd−1, while Bd is the unit ball. Let P(Rd) denote the space of
Borel probability measures on Rd equipped with the TV metric ∥µ − ν∥TV = 1

2 |µ − ν|(Rd), and
set Pp(Rd) := {µ ∈ P(Rd) :

∫
∥x∥pdµ(x) < ∞} for 1 ≤ p < ∞. The support of µ ∈ P(Rd)

is denoted as spt(µ), and we write µ ≤ ν for setwise inequality. For for a measurable map f , the
pushforward of µ under f is denoted as f♯µ = µ ◦ f−1, i.e., if X ∼ µ then f(X) ∼ f♯µ. For two
numbers a and b, we use the notation a ∧ b = min{a, b} and a ∨ b = max{a, b}. The distance
between a set S and a point x in a metric (X , d) space is defined as dist(x, S) := infy∈S d(x, y).

Some of our results assume log-concavity of the population distribution. A probability measure
µ ∈ P(Rd) is log-concave if for every nonempty compact sets A,B ⊂ Rd and λ ∈ [0, 1], we have
µ
(
λA+(1−λ)B

)
≥ µ(A)λµ(B)1−λ. A probability density function f on Rd is called log-concave

if for every x, y ∈ Rd and λ ∈ [0, 1], it satisfies f
(
λx + (1 − λ)y

)
≥ f(x)λf(y)1−λ. Any non-

degenerate distribution is log-concave if and only if it has a log-concave density [11, Theorem 1.1].
For β ∈ (0, 2], let ψβ(t) = et

β − 1 for t ≥ 0, and recall that the corresponding Orlicz (quasi-)norm
of a real-valued random variable X is defined as ∥X∥ψβ

:= inf{c > 0 : E[ψβ(|X|/c)] ≤ 1}. A
Borel probability measure µ ∈ P(Rd) is called sub-Gaussian if ∥∥X∥∥ψ2 <∞ for X ∼ µ.

Classic and sliced Wasserstein distances. For 1 ≤ p <∞, the p-Wasserstein distance between
µ, ν ∈ Pp(Rd) is Wp(µ, ν) := infπ∈Π(µ,ν)

[ ∫
Rd×Rd ∥x−y∥p dπ(x, y)

]1/p
, where Π(µ, ν) is the set

of couplings of µ and ν. Wp is a metric on Pp(Rd) and metrizes weak convergence plus convergence
of pth moments. While for d > 1 the definition of Wp generally amounts to an infinite-dimensional
optimization problem, the expression simplifies when distributions are supported in R. This motivates
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the notion of the average- and max-sliced Wasserstein distances from (1). Both sliced distances are
also metrics on Pp(Rd) that induce the same topology as Wp [10, 44, 6, 42].

To present the simple one-dimensional formulae for Wp, for µ ∈ P(Rd) and θ ∈ Sd−1, let Fµ(t; θ) :=
µ
(
{x ∈ Rd : θ⊺x ≤ t}

)
be the distribution function of pθ♯µ, and F−1

µ (τ ; θ) = inf{t ∈ R : Fµ(t; θ) ≥
τ}, for τ ∈ (0, 1), be the quantile function. The Wp between measures on R amounts to the Lp

distance between their quantile functions: Wp
p(p

θ
♯µ, p

θ
♯ν) =

∫ 1

0

∣∣F−1
µ (τ ; θ) − F−1

ν (τ ; θ)
∣∣pdτ . For

p = 1, the expression further simplifies to W1(p
θ
♯µ, p

θ
♯ν) =

∫
R
∣∣Fµ(t; θ)− Fν(t; θ)

∣∣ dt.
Sliced Wasserstein distances between empirical distributions can be computed via order statistics. Let
µ̂n := n−1

∑n
i=1 δXi

and ν̂n := n−1
∑n
i=1 δYi

be the empirical distributions of samplesX1, . . . , Xn

and Y1, . . . , Yn. For each θ ∈ Sd−1, denote Xi(θ) = θ⊺Xi, and let X(1)(θ) ≤ · · · ≤ X(n)(θ) be
the order statistics; define Y(1)(θ) ≤ · · · ≤ Y(n)(θ) analogously. By Lemma 4.2 in [8], we have
Wp
p(p

θ
♯ µ̂n, p

θ
♯ ν̂n) = n−1

∑n
i=1

∣∣X(i)(θ)− Y(i)(θ)
∣∣p. The sliced distances Wp and Wp are computed

by integrating or maximizing the above over θ ∈ Sd−1.

3 Empirical Convergence Rates

We study empirical convergence rates of sliced Wasserstein distances for log-concave distributions.
The next result gives sharp one-sample rates with explicit dependence on the effective dimension.
Theorem 1 (Empirical convergence rates). Let 1 ≤ p <∞ and n ≥ 2. Suppose that µ ∈ P(Rd) is
log-concave with covariance matrix Σ and set k = rank(Σ). Then,

E
[
Wp(µ̂n, µ)

]
≲p

∥Σ∥1/2op

√
(log n)1{p=2}

n1/(2∨p)
, (2a)

E
[
Wp(µ̂n, µ)

]
≲p

∥Σ∥1/2op k log n

n1/p
+

∥Σ∥1/2op
√
k log n

n1/(2∨p)
+

∥Σ∥1/2op

√
(log n)1{p=2}

n1/(2∨p)
. (2b)

The proof of Theorem 1, in Appendix D.1, employs the machinery of [8] for analyzing empirical
convergence of log-concave distributions on R based on their Cheeger constant (see Appendix A). For
(2a), we show that log-concavity is preserved under projections and lower bound the Cheeger constant
of the projected distribution by c/∥Σ∥op, uniformly in θ ∈ Sd−1. For (2b), concentration and covering
arguments enables approximating the expected max-sliced distance by supθ∈Sd−1 E

[
Wp(p

θ
♯ µ̂n, p

θ
♯µ)
]
,

for which the aforementioned (uniform in θ) bounds are applicable.
Remark 1 (Lower bounds). The rate in (2a) is sharp up to log factors over the log-concave
class. Corollary 6.14 in [8] implies that E[Wp(µ̂n, µ)]

p ≥ cp(tr(Σ)/d)
p/2/

(
n(log n)p/2

)
, for

µ = N (0,Σ) ∈ P(Rd) and any p > 2. For p = 2, a similar computation yields E[W2(µ̂n, µ)]
2 ≳

(tr(Σ)/d) log log n/n, while for p ∈ [1, 2), E[Wp(µ̂n, µ)] ≥ E[W1(µ̂n, µ)] ≳
√
τ(Σ)2/n where

τ(Σ) = 1
d

∑d
i=1

√
λi(Σ) is the average of root eigenvalues of Σ. Since Wp(µ̂n, µ) ≳ Wp(µ̂n, µ),

this also yields a lower bound for Wp, while [47] gives a
√
d/n lower bound under the Tp inequality.

Remark 2 (Comparison with [47, 35]). In [47], empirical rates for Wp were derived under a high-
level Tp′(σ2) assumption on µ. Our rate of decay from (2b) is faster, while replacing their entropy-
transport inequality condition with log-concavity. The bounds for Wp in [35, Theorem 3.6] assume
the projection Poincaré inequality and Mq := (µ∥x∥q)1/q < ∞ for q > p, and matches (2a) as
q → ∞ in terms of the dependence on n. However, their dependence on d is implicit through Mq

which typically grows prohibitively with q and d. Our log-concavity assumption is strictly stronger
than the Poincaré inequality, but yields a bound in terms of ∥Σ∥op which, for example, is constant in d
when Σ = Id.3 Finally, we note that the bound for Wp in (2b) adapts to the effective dimensionality k
of the data, contrasting previously available bounds that depend on the ambient dimension d.
Remark 3 (Concentration bounds). Combining the expectation bounds from Theorem 1 with [35,
Theorem 3.8] yields concentration bounds for empirical sliced distances. These are presented in
Appendix B and are later used to derive formal guarantees for computing Wp.

3A recent preprint [5], that was posted on arXiv after this paper was submitted, shows that an improved
estimate holds with high probability (compared to the convergence in expectation studied herein) for isotropic
log-concave random vectors; cf. Equation (1.13) therein.
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When p > 2, the rates in Theorem 1 are slower than parametric. Nevertheless, in the two-sample
case with µ ̸= ν, parametric rates are attainable uniformly in p for compactly supported distributions.
Proposition 1 (Parametric rates under the alternative). Let 1 ≤ p <∞, and suppose that µ, ν have
compact supports with diam

(
spt(µ)

)
∨ diam

(
spt(ν)

)
≤ R. Then,

E
[∣∣Wp

p(µ̂n, ν̂n)−Wp
p(µ, ν)

∣∣] ≲p,R n−1/2 and E
[∣∣Wp

p(µ̂n, ν̂n)−W
p

p(µ, ν)
∣∣] ≲p,R dn−1/2.

If further µ ̸= ν, then the same (parametric) rate also holds for empirical Wp and Wp.

Proposition 1 is proven in Appendix D.2 using a comparison inequality between Wp and W1 and
elementary bounds for W1 using its integral representation and KR duality.

Remark 4 (Comparison to [37]). Theorem 2 of [37] establishes a bound of (log n/n)1/2 on the
two-sample average-sliced Wasserstein distance, but under bounded moment assumptions instead of
compact support.

4 Robust Estimation

We examine robustness of sliced Wasserstein distances to outliers, showing that slicing enables
dimension-free risk bounds that avoid poly(d) factors present for classic Wp (cf. [46]). We consider
TV corruptions, where an unknown “clean” distribution µ is contaminated to obtain µ̃ with ∥µ −
µ̃∥TV ≤ ϵ. Upon observing µ̃, the goal is to return a distribution T (µ̃) such that the error D

(
T (µ̃), µ

)
is small, where D ∈ {Wp,Wp}. Without further assumptions, this error can be unbounded, so we
require that µ belongs to a family G ⊂ P(Rd) encoding standard moment bounds. We consider the
minimax risk for robust estimation under D with TV contamination, defined by

R(D,G, ϵ) = inf
T :P(Rd)→P(Rd)

sup
(µ,µ̃)∈G×P(Rd); ∥µ̃−µ∥TV≤ϵ

D
(
T (µ̃), µ

)
.

Fix q > p and let Gq(σ) :=
{
µ∈Pq(Rd) : supθ∈Sd−1 µ|θ⊺(x− µx)|q ≤ σq

}
contain all distributions

whose projections have bounded central qth moments. In particular, G2(σ) = {µ ∈ P2(Rd) :
∥Σµ∥op ≤ σ}. The next theorem characterizes minimax robust estimation risk over this class.

Theorem 2 (Population-limit robust estimation). Fix 1 ≤ p < q, σ ≥ 0, and 0 ≤ ϵ ≤ 0.49.4 We
have R

(
Wp,Gq(σ), ϵ

)
≍ σ

√
(1 ∨ d/q)(1 ∧ p/d) ϵ1/p−1/q and R

(
Wp,Gq(σ), ϵ

)
≍ σϵ1/p−1/q.

Note that the
√
(1 ∨ d/q)(1 ∧ p/d) prefactor in the first bound is always less than 1. The proof in

Appendix D.4 controls the risk via supµ,ν∈Gq(σ),∥µ−ν∥TV≤ϵ D(µ, ν), a modulus of continuity that
captures the sensitivity of D to small perturbations that preserve membership to the clean family. We
employ techniques based on generalized resilience [61, 55] to relate this modulus to similar quantities
arising in the robust estimation of pth moment tensors, giving the above rates. The procedure that
achieves these rates projects the observed contaminated distribution onto the corresponding family of
clean distributions in TV norm.
Remark 5 (Comparison to [46]). A related framework [46] considers robust estimation of Wp under
input measure contamination. They obtain a rate of σ

√
dϵ1/p−1/2 using similar methods under the

weaker Huber ϵ-contamination model when q = 2 (see Corollary 1 therein). Evidently, slicing elimi-
nates a

√
d factor from the minimax estimation risk. In Appendix D.4, we interpolate between these

regimes, proving that k-dimensional sliced distances admit risks bounded by σ
√
1 ∨ k/q ϵ1/p−1/q .

Theorem 2 characterizes population-limit robust estimation, i.e., when data is abundant. The next
result, proven in Appendix D.5, extends to the finite-sample regime. For a radius R > 0, we write
µR to denote the distribution of X ∼ µ conditioned on ∥X − µx∥ ≤ R.
Proposition 2 (Finite-sample robust estimation). Fix 1 ≤ p < q, σ ≥ 0, and 0 < ϵ ≤ 0.49,
and let D ∈ {Wp,Wp}. Then there exists a radius R ≍

√
d/ϵ and a procedure which, given

n ≥ (Rp + ϵ−2) d log(d/ϵ) samples with at least (1− ϵ)n drawn i.i.d. from any µ ∈ Gq(σ), returns
ν ∈ P(Rd) such that D(ν, µ) ≲ R

(
D,Gq(σ), ϵ

)
+ E

[
D
(
(µ̂R)n, µR

)]
with probability at least 0.995.

4The upper bound on ϵ of 0.49 can be substituted with an any constant bounded away from 1/2.
5See Appendix D.5 for precise high-probability bounds and extension to the strong contamination model.
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Evidently, the finite-sample error bound comprises the population-limit robust estimation risk (which
is necessary) plus the empirical estimation error associated with the truncated distribution µR. The
lower bounds on n ensures that the empirical distribution (µ̂R)n satisfies the same generalized
resilience property appearing in the population-limit analysis. The truncated empirical convergence
term can typically be bounded by the corresponding untruncated version. For example, when
µ ∈ G2(σ) is log-concave and D = W1, we can bound this term by O

(
σd log n/n+ σ

√
d log n/n

)
,

which follows from Theorem 1 and the fact that µR is also log-concave with ∥ΣµR
∥op ≤ ∥Σµ∥op ≤ σ

for any R > 0.

When p = 1, we prove in Appendix D.6 a precise connection to resilience, a sufficient condition for
robust mean estimation, which may be of independent interest.
Proposition 3 (Connection to mean resilience). For 0 ≤ ϵ < 1, µ ∈ P1(Rd) is (ρ, ϵ)-resilient, i.e.
∥µx−νx∥≤ρ for all ν≤ 1

1−ϵµ, if and only if W1(µ, ν)≤Θ(ρ) for all ν≤ 1
1−ϵµ.

This suggests borrowing from the existing family of robust mean estimation algorithms, primarily
developed for the bounded covariance setting (q = 2). In Appendix D.7, we inspect an efficient
spectral reweighting procedure and apply it for both Wp and Wp when 1 ≤ p < 2.

Proposition 4 (Efficient computation via spectral reweighting). If 1 ≤ p < q = 2 and 0 ≤ ϵ ≤ 1/12,
the guarantee of Proposition 2 is achieved by an Õ(nd2)-time spectral reweighting algorithm.

5 Formal Computational Guarantees

The computational tractability of empirical sliced Wasserstein distances relies on the simplified
expressions for Wp between distribution on R. However, even then, evaluating Wp and Wp requires
computing the average or the maximum of one-dimensional distances over projection directions
θ ∈ Sd−1. This section provides formal guarantees for two such popular computational methods:
MC integration for Wp and alternating subgradient-based optimization for Wp. Our analysis relies
on the observation that wp(θ) := Wp(p

θ
♯µ, p

θ
♯ν) and its pth power are Lipschitz functions on Sd−1.

Lemma 1 (Lipschitz continuity). The functions wp and wpp are Lipschitz with constants bounded by
Lpµ,ν= sup

θ∈Sd−1

[
(µ|θ⊺x|p)1/p+(ν|θ⊺x|p)1/p

]
andMp

µ,ν= 3p2p sup
θ∈Sd−1

(µ|θ⊺x|p+ν|θ⊺x|p), respectively.

Lemma 1 (proven in Appendix D.8) sharpens the Lipschitz constants derived in [47, Lemma 2], which
correspond to bounding |θ⊺x| by ∥x∥ in the above expressions. The projected moments (µ|θ⊺x|p)1/p
typically has a milder dependence on d than (µ∥x∥p)1/p, which is crucial for the subsequent analysis.

5.1 Average-Slicing: Monte Carlo Integration

The typical approach for computing the integral over the unit sphere in Wp is MC averaging. Fix
µ, ν ∈ Pp(Rd) and let µ̂n and ν̂n be the associated empirical measures. Take Θ ∼ Unif(Sd−1) and
consider i.i.d. copies thereof Θ1, . . . ,Θm. The MC based estimate of Wp

p is given by

Ŵ
p

MC :=
1

m

m∑
j=1

Wp
p(p

Θj

♯ µ̂n, p
Θj

♯ ν̂n) =
1

mn

m∑
j=1

n∑
i=1

∣∣X(i)(Θj)− Y(i)(Θj)
∣∣p,

where X(1)(θ) ≤ · · · ≤ X(n)(θ) is the order statistics, which is readily evaluated using sorting
algorithms with O(n log n) average/worst-case complexity (e.g., quick_sort or merge_sort).

The next result bounds the effective error of Ŵ
p

MC in approximating the population distance Wp
p(µ, ν).

Proposition 5 (Monte Carlo error bound). Let 1 ≤ p < ∞, and assume µ, ν ∈ Pp(Rd) are
log-concave with covariance matrices Σµ and Σν , respectively. The MC estimate above satisfies

E
[∣∣∣Ŵp

MC−Wp
p(µ, ν)

∣∣∣]≲p ∥µx−νx∥p+∥Σµ∥p/2op +∥Σν∥p/2op√
md

+

(
∥Σν∥p/2op +∥Σµ∥p/2op

)
(log n)1{p=2}

n(p∧2)/2

where the hidden constant depends only on p.
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Algorithm 1 Projected subgradient method for w̃2
2

Input: θ0 ∈ Bd, a sequence {αt}t≥0 ⊂ R+, and iteration count T
for t = 0, . . . , T do

Calculate ξt ∈ ∂w̃2
2(θt)

Set xt+1 = ProjBd (xt − αtξt)

Sample t∗ ∈ {0, . . . , T} according to the probability distribution P(t∗ = t) = αt∑T
t=0 αt

.

Return xt∗

Proposition 5 is proven in Appendix D.9 by separately bounding the MC and the empirical approxima-
tion errors. For the former, we use the Lipschitzness of wpp on Sd−1 to show that it concentrates about
its median. This enables controlling the variance of 1

m

∑m
j=1 w

p
p(Θj), which, in turn, bounds the MC

error. For the empirical approximation error, we reduce the analysis to one-sample empirical conver-
gence under Wp

p for measures on R and obtain explicit rates by drawing upon the results of [8].

Remark 6 (Comparison to [42]). Error bounds for the MC estimate ŴMC were also provided in [42],
but their results differ from ours in two key ways: they use implicit empirical approximation bounds
and leave their MC error in terms of Var

(
wpp(Θ)

)
without further analysis. Proposition 5 provides

an explicit convergence rates and bounds the said variance in terms of basic characteristics of the
population distributions, providing precise rates in n,m, d, and p.

Remark 7 (Blessing of dimensionality). A cruder approximation of the Lipschitz constant that stems
from [47, Lemma 2] would yield µ∥x∥p + ν∥x∥p as the numerator of the first term. However, such a
bound can have a significantly worse dimension dependence. Indeed, if, for instance, µ and ν are
both mean zero log-concave with identity covariance matrices, then µ∥x∥p + ν∥x∥p is Od(dp/2)
while the numerator in our bound is Od(1). For such µ and ν, the bound decays to 0 as d→ ∞.

5.2 Max-Slicing: Subgradient Methods and the LIPO Algorithm

Maximization of projected Wasserstein distance is a non-convex and non-smooth optimization
problem. Therefore, past works that studied k-dimensional subspace projections relied on convex
relaxations [48] or entropic regularization [34, 25] to prove approximate convergence to a stationary
point. We show that regularization is not needed in the one-dimensional case of Wp by proving an
O(ϵ−4) computational complexity bound for convergence to stationarity of the simple subgradient-
based optimization routine from [28, 17]. We also note that global solutions are attainable via generic
algorithms for optimizing Lipschitz functions, but with rates that deteriorate exponentially with d.

Local guarantees for subgradient methods. First note that we may relax the Wp optimization
domain from Sd−1 to the unit ball Bd without changing the value (indeed, for any θ ∈ Bd, wp(θ) =
∥θ∥wp(θ/∥θ∥). Together with [8, Lemma 4.2], we express the empirical max-sliced distance as:

W
p

p(µ̂n, ν̂n) = max
θ∈Bd

min
π∈Π(µ̂n,ν̂n)

Eπ [|θ⊺(X − Y )|p] = −min
θ∈Bd

max
σ∈Sn

(
− 1

n

n∑
i=1

|θ⊺(Xi − Yσ(i))|p
)
,

where Sn is the symmetric group. Here we used the fact that the optimal coupling is given by the order
statistics, and hence it suffices to optimize over permutations. Denote ρ(σ, θ) := − 1

n

∑n
i=1 |θ⊺(Xi−

Yσ(i))|p and w̃pp(θ) := maxσ∈Sn
ρ(σ, θ). The subgradient of w̃pp has the closed form ∂w̃pp(θ) =

Conv
({
∂θρ(σ

∗, θ) : σ∗ ∈ argmaxσ∈Sn
ρ̂(σ, θ)

})
. We can compute an optimal σ∗ ∈ Sn via order

statistics and evaluate the corresponding subgradient vector in ∂θρ(σ∗, θ). This gives direct access to
subgradients of w̃pp without approximation arguments or regularization.

A heuristic description of Algorithm 1 was given in [28, 17], but without formal guarantees. Proposi-
tion 6 below can be viewed as closing that gap by providing said guarantees. In particular, for p = 2
the objective function w̃2

2 is weakly convex [34, Lemma 2.2] and Lipschitz (Lemma 1). Together
with the computable subgradients, this enables applying the proximal stochastic subgradient method
from [14]. Algorithm 1 describes the adaptation of this method to our problem, after replacing the
stochastic subgradient sampling step therein with the direct subgradient calculation described above.
The following proposition provides convergence guarantees for Algorithm 1.
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∣∣Ŵ2

MC −W2
2(µ, ν)

∣∣ under Model (2).

Figure 1: Projection and sample complexity for W2.

Proposition 6 (Computational complexity of subgradient method). Fix any ϵ > 0 and n, d ∈ N
such that d ≥ (log n)2. Let µ, ν ∈ P2(Rd) be log-concave with covariance matrices Σµ and
Σν , respectively, and consider M2

µ,ν as defined in Lemma 1. Then, there exist universal constants
c1, c2, c3, c4 such the following holds: Algorithm 1 for the objective φ(θ) = w̃2

2 + δBd , where
δBd = −∞1(Bd)c , with step size αt ∝ 1√

t+1
, outputs a point θt∗ that is close to a near-stationary

point θ∗, in the sense that Et∗ [∥θ∗−θt∗∥] ≤ ϵ
2ρµ,ν

, for ρµ,ν = ∥µx−νx∥2+c1d (∥Σµ∥op + ∥Σν∥op),
and dist

(
0, ∂w̃2

2(θ
∗)
)
≤ ϵ, within a number of computations N ≤ Cµ,νϵ

−4n log n, where Cµ,ν :=

c2ρ
2
µ,ν

(
M2
µ,ν + c3(∥Σµ∥op + ∥Σν∥op)

)2
, with probability at least 1− c4

n .

Proposition 6 is proven in Appendix D.10 via the complexity bound from [14, Corollary 2]. As the
algorithm is tuned for the empirical objective w̃pp(θ), the bound depends on the random Lipschitz and
weak convexity constantsMn = 4 supθ∈Sd−1(µ̂n|θ⊺x|2+ν̂n|θ⊺x|2) and ρn = 2maxi,j=1,...,n ∥Xi−
Yj∥2. We use concentration bounds for Mn and ρn to obtain the deterministic bound above.

Remark 8 (Comparison to past works). Computation of projection-robust Wasserstein distances (i.e.,
when projections are k-dimensional) was studied in [48] and [34, 25] using a convex relaxations
and entropic regularization, respectively. A similar O(ϵ−4) convergence rate is proven in [34] for
their regularized method. Proposition 6 shows that regularization in not necessary to achieve this
rate when projections are one-dimensional. The result of [34] was improved to O(ϵ−3) in [25] using
Riemannian block coordinate descent (still with entropic regularization). While this rate is faster
than in Proposition 6, our goal was to couple the simpler and abundantly used subgradient ascent
approach with formal guarantees. In addition, the next section shows that empirically, our algorithm
is much faster than those of [34, 25] for the W2 in terms of complexity and computation time.

Remark 9 (The non-quadratic case). For p ̸= 2, we still have Lipschitzness of the objective function
in θ (Lemma 1). Recent work on finding stationary points for non-smooth, non-convex, Lipschitz
functions, such as [15], provide convergence guarantees for these cases. These guarantees appear to
be of the same ϵ−1/4 order (cf. [15, Theorem 3.2]), but we leave a full exploration for future work.

Remark 10 (Global guarantees via LIPO). We can attain global optimality, i.e., compute Wp(µ̂n, ν̂n)
itself, via the LIPO algorithm [36]. LIPO performs global optimization of Lipschitz functions over
convex domains based on function evaluations, which are readily accessible in our problem via sorting.
In Appendix C, we adapt LIPO to the max-sliced distance, prove consistency, and derive its complexity.
While this approach attains global optimality, the number of evaluation grows exponentially with
dimension. Hence, the subgradient method described above is preferable when dimension is large.
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Figure 2: Errors and runtime versus step count for W2 computation algorithms.

6 Empirical Results

Projection and sample complexity for W2. We validate the convergence rates of the MC-based
estimate of W2 predicted by Propositions 5 in the following two models: (1) µ = N (0, Id), ν =
0.5N (0, Id) + 0.5N (0, Id + 0.51d1

⊺
d/d), and (2) µ = N (0, Id), ν = N (21d, Id), where 1d is a

vector with all coordinates equal to 1. For Model (1), Proposition 5 predicts a decreasing error with
dimension, and inverse square root decay in number of projections and number of samples. For
Model (2), on the other hand, the errors should increase with d for sufficiently large n. Plots of the
projection and sample complexities for each model (averaged over 100 runs) are given in Figure 1
at the top of the previous page, and are in line with the above discussion and our theoretical results.
Additionally, confidence bands are plotted representing top and bottom 10% quantiles among 20
bootstrappped means from the same 100 runs. An additional experimental setup, comparing 10
component normal mixtures with different means and variances, can be found in Appendix E.

Comparison of W2 algorithms. We compare the performance of the subgradient-based Algorithm
1 and the Riemannian optimization methods of [34, 25]. Consider the setup from [25, Section 6.1],
where µ = Unif([−1, 1]d) and ν = T♯µ, with T (x) = x +

∑10
i=1 sign(xi)ei, is the fragmented

hypercube distribution with k∗ = 10. Figure 2 shows the errors and runtime by step count of
Algorithm 1 (with a constant step size) and the Riemannian algorithms from [34, 25] (abbreviated
RAGAS and RABCD, respectively) for different ambient dimensions. For these algorithms, we
used the code from https://github.com/mhhuang95/PRW_RBCD with their default choice of
parameters; we also tried optimizing these parameters but the observed trends remained the same.
Sample size is fixed at n = 500 and computation times are averaged over 10 trials. Evidently, the
subgradient ascent algorithm converges significantly faster and within fewer iterations than the other
two methods, for all considered values of d. Despite our O(ϵ−4) iteration complexity bound, which
is slower than the best known rates [25], this favorable empirical performance may be attributed
to the fact that Algorithm 1 relies on the cheap sorting operation, as opposed to the burdensome
computation of regularization operations in [34, 25]. It may also be the case that our bound can be
improved, which we plan to explore in future work.

Robust estimation. To support Proposition 3, we perform robust estimation via a standard iterative
filtering algorithm developed for mean estimation [19]. For d ∈ {10, 20, . . . , 200}, we take n =
10dϵ−2 samples, with (1− ϵ)n drawn i.i.d. from N (0, Id) and ϵn from a product noise distribution
used in [19], with ϵ = 0.1. For each d, iterative filtering returns a candidate subset of clean samples,
and Figure 3 (left) compares these subsets to the true clean samples both in W1 (estimated via
projected subgradient ascent) and in ℓ2 distance between means. Note that the error in the latter never
exceeds that in the former by more than a factor of 2 (Proposition 3 implies that mean and W1 risk
are equivalent up to constant factors). In Figure 3 (right), we set µ = (1− ϵ)δ0 + ϵUnif(

√
d/ϵSd−1)

with null contamination, and take n, d ranging as before. In this case, since many samples are 0, we
can efficiently compute a lower bound on classic W1 between the filtered and clean samples in high
dimensions. As predicted by Theorem 2, we observe the

√
d separation in estimation error between

W1 and W1. In this case, only errors for the filtered samples are plotted, since the unfiltered samples
have no contamination. See Appendix E for additional experiments on generative modeling with
contaminated datasets, along with full details and code for all experiments.
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7 Summary and Concluding Remarks

This paper provided a quantitative study of the scalability of sliced Wasserstein distances to high
dimensions. Three key aspects were covered:
• Empirical convergence rates: We established sharp, dimension-free rates for Wp and Wp with

explicitly characterized dimension-dependent constants. Our bounds reveal the interplay between
the number of samples n, dimension d, and the order of the distance p.

• Robust estimation: The minimax optimal robust estimation rate of Wp and Wp, under contami-
nation level ϵ, was characterized as O(σϵ1/p−1/q). This rate is dimension-free and improves upon
corresponding results for Wp by a

√
d factor. We showed that robust estimation of W1 is equivalent

to robust mean estimation, which enables lifting statistical/algorithmic results from means to W1.
• Computational guarantees: The error of a MC-based estimator for Wp was derived, showing that

it can improve as d→ ∞, depending on the growth-rate of the mean and the operator norm of the
covariance matrix. For Wp, we analyzed the subgradient-based local optimization algorithm from
[28, 17], and proved O(ϵ−4) complexity using Lipschitzness and weak convexity of the objective.

In all three aspects, the benefit of slicing in terms of dependence on dimension was clearly evident,
thus providing rigorous justification the perceived scalability of sliced distance. Going forward, we
plan to pursue improved complexity bounds for the subgradient ascent algorithm for computing W2,
as our empirical results suggest it converges faster than Proposition 6 predicts. We are also interested
in understanding conditions on µ, ν under which faster global guarantees for Wp can be provided,
e.g., by precluding the existence of nontrivial local optima for Wp(p

θ
♯ µ̂n, p

θ
♯ ν̂n) on Sd−1, or matching

the conditions of [36, Theorem 15], which results in polynomial and even exponential rates for LIPO.
Extensions of our results to projection-robust Wasserstein distance, which considers projections to
k-dimensional subspaces, are of interest, aiming to understand the effect of k on the results.
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computation with the sliced-Wasserstein distance. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5470–5474. IEEE,
2020.

[42] K. Nadjahi, A. Durmus, L. Chizat, S. Kolouri, S. Shahrampour, and U. Simsekli. Statistical
and topological properties of sliced probability divergences. Advances in Neural Information
Processing Systems, 33:20802–20812, 2020.

[43] K. Nadjahi, A. Durmus, P. E. Jacob, R. Badeau, and U. Simsekli. Fast approximation of the
sliced-Wasserstein distance using concentration of random projections. Advances in Neural
Information Processing Systems, 34, 2021.
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