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A Datasheet for dataset for LIPS datasets

Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific
gap that needed to be filled? Please provide a description.

The power flow distribution in a power grid is a cumbersome task for power grid operators as
the number of factors influencing the grid and actions to be taken is humongous. To alleviate
their task, the simulators are designed to evaluate the result of the set of possible actions on the
basis of a current grid state. In this context, it is important to ensure the grid security during
the various situations and while taking an remedial action. It is important that the developed
simulators could compute the necessary grid state variables with high precision and in reasonable
time. The datasets analyzed in this work are designed to simulate the real-world situations (e.g.,
line disconnections due to overheating), and to evaluate the performance of different simulators
(e.g., physics-based or augmented simulators) tailored to different task and applications. This
dataset also represents comprehensive distributions of grid states to unlock model training to
enable comparison with approaches based on numerical solver or equation linearization.

Regarding the pneumatic case, designing and testing tires performances require access to critical
information that are quite difficult to obtain, due to the physical problem inherent complexity
and the time-consuming analysis that classically provide them. For this reason, in the context
of practical industrial applications, those analysis are hardly used. However, with a developed
simulators able to compute the tire states with a high precision within an acceptable time available,
it would be possible to democratize its usage. The datasets considered here aim to represent
the actual real-world configurations ( support vehicule weight, rolling) in a representative way.
They are also used for the model training of augmented simulators in order to compare their
performances against approaches involving a classical numerical PDE solver.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?

For power grid, the Benchmark datasets all depart from the same published datasets of realistic
production and consumption distributions [1], [2] created by RTE and maintained by EPRI (Electric
Power Research Institute) on Azure Servers. The benchmark datasets created by RTE AI Lab
however each differs from the application specific grid topology variations which are applied
using Grid2Op [3] framework. Methods in LIPS framework are provided to generate this same
data. Ground truth of physical variables are further computed using LightSim2Grid [4] physical
solver with industrial-like performance on the selected grids.

For pneumatic case, to the best of our knowledge, there is no such thing as published realistic
datasets for tires that could have been used in this work. Therefore, the datasets is created by
SystemX for physical configurations described for instance in [5], using the FEM physical solver
Getfem [6]. Those datasets are generated using LIPS frameworks features, relying on this very
solver.

Who funded the creation of the dataset? If there is an associated grant, please provide the name
of the grantor and the grant name and number.

This dataset was funded as part of the HSA project (https://www.irt-systemx.fr/en/project/HSA/) -
half funded by French National Research Agency - through a collaboration between IRT System x
and RTE.

Any other comments?

Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions be- tween them; nodes and edges)? Please provide a description.
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Each instance represents one power grid state on a given situation at any hour, day, or month
of a year. More specifically, it corresponds to production, consumption, grid topology (graph of
electrical nodes and power lines) and power flow values over time.

For the pneumatic case, each instance represents a tire state computed at several points (nodes)
within the tire geometrical description used by the physical solver (e.g. the mesh) on a given
configuration.

How many instances are there in total (of each type, if appropriate)?

The number of instances can vary due to benchmark requirements, in particular when considering
different system sizes. For each benchmark, we generate three different training datasets. A
training dataset of size 150 000 is first provided on the environment IEEE 14 for benchmark 1.
As there are 20 possible line disconnections and 7 reference topologies, this makes about 10 000
instances per line disconnection per reference topology on that grid. A larger dataset can readily
be generated with the provided notebook. The datasets scale up according to the grid size, the
number of topologies and line disconnection that are regarded and the number of energy mixes.

Dataset-Size= 10000*gridSizeFactor (number of representative situations) * N lines (number of
disconnections) * T topo ref (number of reference topologies).

For the pneumatic case, for both benchmark, we also generate three datasets. The size of the
training, testing and validation datasets are respectively 2100, 600 and 300, for benchark 1, and
280, 80 and 40, for benchmark 2.

Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld
or unavailable).

Each generated dataset is designed to tackle a specific problem (risk assessment, solution search,
etc.). From this point of view, the generated datasets could be considered as a sample of a more
global dataset which can include all the possible situations and actions related to a power grid.
Also note that the number of possible grid topologies can be almost infinite. 216 is the order
of 2 node configurations at a substation with 16 elements. Combinatorial complexity explodes
even further when combining topology reconfiguration at different substations. The datasets
are representative of the targeted tasks and human operator needs: they mostly work around a
reasonable number of reference overall grid topologies, from which they can deviate by combining
few unitary substation topologies.

For the pneumatic case, the generated datasets in both benchmarks could also be considered as
a sample of a more global dataset which can include all the possible configurations. Let alone
the fixed mesh considered in these datasets, where the domain meshes would be almost infinite
otherwise, the fact that the sampling is done on a set of continuous interval for the inputs leads
to a potentially infinite physical configurations. Likewise, the datasets are representative of the
targeted tasks and driven by the real-word needs; they rely on a reasonable number of physical
configurations from which one can derive a tire state fitted to one’s need.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description.

Each instance corresponds to one power grid state on a given situation. Hence, it includes the
consumptions and productions at each substation and also the power flow through the power lines.
More specifically, the voltages (Kv), currents (Amp), active (Mw) and reactive (Mvar) power values
are provided. Those are "raw" data instances. Note that one representation of grid topology is
given, but it could be represented in many different ways that could prove more or less successful.

For the pneumatic case, each instance corresponds to one tire state. Thus it includes, depending
on the benchmark, the displacement field (mm) evaluated on each nodes of the physical domain
and the contact stress field (MPa), evaluated on each nodes of the associated boundary within the
physical domain. Those are also what would describe as "raw" data instances.

Is there a label or target associated with each instance? If so, please provide a description.
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The objective of a simulator (physical or augmented) is to infer the power flow through power lines
from the productions and consumptions. Hence, the problem could be expressed as a regression
problem where the target corresponds to power flow variables. A physical simulator provides that
target variables after computation. They can hence be used if training an emulator. But they could
also be discarded if rather training a solver directly minimizing some Energy loss.

For the pneumatic case, the exact same logic still stands by replacing power flow prediction by tire
state prediction.

Is any information missing from individual instances? If so, please provide a description, ex-
plaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.

As we have used a physical simulator to generate the required datasets, there was not any missing
information and we provide complete states.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit. Instances can
belong to a same grid operation scenario, e.g. a same 5 minute resolution monthly time series.
But instances are sorted randomly in the end in the dataset and no explicit time dependency
relationship are given and none is needed for the task presented.

There are no relationship between individual instances for the pneumatic case.

Are there recommended data splits (e.g., training, development/validation, testing)? If so,
please provide a description of these splits, explaining the rationale behind them.

The proposed framework for benchmarking allows to generate datasets with variable size for
any purpose (training, validation and test). It could also be the subject of a benchmark to infer
the data volume required for training a model in order to obtain a desired performance. As an
recommendation, the training dataset should be big enough to include various situations that a
power network can handle during its lifespan (2x or 3x bigger than the test set). Validation and
test sets are also provided and include out-of-distribution instances as specified in the proposal.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description

There are no errors, sources of noise or redundancies in provided datasets.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., web-
sites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees
that they will exist, and remain constant, over time; b) are there official archival versions of the
complete dataset (i.e., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please provide descriptions of all external resources
and any restrictions associated with them, as well as links or other access points, as appropriate.

The provided datasets are self-contained and will remain constant. However, more datasets
could be generated using the proposed benchmarking platform. The data generation
part of our platform can be procedurally augmented through the open-source power grid
platform called Grid2Op which is under Mozila Public License : https://github.com/rte-
france/Grid2Op/blob/master/LICENSE.md

Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient confidentiality, data that includes the content of
individuals’ non-public communications)? If so, please provide a description.

No, as this is synthetic data. This is one main reason for providing synthetic data to avoid some
existing confidentiality issues with real data for these critical systems.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.

No

Does the dataset relate to people? If not, you may skip the remaining questions in this section.
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No

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a description of their respective distributions
within the dataset.

No

Is it possible to identify individuals (i.e., one or more natural persons), either directly or indi-
rectly (i.e., in combination with other data) from the dataset? If so, please describe how.

No

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms
of government identification, such as social security numbers; criminal history)? If so, please
provide a description.

No

Any other comments?

Collection Process

How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified?
If so, please describe how.

Each instance in our dataset represents a synthetic observation of a specific power grid state. There
are the electrical measures expressing the power flow in a power network and directly observable.

In the pneumatic case, each instance represents a synthetic observation of a specific tire state,
that is to say the mechanical measures related to a tire and directly observable.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mechanisms
or procedures validated?

Realistic timeseries for production and consumption localized over a grid were first generated
through Chronix2grid package in published datasets [1], [2]. Then a simulator (software program
running as a backend of Grid2Op platform) comes at the core of our proposed benchmarking
framework to generate the data. However, the proposed LIPS benchmark platform extends this
simulator and makes an API to facilitate the data generation for various benchmarking purposes
and possible other industrial domains relying on other simulators.

As a matter of fact, it was possible to extend this framework for the pneumatic case, a completly
different industrial domain, in order to generate data using the simulator Getfem [6], a FEM solver.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

The proposed framework allows to generate the synthesized observations with various sampling
strategies. It could be probabilistic or deterministic as desired and the sampling probability is a
parameter that can be adjusted by user. As an example, one can generate the power flow data
by introducing some changes (line disconnection) with a desired probability p. As such, the
generated dataset shall contain the changes or not with respect to the indicated probability. See
dataset size rationale indicated described before when considering the number of instances.

Regarding the pneumatic usecase, for benchmark 1 a Latin Hypercube Sampling (LHS), a near-
random sampler of parameter values arising from a multidimensional distribution, was used. For
benchmark 2, we consider a simple uniform sampling.

Who was involved in the data collection process (e.g., students, crowd workers, contractors)
and how were they compensated (e.g., how much were crowd workers paid)?
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The data collection process is done using a computer software (power grid simulator developed by
RTE France, FEM solver for the tire simulator). However, the provided datasets and corresponding
designed scenarios are issued from the proposed LIPS platform. The authors created them as part
of their full time job.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please
describe the timeframe in which the data associated with the instances was created.

The final benchmark datasets are generated and collected during june 2022. This is the results of
several iterations and benchmark adjustements since summer 2021.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link or
other access point to any supporting documentation.

N/A

Does the dataset relate to people? If not, you may skip the remainder of the questions in this
section.

No

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)?

No

Were the individuals in question notified about the data collection? If so, please describe (or
show with screenshots or other information) how notice was provided, and provide a link or other
access point to, or otherwise reproduce, the exact language of the notification itself.

N/A

Did the individuals in question consent to the collection and use of their data? If so, please
describe (or show with screenshots or other information) how consent was requested and provided,
and provide a link or other access point to, or otherwise reproduce, the exact language to which
the individuals consented.

N/A

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? If so, please provide a description, as well as a link
or other access point to the mechanism (if appropriate).

N/A

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis)been conducted? If so, please provide a description of this analysis,
including the outcomes, as well as a link or other access point to any supporting documentation.

N/A

Any other comments?

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of miss- ing values)? If so, please provide a description. If not, you may skip the remainder of the
questions in this section.

No specific preprocessing is done in the raw datasets beside removing divergent simulation
instances. However for training models, some functions are provided to run possibly useful
preprocessing steps. Current preprocessing step allows to encode the network topology in different
ways. Standardization of injections and power flows are also available (zero mean and unit
variance).
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Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please pro- vide a link or other access point to the “raw” data.

The raw data is readily part of the datasets and no preprocessing is done for the provided datasets.

Is the software used to preprocess/clean/label the instances avail- able? If so, please provide a
link or other access point.

N/A

Any other comments?

Uses

Has the dataset been used for any tasks already? If so, please provide a description.

The datasets from which the benchmark dataset is created has already been used for "Learning to
run a power network challenge" competitions and internal researches on power grids. Topological
change scope are explicitly defined here to fit the benchmark needs in addition and clearly
specified in LIPS config files.

Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point.

What (other) tasks could the dataset be used for?

In the present article, the dataset has been used to benchmark various surrogate models for power
flow prediction. The dataset could be used for further research domains concerning power grids,
such as network reliability, decision making, optimization of agent actions, etc. The dataset could
also be used for the classification of blackout situations during the lifetime of a power grid. It
requires some adaptations and is one of our insights for future works.

For the pneumatic case, the dataset has been used to benchmark various surrogate models for
tire state prediction and, as such, could to used to investigate the performances of other various
surrogate models.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might im- pact future uses? For example, is there anything that a
future user might need to know to avoid uses that could result in unfair treatment of individuals
or groups (e.g., stereotyping, quality of service issues) or other undesirable harms (e.g., financial
harms, legal risks) If so, please provide a description. Is there anything a future user could do to
mitigate these undesirable harms?

Divergent simulations are removed from now but could be of interest later on to classify stable
power grid states. However, we give the flexibility for users to re-run all simulations from initial
environment and to keep these divergent simulations to form an extended dataset. This point is
also one of our insights for future work.

Are there tasks for which the dataset should not be used? If so, please provide a description.

The current form of the dataset could be used for regression problems. One can infer the power
flow from injections to the network. The users are free to select between the inputs and outputs of
the model. In order to do a classification task, the dataset require more processing steps as it is
mentioned in the previous answer.

Any other comments?

Distribution

Will the dataset be distributed to third parties outside of the en- tity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.

The datasets is available publicly on Github : https://github.com/IRT-SystemX/LIPS

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)?
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The datasets used for experimentation will be available via Github link
https://github.com/Mleyliabadi/LIPS. These datasets could also be reproduced via the
developed platform and using the same seeds. The LIPS platform gives also the flexibility to
generate further distributions envisaging other experiments.

When will the dataset be distributed?

The datasets will be distributed as soon as the benchmark is accepted.

Will the dataset be distributed under a copyright or other intel- lectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or
ToU, as well as any fees associated with these restrictions.

The datasets are generated using an open source platform called Grid2Op that is specialized on
power grids and which is the property of RTE France. The Mozilla Public License applies and the
license terms could be visited at https://www.mozilla.org/en-US/MPL/2.0/

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions.

No

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any supporting documentation.

No

Any other comments?

Maintenance

Who is supporting/hosting/maintaining the dataset?

The authors of the paper will be responsible to support the datasets.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

The preferred way to contact the maintainers is to raise issues on our github page
https://github.com/IRT-SystemX/LIPS. For the emergency cases, the authors of the paper could
be contacted by mail l2rpn@chalearn.org.

Is there an erratum? If so, please provide a link or other access point

Any update, supplementary materials or information can be accessed via the github page of the
platform https://github.com/IRT-SystemX/LIPS .

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
If so, please describe how often, by whom, and how updates will be communicated to users (e.g.,
mailing list, GitHub)?

As the datasets are synthesized and are self-contained, there will be no modifications in future.
However, more datasets and use cases may be designed in future to address our insights and they
will be shared via the platfom’s github page.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were individuals in question told that their data would be retained for a
fixed period of time and then deleted)? If so, please describe these limits and explain how they
will be enforced.

N/A

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to users.
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As the dataset are synthesized and are designed to respond to a specific requirement, they will
not present any modifications in future and we will keep them available. In the case of evolving
requirements and objectives, new datasets and scenarios will be generated independently and
will be included in github page.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified?
If so, please describe how. If not, why not? Is there a process for com- municating/distributing
these contributions to other users? If so, please provide a description.

Users are allowed to extend or augment the already generated datasets for their purposes. The
proposed platform allows also the users to generate new datasets with ease and with required
distribution and volumes, as well as new tasks to be benchmarked over. It is anticipated to incluse
datasets comming from other industrial domains.

Any other comments?
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B Notation

The notations alongside the description of the symbols used throughout the article for power grid
and pneumatic use cases are shown in the following tables respectively.

NOTATIONS for power grid usecase

i index associated with an individual (entity)
t index associated with a time instant
k index associated with a grid node
ℓ index associated with a power line
or index associated with the "origin" extremity of a power line by convention
ex index associated with the second extremity of a power line by convention
j the imaginary part of complex numbers
pk active power at node k
qk reactive power at node k
vk voltage at node k
θk voltage phase (angle) at node k
p l active power flow over line l
q l reactive power flow over line l
al current over line l
L number of power lines in the network
K number of substations in the network
N number of samples in training set
M number of samples in test set

NOTATIONS for pneumatic use case

Ω the domain
Γ the domain boundary subdivided into 3 parts Γ1, Γ2, Γ3
X the initial position
uΩ the displacement field
ν, τ are respectively the unit normal and tangential vector on Γ
uΩν, uΩτ the normal and tangential component of uΩ on Γ
λ the contact stress field
φ(X ) = X +uΩ the deformation
F =∇φ= I+∇uΩ the deformation gradient
C = FT F the Cauchy-Green tensor

E = 1

2
(C− I) the Green-Lagrange tensor (deformation tensor)

i1(E) = tr (E) first invariant of the deformation tensor

i2(E) = (tr (E))2 − tr (E2)

2
second invariant of the deformation tensor

i3(E) = det (E) third invariant of the deformation tensor
W the internal hyperelastic energy density
Π the first Piola-Kirchhoff stress tensor
Πν = (Πν) ·ν the normal stress on Γ
Πτ =Πν−Πνν the tangential stress on Γ

σ= 1

det (F)
ΠFT the Cauchy stress tensor

σdev =σ− tr(σ)
3 I, the deviatoric tensor of the cauchy stress tensor (where tr and det

are respectively the classical trace and determinant operators for
matrices.)
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C Benchmark Physical laws and variables

We here list the physical variables and physical law verification considered through each bench-
mark.

C.1 Power grid use case

Input and output physical variables: We here display a table of input and output variables of the
model expected for each benchmark, with related units and a brief description about them.

Table 1: Input and output variables of the model. Note that nodal variables are rather predicted at
each line extremity in practice to keep output dimensions constant. ood subscript in benchmark
highlights the concerned input variables with changing distribution in the related ood test set

Variable Unit Role Description Bench IEEE14 IEEE39

ppr od Mw

in
p

u
ts

productions active power 1,2 6 22
vpr od Kv productions voltage 1,2 6 22
pload Mw loads active power 1,2 11 37
qload MVar loads reactive power 1,2 11 37
τ Binary topology of the power network 1,2ood 80 236
L Binary line status of power network 1ood ,2 20 59

aℓor Amp current at the origin side of a power line 1,2 20 59
aℓex Amp current at the extremity side of a power line 1,2 20 59
pℓ

or Mw

o
u

tp
u

ts active power at the origin side of a power line 2 20 59
pℓ

ex Mw active power at the extremity side of a power line 2 20 59
vℓor Kv voltage at the origin side of a power line 2 20 59
vℓex Kv voltage at the extremity side of a power line 2 20 59
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Physical law compliance:

The predictions made by a surrogate model shall verify part or all of the following conditions and
laws depending on the benchmark. Hence, the predicted values are shown by a hat above each
symbol, e.g., âℓor designates the prediction of current at the origin side of a power line l .

Table 2: Physical laws under several categories: basic ones regarding signs or common-sense
values, uni-dimension ones when regarding only one kind of variable. Multi-dimension laws when
considering several types will be added with future benchmark 3

ID Type Measure Description Bench #

Basic

P1 Current positivity 1
L

∑L
ℓ
1

(âℓor,ex<0.)
Proportion of negative
current

1,2

P2 Voltage positivity 1
L

∑L
ℓ
1

(v̂ℓor,ex<0.)
Proportion of negative
voltages

2

P3 Losses positivity 1
L

∑L
ℓ
1

(p̂ℓex+p̂ℓor <0.)
Proportion of negative
energy losses

2

P4 Disconnected Line 1
Ldi sc

∑Ldi sc
ℓdi sc

1
(|x̂ℓex |+|x̂ℓor |>0.)

Proportion of non-null
a, p or q values

1,2

P5 Energy Losses
∑L
ℓ=1

(p̂(ℓ)
ex +p̂(ℓ)

or )

Gen ∈ [0.005,0.04] energy losses range
consistency

2

Uni-dimension law

P6 Global Conservation MAPE((Pr od −Load)− (
∑L
ℓ=1(p̂ℓex + p̂ℓor ))) Mean energy losses

residual
2

P7 Local Conservation MAPE((p
pr od
k

−pload
k

)− (
∑

l∈nei g (k) p̂ℓ
k

)) Mean active power
residual at nodes

2

P8 Voltage equality ∑
i , j

i , j∈k
i ̸= j

1(|vi −v j |>0) Proportion of not
equal voltages at
nodes

2

Table 3: Thresholds table. The physical laws values are discretized into three intervals on the basis
of theses thresholds. The values below the inferior threshold are considered as perfect. The values
between the inferior and superior thresholds are considered as acceptable, and the values above
the superior threshold are considered as not acceptable.

Proportion based Metric based
Physics compliances P1, P2, P3, P4, P8 P5 P6 P7

T
h

re
sh

o
ld

s Inferior 95% < 0.03 or > 0.05 5% 5%

Superior 99% ∈ [0.005,0.04] 10% 10%

Thresholds For physical laws, we define two thresholds, one to discriminate acceptable and non-
acceptable law compliance, and the other one to discriminate acceptable and great compliance.
For proportion-based metrics (P1,P2,P3,P4,P8) which returns a percentage of compliance, we set
thresholds to 95% and 99% of compliance. For unit-based physical law metric, those thresholds
are based on industrial relevance. For P4, energy losses on transmission grid are always above
0.5% losses and below 4%. So the compliance is deemed compliant if within this interval and
not acceptable if away from those bounds by 25% (so if below 0.3% losses or above 5% losses).
For conservation laws, we consider the average relative error (weighted mape) at two levels: at
the observation level for global conservation (P6) and at the substation (node) level for local
conservation (P7). We set two lower and upper bound thresholds to 5% and 10% respectively. The
conservation is considered as great if lower than 5% and not acceptable if beyond 10%,
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C.2 Pneumatic use case

We provide a description of the underlying physical model for the pneumatic use case, followed
by a description of the physical aspects involved in each benchmark.

Physical problem The generic strong formulation of the problem is given by the following partial
differential equations (PDEs)
Problem P . Find a displacement field uΩ :Ω×[0,T ] →Rd and a constraint fieldΠ :Ω×[0,T ] →Md

such that

Π= ∂FW (F) in Ω× (0,T ), (1)

DivΠ+ f 0 = 0 in Ω× (0,T ), (2)

uΩ = uΓ1d on Γ1 × (0,T ), (3)

Πν= f 2 on Γ2 × (0,T ), (4)

uΩν ≤ g , Πν ≤ 0, (uΩν− g )Πν = 0 on Γ3 × (0,T ), (5){ ∥Πτ∥ ≤µ |Πν|,
−Πτ =µ |Πν| uΩτ

∥uΩτ∥ if uΩτ ̸= 0.
on Γ3 × (0,T ). (6)

• Equation (1) is the behaviour law, the relation between the stress acting on a body and the
displacement

• Equation (2) is the equilibrium where f 0 are the body forces acting onΩ (for instance gravity).
• uΓ1d in equation (3) is the prescribed displacement on the Γ1 boundary
• f 2 in equation (4) are the normal traction forces acting on the Γ2 boundary
• Equation (5) describes the unilateral contact conditions

– Non-penetration, where g is the normal distance between the body and the foundation
– Compressibility, the body is always compressed on the boundary
– Compatibility, states that either there is contact (Πν < 0 and uν = g ) or there is no contact

(Πν = 0 and uν < g )
These conditions are equivalent to assuming the foundation is perfectly rigid

• Equation (6) is the Coulomb’s law of dry friction, with µ the friction coefficient.

Physical model differences between benchmarks

Benchmark 1

• Static problem

• Behaviour law: Linear elasticity

W = λ

2
tr 2(ε)I+µtr (ε2)

where λ and µ are material parameters (Lamé coefficients).

Benchmark 2

• Quasi-static problem

• Behaviour law: Incompressible Mooney-Rivlin

W = c1( j1(C)−3)+ c2( j2(C)−3)

where
j1(C) = i1(C)i3(C)−

1
3 j2(C) = i2(C)i3(C)−

1
3

and c1 and c2 are material parameters.

• Rolling condition: it is enforced as a boundary condition applied at the rim, at each time
step, and is described by the following equations:

uΓ1d (X , t ) = [V t ;−d ]+R(ωt )X −X on Γ1 × (0,T )

where
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– V is the horizontal tire velocity with respect to the ground
– ω is the angular speed
– t is the instant of interest
– d is the vertical displacement
– R is the rotation matrix (2-dimension case)

R(θ) =
(
cos(θ) −si n(θ)
si n(θ) cos(θ)

)
(7)

Input and output physical variables: We are now in position to provide similar tables and descrip-
tion for the pneumatic use case.

Table 4: Input and output variables of the model

Variable Unit Role Description Benchmark Dimension

f2 MPa

in
p

u
ts Force applied on the rim 1 1

t s Time instant 2 1

uΩ mm

o
u

tp
u

ts Displacement field 1,2 4324,24936

λc MPa Contact stress field 2 864

Physical compliance: We provide similar tables and description for the pneumatic use case.

The predictions made by a surrogate model are not enough on their own to assess the accuracy of
this very model. In order to investigate these aspects even further, the physical consistency of the
predictions is evaluated against several physically-motivated criteria. Those criteria are also of
interest in the practical application. Note that, as those criteria also rely on the underlying physical
model, they are computed by the physical solver with the augmented simulator prediction, for
simplicity.

Table 5: Physically-motivated criteria for the pneumatic use case

ID Type Measure Description Bench #

P1 Von-mises criteria maxΩ(
√

3
2

∑
1≤i , j≤3σ

dev
i j σdev

i j ) Maximum of the Von-mises
equivalent stress field over the
domain

1,2

P2 Horizontal displacement maxΩ(uΩ ·−→x ) Maximal displacement along
the x-axis

1

P3 Vertical displacement maxΩ(uΩ ·−→y ) Maximal displacement along
the y-axis

1

P4 Tangential contact force
(∫
Γ3
λd s

)
·τ Resulting tangential force

arising from the contact
reaction

2

P5 Normal contact force
(∫
Γ3
λd s

)
·ν Resulting tangential force

arising from the contact
reaction

2
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Table 6: Thresholds table. The physical laws values are discretized into three intervals on the basis
of theses thresholds. The values below the inferior threshold are considered as perfect. The values
between the inferior and superior thresholds are considered as acceptable, and the values above
the superior threshold are considered as not acceptable.

Proportion based
Physics compliances P1 P2 P3 P4 P5

T
h

re
sh

o
ld

s Inferior 80% 80% 90% 80% 90%

Superior 95% 85% 95% 85% 95%

D Comparative related work table explained

In this section, we provide more details about the comparative table of related works (Table 7).
We assess each prior work according to various considerations: 1) the set of evaluation criteria
categories it covers (among ML-related, industrial readiness, OOD generalization, physics compli-
ance); 2) efforts brought in terms of improved readability and real-world impact characterisation;
3) the environment setup including the considered reference physical simulator and dataset. We
assign a grade of fully, partially, or not taken into account to each criterion.

From Table 7, while previous works have frequently covered each evaluation criteria category
individually, none has actually covered the full range of evaluation criteria categories. LIPS
unifies the evaluation setup in that regard, pushes it further in terms of Physics Compliance
monitoring, and emphasizes the importance of OOD generalization and Industrial Readiness
for ML researchers. Indeed, only one previous ML-related paper [7] has clearly considered OOD
Generalization evaluation, and designed a specific test dataset with more complex grid topology
changes not observed during training. It is only partially met in [8] as claims of generalization
over unseen topologies are made but the corresponding evaluation setup and results are unclear.
For non-ML papers, OOD Generalization is achieved by design as those models are tested on
any kind of grids. Regarding industrial readiness, it is disregarded when no specific industrial
application is actually considered for the simulation. In other cases, it is only partially met as they
don’t recalibrate the inference time according to the relevant application inference batch-size.
Nonetheless in those cases, application-wise scalability or limited training data consideration exist.
Finally regarding physics compliance, some papers implicitly evaluate it by design by training a
physics-informed model or by simulating some physical equations in an optimization problem.
However, none ultimately assess the performance in light of all pertinent physical laws for a
specific application.

We stress that LIPS is the first to focus more on how a given level of performance will impact
real applications. This is accomplished by applying appropriate thresholding to each evaluation
criterion. These thresholds are calibrated with domain knowledge considerations for a given
application as described in section C. The standardization of the visualization of evaluation across
multiple non-homogeneous dimensions has not yet been addressed by any other work. It could
be the case that the need for it was weaker, as often one or two criteria were the main focus of
attention in simpler evaluation schemes.

Finally, regarding the environment setup, datasets represent more or less realistic distributions
regarding grid injections or grid topologies. The dataset size is sometimes limited. Moreover,
datasets are not always shared, but at least some data generation code and some documentation
are sometimes provided. Only LIPS checks all those considerations, while others meet them
partially. We raise a red flag when no access to the data distributions exists. In terms of reference
simulator, the fastest one is not always the one used for reference (albeit they all have the same
level of accuracy on IEEE grid test cases). We make sure to select the fastest open-source one
for meaningful speed-up evaluation. About the models used, very few are genuinely available,
maintained and kept for re-use and additional comparison. With LIPS, we ensure that baselines
are shared and kept up-to-date. Last but not least, a benchmark is also stronger when diverse set
of baselines are evaluated beyond one’s model comparison with the reference simulator. Several
papers present a diverse set of baselines mixing different ML-models, heuristics, reduced-ordered
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Table 7: Comparative table between LIPS and related work for the power grid case. This highlights
that our framework offers a comprehensive evaluation setup that was often barely covered by
others.

Evaluation criteria categories Impact Readability Environment setup

Reference ML-related
Readiness
Industrial

Generalization
OOD

Compliances
Physics

thresholding
Meaningful

visualization
comparative

Standard
Dataset

Simulator
Ref physical

repository
ML model

Baselines

LeapNet [7] + [9] Yes Partial Yes No No No
distributions

prod & varied topo
Large, simple

(proprietary)
Fast - Hades2

Maintained
(diverse)

Yes

[10, 11, 11]
GNS/DSS

Yes No No Partial No No
distributions

shared, simple
Data generation,

(open source)
PandaPower

Slow

maintained
Not

(diverse)
Yes

analysis [12]
Contingency

Fast
Yes Partial No No No No

simple topo
realistic prod
Not shared,

(open source)
PandaPower

Slow
No access

(diverse)
Yes

GNN [8]
informed
Physics

Yes No Partial Partial No No
simple topo

realistic prod
Not shared,

(open source)
PyPower

Slow
No access

(uniform)
Yes

M
L

-m
o

d
el

p
ap

er
s

Gridwarm [13] Yes Partial No Partial No No
distributions

shared, simple
Data generation,

None
maintained

Not
(diverse)

Yes

LIPS Yes Yes Yes Comprehensive Yes Yes
topo distributions

realistic prod
Large, doc,

(open source)
LightSim2Grid

Fast
Maintained

(diverse)
Yes

SimBench [14]
& heuristic)

(Optimization
No

Yes Yes No No No
simple topo

realistic prod
Medium, doc,

(open source)
PandaPower

Slow
No ML

(diverse)
Yes

B
en

ch
m

ar
k

su
it

es

[15]
PowerGridLib

(optimization)
No

Partial Yes Partial No No
static topo

realistic prod
Small, doc,

(open source)
PowerModel
Med-speed

No ML
(uniform)

Yes

physical models or optimization. Some only present variations of a same kind of model, let say a
given Deep Neural Network architecture, that we consider as a uniform set of baselines, which we
tag as partial evaluation in that case.

E Logistics & available materials

E.1 Datasets

The provided datasets are available through the reference_data folder. For each use case, a sepa-
rate directory is considered. Concerning the power grid use case, we have considered two different
grids, namely L2RPN_case14_sandbox (14 nodes) and L2RPN_neurips_2020_track1_small
(36 nodes), through the experimentation and their related data are provided. For each benchmark,
four datasets are provided, which are :

• train: the dataset used for training purpose of an augmented simulator;

• val: the dataset that may be used for the validation purpose;

• test: the dataset that present the same distribution of train dataset, which is used for
evaluation purpose;

• test_ood_topo: the dataset that presents out-of-distribution samples which have never
been seen during the training phase of an augmented simulator. As an example for power
grid use case, it presents higher order topology actions in comparison to training test
(two simultaneous line disconnections instead of only one disconnection considered in
train).

E.2 Getting started Notebooks

There are several Jupyter Notebooks provided which guide the users to use the platform for
generating the datasets, evaluation of baseline models and training augmented simulators. Some
auxiliary notebooks are also provided to cover the experimentations explained in the paper and
to fine-tune the hyper parameters. More details concerning these notebooks are provided in the
following:

1. DesignBenchmarks: This notebook shows how the configuration files could be manipu-
lated to create and introduce new scenarios;

2. GenerateData: This notebook shows how to generate the datasets using the LIPS plat-
form and also to visualize the generated datasets using provided functions;

17



3. EvaluateBaseline: This notebook shows how one can evaluate a physics based method
(DC approximation in power grid use case) or an already trained augmented simulator
(for example a baseline fully connected architecture);

4. TrainAnAugmentedSimulator: This notebook shows how to train an augmented simu-
lator from scratch (e.g., fully connected or leapNet) and to evaluate its performance;

5. Complete_example: This notebook presents a complete example of the benchmarking
pipeline from loading datasets, training augmented simulators, analyzing their conver-
gence, evaluating their performances with respect to various evaluation criteria cate-
gories;

6. Benchmark1_Weight_sustaining_wheel: This notebook provides information con-
cerning the first benchmark of pneumatic use case;

7. Benchmark2_Rolling_Wheel: This notebook provides the information concerning the
second benchmark of pneumatic use case;

8. Auxiliary folder: Include some supplementary notebooks. They allow for example
to benchmark the bigger environment for power grids, fine-tune the hyper parameters of
surrogate models, etc.

We work continuously to add more comprehensive notebooks to explain the different aspects of
the framework. So, the list of notebooks will be evolved over time with respect to introduce and
cover the new functionalities.

E.3 Models

We have provided two directories for the trained augmented simulators, where users could save
the learned models.

• trained_baselines: include the baseline models which are used to provide the results
shown in the paper. They can be used to reproduce the performance results;

• trained_models: Other trained models by the users could be saved in this directory.

These directories are also organized with respect to use cases and datasets and are accessed in
relative notebooks to import the already trained augmented simulators.

E.4 Framework organisation

The developed package is available under lips directory which includes all the modules, classes
and utility functions. Herein, we summarize breifly the list of modules, for greater details, we
refer the readers to the documentation of the platform. The scheme of the LIPS package is also
provided in Figure 1 where we can observe the three main modules which are Data, Benchmark
and Evaluation.

• augmented_simulators: This module provides the base classes for augmented simu-
lators which could be based on Tensorflow or Pytorch. On the basis of each of these
libraries, we have also provided some baseline models which are available in their respec-
tive sub-modules. The base classes provide some important functions to be able to build,
train and evaluate models;

• benchmark: This is the main module of the framework which allow to perform the
complete pipeline of the evaluation. For each use case, a specific Benchmark class is
provided allowing to generate datasets, to evaluate augmented simulators and more;

• dataset: This module is where the datasets are created and maintained. It offers some
functions to save, load and generate some data. For each use case, a specific dataset class
is considered, because of heterogeneous nature of their respective dataset;

• evaluation: This module is where the different categories of evaluation criteria are
applied on the pair of observations and predictions to report the required KPIs;

• metrics: The set of metrics to compute the machine learning and physics compliances
are offered in this module;
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• Physical_simulator: this module provides the physical solvers which at basis for the
generation of synthetic data. Each use case has its own solver;

• plot: some plotting utilities are provided to be able to visualize the data and the model
performances.

Figure 1: Benchmarking framework

E.5 Configuration Files

In order to give more flexibility to users to configure the benchmarks and augmented simu-
lators, we have made use of configuration files. These configuration files are accessible from
configurations directory of the repository root. Each use case has its own set of configuration
files. We have also separated the configurations into two directories:

• Benchmarks: Configurations required to design a benchmark scenario

• Simulators: Configurations required to parameterize the hyper parameters of augmented
simulators

In the following, we present firstly the configurations required to create a benchmark scenario.
For this illustrative example, we show the configurations for power grid use case. Afterwards, we
present an example of a configuration file for an augmented simulator. These configurations
could be modified on-the-fly to change benchmark parameters or to propose a new augmented
simulator with a set of completely new hyper parameters.

Benchmark configurations As it can be seen below, each configuration file is composed of
various sections. Each section could be identified by square brackets. For example, here we have
shown the DEFAULT section with its set of options. It includes the generic default options for all the
power grid related benchmarks. For example, we can use a specific grid environment that should
be used for the experimentation, the data generation specific parameters which are indicated by
the keys chronics, number of samples per chronic and also some seeds for reproducibility. We
indicate also the variables (inputs and outpus), that should be stored during the generation of
new data and also some very basic evaluation criteria that are considered for machine learning
category (i.e., MSE and MAE).
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[DEFAULT]
# The environment used for generation of data (IEEE14)
env_name = "l2rpn_case14_sandbox"
# Parameters used to initialize the environment
env_params = {

"NO_OVERFLOW_DISCONNECTION": True,
"MAX_LINE_STATUS_CHANGED": 999999,
"MAX_SUB_CHANGED": 999999,
"NB_TIMESTEP_COOLDOWN_LINE": 0,
"NB_TIMESTEP_COOLDOWN_SUB": 0}

# Filter power grid chronics independently for each dataset
chronics = {

"train": "^((?!(.*9[0-9][0-9].*)).)*$",
"val": ".*9[0-4][0-9].*",
"test": ".*9[5-9][0-4].*",
"test_ood": ".*9[5-9][5-9].*"
}

# Number of samples to be drawn from each chronic
samples_per_chronic = {

"initial_chronics_id": 0,
"train": 864,
"val": 288,
"test": 288,
"test_ood": 288,
}

# Seeds to be set for reproducibility
benchmark_seeds = {

"train_env_seed": 1,
"val_env_seed": 2,
"test_env_seed": 3,
"test_ood_topo_env_seed": 4,
"train_actor_seed": 5,
"val_actor_seed": 6,
"test_actor_seed": 7,
"test_ood_topo_actor_seed": 8,
}

# Inputs and outputs to be used for training
attr_x = ("prod_p", "prod_v", "load_p", "load_q")
attr_tau = ("line_status", "topo_vect")
attr_y = ("a_or", "a_ex")
# Evaluation criteria per category
eval_dict = {

"ML": ["MSE", "MAE"],
"Physics": [],
"IndRed": [],
"OOD": []}

We show below also the configuration section (Benchmark1) with its set of options for the first
benchmark of power grid use case. The power grid benchmark could be initialized and set using
this configuration file. We indicate the set of attributes that should be stored when generating the
data and also a set of parameters to design the specific scenario of this benchmark. The option
dataset_create_params indicate a set of parameters, which are used by an agent (XDepthAgent
available in dataset utils of the package) to make combinatory actions allowing to provide the
required scenarios for each of the training, test and out-of-distribution datasets of this benchmark.
These set of parameters are very specific to each benchmark. For example for this benchmark,
we allow some topology action to change buses as the reference. For the training scenario, we
authorize at maximum one line disconnection above of this reference topology. Test dataset will
contain a line disconnection at each sample and finally the out-of-distribution will include 2
power line disconnections simultaneously which is not observed during the training phase.

We consider also a set of possible evaluation criteria for different categories. For example, for
Machine learning related criteria, we consider MSE, MAE, MAPE and MAPE90 metrics and we
would also compute the inference time with infinite batch size. For physics compliances we
consider the current positivity verification. For industrial readiness, we measure also the inference
time but from a real-world industrial point of view with a batch size 14000 which is indicated in
evaluation metric parameters. Finally for generalization category, we consider the same set of
criteria as machine learning.
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[Benchmark1]
attr_x = ("prod_p", "prod_v", "load_p", "load_q")
attr_tau = ("line_status", "topo_vect")
attr_y = ("a_or", "a_ex")
dataset_create_params = {

# REFERENCE PARAMS
"reference_args" : {

"topo_actions": [
# topology change at substation 4

{’set_bus’:{’substations_id’:[(4,(2,1,2,1,2))]}},
# topology change at substation 1
{’set_bus’:{’substations_id’:[(1,(1,2,1,2,2,2))]}},
# topology change at substation 5
{’set_bus’:{’substations_id’:[(5,(1,1,2,2,1,2,2))]}}

],
# 70% unitary actions and 30% actions at depth 2
"prob_depth": (0.7, 0.3),
# only topology change actions
"prob_type": (1., 0.),
# include 20 percent DoNothing actions
"prob_do_nothing": 0.2,
# No line disconnections
"max_disc": 0},

"train": {
# SCENARIO TOPOLOGY : disconnect or not one line at each tim step
"prob_depth": (1.,),
"prob_type": (0., 1.),
"prob_do_nothing": 0.1,
"max_disc": 1},

"test":{
# SCENARIO TOPOLOGY: disconnect one line at each time step
"prob_depth": (1.,),
"prob_type": (0., 1.),
"prob_do_nothing": 0.,
"max_disc": 1},

"test_ood":{
# SCENARIO TOPOLOGY: disconnect two lines at each time step
"prob_depth": (0., 1.),
"prob_type": (0., 1.),
"prob_do_nothing": 0.,
"max_disc": 2}

}
# Evaluation criteria per category for Benchmark1
eval_dict = {

"ML": ["MSE_avg", "MAE_avg", "mape_avg", "mape_90_avg", "TIME_INF"],
"Physics": ["CURRENT_POS"],
"IndRed": ["TIME_INF"],
"OOD": ["MSE_avg", "MAE_avg", "mape_avg", "mape_90_avg", "TIME_INF"]}

# Set of adjustable parameters (tolerances) for evaluation criteria
eval_params = {

# Inference batch size for industrial readiness evaluation
"inf_batch_size": 14000,
"EL_tolerance": 0.04,
"GC_tolerance": 1e-3,
"LC_tolerance": 1e-2,
"KCL_tolerance": 1e-2,
"ACTIVE_FLOW": True}

In the above configuration file, we parameterize an agent (called XDepthAgent) which allows
to generate the required scenarios. Using this agent, we can perform some reference actions
(indicated by reference_args) with its set of parameters and some scenario based actions,
which are also vary with respect to the dataset (train, test, test_ood). The agent parameters
are the following:

• prob_depth: the depth (number) and the corresponding probability. For example, the set
(0.7,0.3), indicates two actions possible at most, with higher probability corresponding
to unitary actions (with probability 0.7);

• prob_type: indicates whether to perform topology (first item) or contingency action
(second item) with a probability. For example, the set (1.,0.) indicates to perform only
topology action (probability 1.);
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• prob_do_nothing: A scalar value which indicates the proportion of do nothing actions
to include. For example, a value 0.2 indicates that 20% of observations generated may
contain no topology changes and no line disconnections;

• max_disc: the number of maximum power line disconnections authorized at each obser-
vation. For example, a number 2 indicates, at most 2 power lines could be disconnected
at each observation.

Augmented simulator configurations The augmented simulators which are used to model the
physical phenomena could also be parameterized through configuration files. We show below
an example of a configuration file for a Tensorflow fully connected model. In the repository,
we provide also two other configuration files related to an implementation of Fully Connected
architecture using Pytorch and the LeapNet using the Tensorflow library. As it can be seen, this
configuration file could also have various sections and each section could be used independently
to parameterize the required model. Through the DEFAULT configuration below, a number of
hyper parameters of Fully Connected architecture could be adjusted: the number of layers and
neurons, the activation function, drop-outs, metrics and loss function, batch size and number of
epochs. Another variant of this default configuration is for example consider two layers with 100
neurons each that is suggested in section CONFIG1. This section could be set when training an
augmented simulator.

# Configuration for a Fully Connected model implemented using Tensorflow library
[DEFAULT]
name = "tf_fc"
layers = (300, 300, 300, 300)
activation = "relu"
layer = "linear"
input_dropout = 0.0
dropout = 0.0
metrics = ["mae"]
loss = {"name": "mse",

"params": {"size_average": None,
"reduce": None,
"reduction": ’mean’}}

device = "cpu"
optimizer = {"name": "adam",

"params": {"lr": 3e-4}}
train_batch_size = 128
eval_batch_size = 128
epochs = 5
shuffle = True
save_freq = False
ckpt_freq = 50

[CONFIG1]
layers = (100, 100)

E.6 LIPS usage

Herein, the divers functionalities of LIPS through some working examples are described.

E.6.1 Generating data

One of the advantages of the proposed framework is to allow the generation of data. For this
purpose, a physical solver for each use case is attached to the framework. For example, the Grid2op
simulator is used for power grid use case and GetFem simulator is used for pneumatic use case. The
generated states using these solvers are stored in datasets and are accessible for further required
manipulations. The script below shows how to generate some data for the first benchmark of
power grid use case. As it can be seen, the configuration file is used by PowerGridBenchmark class
to initialize the set of parameters required for data generation. After instantiating the benchmark
class, some samples are generated for each of required datasets (train, val, test and ood).
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# For power grid use case, import corresponding class
from lips.benchmark.powergridBenchmark import PowerGridBenchmark

# Indicate the paths to config file and a path where the data should be stored
CONFIG_PATH = PATH / TO / CONFIG / FILE / "l2rpn_case14_sandbox.ini"
DATA_PATH = PATH / TO / DATA / "l2rpn_case14_sandbox"
LOG_PATH = "lips_logs.log"

# Instantiate the benchmark class
benchmark1 = PowerGridBenchmark(benchmark_path=DATA_PATH,

benchmark_name="Benchmark1",
load_data_set=False,
config_path=CONFIG_PATH,
log_path=LOG_PATH)

# Generate some data for Benchmark1
benchmark1.generate(nb_sample_train=int(1e5),

nb_sample_val=int(1e4),
nb_sample_test=int(1e4),
nb_sample_test_ood_topo=int(1e4),
)

E.6.2 Training an augmented simulator

Once, we have generated some datasets, they could be used by augmented simulators for training.
Hereafter, we show how to train a Tensorflow based augmented simulator versus a Pytorch based
augmented simulator.

For Tensorflow based augmented simulators, you can simply import a required model and in-
stantiate it using the provided configurations. Finally, using the train function, you can train the
augmented simulator using the generated data for learning and validation. One should also pass a
scaler as argument, to be able to preprocess the data.

# Training a Tensorflow based augmented simulator
from lips.augmented_simulators.tensorflow_models import TfFullyConnected
from lips.dataset.scaler import StandardScaler

# indicate required paths
DATA_PATH = PATH / TO / DATA / "l2rpn_case14_sandbox"
BENCH_CONFIG_PATH = PATH / TO / CONFIG / "l2rpn_case14_sandbox.ini"
SIM_CONFIG_PATH = PATH / TO / SIM / CONFIG
LOG_PATH = "lips_logs.log"

# Instantiate a Tensorflow based augmented simulator
tf_fc = TfFullyConnected(name="tf_fc",

bench_config_path=BENCH_CONFIG_PATH,
bench_config_name="Benchmark1",
sim_config_path=SIM_CONFIG_PATH / "tf_fc.ini",
sim_config_name="DEFAULT",
scaler=StandardScaler,
log_path=LOG_PATH)

# Train it by indicating required datasets and some on-the-fly parameters
tf_fc.train(train_dataset=benchmark1.train_dataset,

val_dataset=benchmark1.val_dataset,
epochs=100
)

For Torch based architectures, we provide a general purpose TrochSimulator class, which allows
to train an augmented simulator and to predict using the trained model. However, the models
should be derived from torch.nn.Module and passed an argument to this class. A GPU hardware
could also be easily used if one is available. Otherwise, the CPU option should be selected.
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# Training a pytorch based augmented simulator
from lips.augmented_simulators.torch_models.fully_connected import

TorchFullyConnected
from lips.augmented_simulators.torch_simulator import TorchSimulator
from lips.dataset.scaler import StandardScaler

# indicate required paths
DATA_PATH = PATH / TO / DATA / "l2rpn_case14_sandbox"
BENCH_CONFIG_PATH = PATH / TO / CONFIG / "l2rpn_case14_sandbox.ini"
SIM_CONFIG_PATH = PATH / TO / SIM / CONFIG
LOG_PATH = "lips_logs.log"

# Instantiate a torch simulator (controller)
torch_sim = TorchSimulator(name="torch_fc",

# Indicate the model (class) that should be used
model=TorchFullyConnected,
# Indicate a Scaler class
scaler=StandardScaler,
log_path=LOG_PATH,
# use "cpu" if no GPU available
device="cuda:0",
seed=42,
bench_config_path=BENCH_CONFIG_PATH,
bench_config_name="Benchmark1",
sim_config_path=SIM_CONFIG_PATH / "torch_fc.ini",
sim_config_name="DEFAULT"
)

# train the TorchFullyConnected model by indicating required datasets
torch_sim.train(train_dataset=benchmark1.train_dataset,

val_dataset=benchmark1.val_dataset,
save_path=None,
epochs=100,
train_batch_size=128)

E.6.3 Evaluation using Benchmark class

Once the data is generated and an augmented simulator is trained, the benchmark class provide
evaluation function (evaluate_simulator) allowing to compute all the required KPIs. This
function takes as input the trained augmented simulator (here torch_sim object) trained in
code snippet above, the dataset on which evaluation should be performed (here all means three
datasets: valid, test, test_ood), some on-the-fly evaluation parameters (e.g., evaluation batch
size) and if the results should be saved on disk by indicating corresponding paths. The results of
evaluation is stored in a python dictionary for each evaluation metric categories.

# For power grid use case, import corresponding class
from lips.benchmark.powergridBenchmark import PowerGridBenchmark

# Indicate the paths to config file and a path where the data should be stored
CONFIG_PATH = PATH / TO / CONFIG / FILE / "l2rpn_case14_sandbox.ini"
DATA_PATH = PATH / TO / DATA / "l2rpn_case14_sandbox"
LOG_PATH = "lips_logs.log"

# Instantiate the benchmark class
benchmark1 = PowerGridBenchmark(benchmark_path=DATA_PATH,

benchmark_name="Benchmark1",
load_data_set=False,
config_path=CONFIG_PATH,
log_path=LOG_PATH)

# Evaluate the learned augmented simulator
torch_sim_metrics = benchmark1.evaluate_simulator(augmented_simulator=torch_sim,

eval_batch_size=128,
dataset="all",
shuffle=False,
save_path=None,
save_predictions=False
)

# print the performance metrics for test dataset
print(torch_sim_metrics["test"])
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In order to ease the use of the platform for the users, some getting started Jupyter Notebooks
are provided. These Notebooks explain in greater details, how one could generate some data
from a desired power network, how to train an augmented simulator and how to evaluate the
performance using the required KPIs.

F Experimental settings

F.1 computing resources

All the experiments in the following sections are performed using a server equipped with AMD
EPYC 7502P 32-Core Processor, NVIDIA RTX A6000 GPU and 128 GB of RAM. All computation time
evaluation are run on the CPU with time measured per simulation or prediction. The augmented
simulators use GPU for training, while power flow solvers and the inference phase of augmented
simulators use CPU for computations. The experimentation results are reported using Tensorflow
library (however, for the convenience, the users have the choice to use either Pytorch or Tensorflow
libraries.

Training time We have also investigated the training time required for both augmented simu-
lators used in power grid use case. For Fully Connected augmented simulator, it takes around
45-60 minutes over 400 iterations (epochs) and for LeapNet, it takes around 50-70 minutes to
be trained. The difference in training time between these approaches could be explained by the
fact that LeapNet use a little more complicated architecture in comparison to Fully connected
augmented simulator.

F.2 Augmented simulator visualization

We show the architecture used for LeapNet augmented simulator in Figure 2. It can be seen
that the topology vector (labelled tau) intervenes in latent space using a Leap layer. This par-
ticular architecture shows nice generalization performances in comparison to fully connected
architecture.

F.3 Preprocessing

No specific preprocessing is done in the raw datasets beside removing divergent simulation
instances. However for training models, some functions are provided to run possibly useful
preprocessing steps. current preprocessing step allows to encode the network topology in different
ways. Standardization of injections and power flows are also available (zero mean and unit
variance).

Various scalers are also provided in the dataset utilities which are:

• StandardScaler: A scaler which ensures to have a zero mean and unit variance;

• PowerGridScaler: A more advanced scaler, which is used for power grid used and
LeapNet augmented simulator to encode the topology vector and other variable with
respect to the power grid context.

These scalers could be used during the training phase of the augmented simulators by introducing
them as an argument. They help to preprocess the data. The users could propose and use their
own scaler as well and pass it as an argument to their own specific augmented simulator.

F.4 Hyper-parameter tuning

To set the hyper parameters, we have made use of tools like AutoKeras [16] and Nevergrad [17]. We
are also investigating the integration of Optuna [18] as a tool for hyper parameter tuning to offer to
the users of LIPS frameworks. As so, the researcher could focus only on important research topics
(design of more competitive augmented simulators) rather than time-consuming operations as
hyper parameter tuning.
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Figure 2: LeapNet augmented simulator architecture
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G Complementary results

G.1 Numerical comparison table

Table 10 summarizes the evaluation results for both use cases over the different introduced
scenarios. The values in this table are reported using the mean and standard deviation for each
metric over 10 runs of the augmented simulators. Various evaluation criteria is used for machine
learning category, which are: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
Mean Absolute Percentage Error on 10% highest quantile values, and the speed up with respect
to physical solver when the evaluation batch size is set to maximum possible value. Concerning
the Readiness, we consider the Inference speed up using the batch sizes representing the real-
world industrial use cases (much less than machine learning one). Finally, concerning the out-
of-distribution category, the same set of metrics are computed using a dataset with samples
presenting a different distribution than the training set for augmented simulators.

Quality Indicator threshold values for physical variables In this work, in order to simplify the
numerical results, we have categorized the performance of physics based solvers and augmented
simulators on the basis of threshold values which are shown in Table 8. In the article, we have
also associated a specific color to each category. For the variables with values below the inferior
threshold, we consider perfect (green color) performance. For those with values between inferior
and superior, we consider acceptable performance (yellow). Finally, we consider not acceptable
(red color) for the values above the superior threshold.

Power grid Thresholds for amperes A and active power P are given as a maximum percentage
error. Operators takes margins of 5% when doing risk assessment (Benchmark 1) and are sensible
to errors above that threshold. When searching for actions (Benchmark 2), they need more
accuracy and this sensitivity thresholds is lower in the range of 1 and 2%. For voltages, we look at
the absolute value error. Indeed voltages fluctuate around a nominal voltage value, and operators
rather sees it in the form of a deviation that should be kept in a range of plus or minus 3kVolts.
Hence 0.2kVolt error is fine but 0.5kVolt is not acceptable in that case.

Table 8: Thresholds table for variables. The values below the inferior thresholds are considered
as perfect performance. The values between inferior and superior thresholds are considered as
acceptable and the values above than the superior threshold are considered as not acceptable.

Benchmark1 Benchmark2
Variables A A , P V

T
h

re
sh

o
ld

s Inferior 5% 1.5% 0.2kV

Superior 10% 5% 0.5kV

G.2 Physics compliances

The physics compliances are evaluated for benchmarks 1 and 2 respectively in Tables 9 and 12 for
power grid use case. The DC approximation respect most of the physical laws, as it is based on
physical laws by nature. It could be seen that more physical laws are computed for the second
benchmark in comparison the first one. More variables are available for the second benchmark,
hence, more complex physical laws should be verified consequently.
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Table 10: Comparison table for benchmarks. The methods are Direct Current flow computation (DC), Fully Connected Neural Network (FC), LeapNet which is a specific neural
architecture to encode the topology configurations and Unet, a convolutional neural network. For the Power Grid use case, variables are electrical current (A), Active power (P)
and Voltage (V). For the pneumatic use case, variables are the displacement (uΩ) and the contact stress (λc ). The considered criteria are Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE) and its extended version which is computed on 10% of lines with highest current values (MAPE90), Inference time represented by the speed-up
with respect to physic solver (Inf. speed-up), Out-of-distribution Generalisation (OOD Gen.), rate of violation of positive values (Pos.) and rate of incorrect predictions in the case
of disconnected lines (Disc.)

Criteria category
ML-related Readiness OOD Gen.

Methods Variables MAE MAPE MAPE90 Inf. speed-up Inf. speed-up MAE MAPE MAPE90

Us
e

ca
se

s

Po
we

r
Gr

id

SM
AL

L

Be
nc

hm
ar

k1 DC A - - .14 - - - - .15

FC A - - 2e-3 ± 3e-6 57 58 - - .14 ± 2e-5

LeapNet A - - 3e-3 ± 2e-5 11 12 - - .13 ± 1e-3

Be
nc

hm
ar

k2

DC
A - - .15

- -
- .16

P - .09 - - .08 -
V - .02 - - .02 -

FC
A - - 3e-3 ± 1e-5

62 -
- - 8e-2 ± 3e-4

P - 5e-3 ± 1e-5 - - .13 ± 7e-6 -
V 6e-2 ± 8e-3 - - .43 ± 5e-2 - -

LeapNet
A - - 6e-3 ± 1e-4

11 -
- - .12 ± 2e-3

P - 9e-3 ± 4e-4 - - .28 ± 4e-3 -
V .18 ± 4e-2 - - .8 ± 5e-3 - -

BI
G

Be
nc

hm
ar

k1 DC A - - .09 - - - - .09

FC A - - 5e-3 ± 4e-5 142 143 - - 3e-2 ± 1e-4

LeapNet A - - 5e-3 ± 3e-5 28 28 - - 3e-2 ± 3e-4

Be
nc

hm
ar

k2

DC
A - - .09

- -
- - .10

P - .08 - - .09 -
V - .02 - - .03 -

FC
A - - 1e-2 ± 4e-5

130 -
- - 5e-2 ± 3e-4

P - 3e-2 ± 2e-4 - - .10 ± 3e-4 -
V .31 ± 9e-3 - - .50 ± 2e-2 - -

LeapNet
A - - 1e-2 ± 3e-5

25 -
- - 5e-2 ± 3e-5

P - 2e-2 ± 3e-3 - - 9e-2 ± 1e-5 -
V .40 ± 2e-3 - - .60 ± 1e-2 - -

Pn
eu

ma
ti

c

Be
nc

hm
ar

k1 FC uΩ 2e-3 ± 3e-4 - - 18 - - - -

UNet uΩ 1e-1 ± 8e-4 - - 18 - - - -

Be
nc

hm
ar

k2 FC uΩ 23 - - 23 - -
λc 2e-2 ± 2e-4 - - 11 - 2e-2 ± 2e-4 - -
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Table 11: Color blind version of Table 3 of the article. Benchmark result table for the two use cases under 4 categories of evaluation criteria. The performances
are reported using three colors computed on the basis of two thresholds. Colors and symbol meaning: Not acceptable Acceptable Great
two problem scales reported (in that case, speed-up for smaller scale is in parenthesis). The number of circles corresponds to the number of variables or laws
that are evaluated. For quantitative values from which this table is derived, please refer to section G.1 of appendix.

Criteria category
ML-related Readiness OOD Gen. Physics

Methods Quality Speed-up Speed-up Quality Domain laws

Us
e

ca
se

s Po
we

r
Gr

id Be
nc

h1

a a P1
DC NA 19 (7)

FC 19 (22) 17 (20)

LeapNet 17 (19) 14 (17)

Be
nc

h2

a p v a p v P1 P2 P3 P4 P5 P6 P7 P8

DC NA 5 (3)

FC 99 (157) 57 (27)

LeapNet 90 (140) 54 (24)

Pn
eu

ma
ti

c

Be
nc

h1

uΩ P1 P2 P3

FC 18 NA NA

UNet 18 NA NA

Be
nc

h2

uΩ λc uΩ λc P1 P2 P3

FC 11 NA
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Table 9: Physics compliance Table BENCHMARK1. The only physical metric considered for this
benchmark is the proportion of violation of electrical current positive values

Grid Evaluation Methods CurrentPos

SM
A

LL Te
st

DC approximation 0
Fully Connected 2e-2 ± 2e-4
LEAP Nets 2e-2 ± 7e-4

O
O

D DC approximation 0
Fully Connected 2e-2 ± 2e-4
LEAP Nets 3e-2 ± 7e-5

B
IG

Te
st

DC approximatio 0
Fully Connected 8e-3 ± 2e-4
LEAP Nets 8e-3 ± 3e-4

O
O

D DC approximation 0
Fully Connected 1e-2 ± 2e-4
LEAP Nets 1e-2 ± 3e-5

Table 12: Physics Compliances Table BENCHMARK2. DC stands for Direct Current flow computation,
FC is Fully Connected Neural Network and LeapNet is a specific neural architecture to encode
the topology configurations. The Physics Compliance metrics are the rate of violation of positive
values (Pos.) and the rate of incorrect predictions in the case of disconnected lines (Disc.)

Physics
Grid Evaluation Methods CurrentPos VolPos LossPos DiscLines LossRes GC LC VolEq

SM
A

LL Te
st

DC 0. 0. 0. 0. 0. 1. .02 .53
FC 1e-2 1e-2 .13 - .23 1e-2 2e-3 .97
LeapNet 1e-2 8e-3 .13 - .20 1e-2 2e-3 .98

O
O

D DC 0. 0. 0. 0. 0. 1. .02 .5
FC 1e-2 1e-2 .16 - 1.37 6e-2 1e-2 .98
LeapNet 1e-2 1e-2 .14 - 1.10 3e-2 1e-2 .99

B
IG

Te
st

DC 0. 0. 0. 0. 0. 1. .01 .02
FC 1e-2 1e-2 .24 - 2.89 6e-2 8e-3 .99
LeapNet 1e-2 1e-2 .20 - 1.70 2e-2 9e-2 .99

O
O

D DC 0. 0. 0. 0. 0. 1. .02 .04
FC 1e-2 9e-3 .25 - 9.08 8e-2 1e-2 .99
LeapNet 1e-2 7e-3 .20 - 8.5 8e-2 1e-2 .99

We present the results for both benchmarks in the pneumatic case in table 13 and 14. It turns
out that, from the physical consistency point of view, the augmented models don’t behaves well
at all. Such a thing can be explained by the size of the dataset considered and required more
investigations in the near futures. However, one expected result is the accuracy of prediction
for the contact stress in benchmark 2. Despite being a pure out-of-distribution case, the ML-
model behaves surprisingly well. Unfortunately, the results are far from satisfactory in the same
benchmark for the displacement; in our opinion, it means the scaler proposed to handle the out-
of-distribution displacement prediction is not working as expected as the optimizer associated to
the augmented simulator fails to converge properly.

Table 13: Physics Compliances Table BENCHMARK1 pneumatic use case.
Physics

Pneumatic (%) Evaluation Methods Von-Mises HorizontalDisp VerticalDisp

Te
st

FC 20 ± 9 16 ± 3 46 ± 200
Unet 318 ± 15 276 ± 52 381 ± 368

Table 14: Physics Compliances Table BENCHMARK2 pneumatic use case.
Physics

Pneumatic (%) Evaluation Methods Von-Mises NormalContact TangentialContact

Te
st

FC 6e8 ± 7e8 7 ± 4 2 ± 1
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H Accessibility

H.1 Code repository and data availability

The data and developed platform “Learning Industrial physical simulation benchmark suite: the
power grid case" can be accessed via the following public github repository : https://github.
com/IRT-SystemX/LIPS.

H.2 Submission on Codabench

In order to ease the testing, reproducibility and evaluation of Augmented Simulators, we provide an
instance of the LIPS framework running on the Codabench[19] platform; it can be accessed using
the following link: http://htmlpreview.github.io/?https://github.com/IRT-SystemX/
LIPS/blob/main/codabench/codabench.html.

We strongly encourage researchers and practitioners to use this service to assess the quality of
their models against our diverse benchmarks.

The submission on Codabench is relatively simple, participants have to follow the following steps:

1. Prepare the Augmented Simulator bundle – This phase consists in implementing the
augmented simulator to be tested. The implementation is quite free (meaning that the
implementation of the augmented simulator is not restricted to a specific ML framework
such as TensorFlow or PyTorch). However it has to comply with a "standard" interface
so that it can be automatically instantiated and run by Codabench when it is submitted.
The details of the interface are provided on LIPS Codabench page, section "Submission"
(see Figure 3).

A submission is a zip file shall contain at minimum:

• a Python file named my_augmented_simulator.py and that contains a class
named BenchmarkedSimulator that extends the LIPS class AugmentedSimulator:

• a configuration file simulator_config.json that contains in particular specific
parameters required during the initialization of the submitted augmented simulator

• any optional additional files necessary to the correct execution of the benchmark
with the provided augmented simulator.

• (optionally) pre-trained simulator data.

A submitted simulator is preferably pretrained; otherwise it may be (re)-trained on the
Codabench platform depending on the availability of computing resources.

Figure 3: Preparation of an Augmented Simulator submission to Codabench
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2. Upload of submission on Codabench – Once the augmented simulator bundle is ready, it
may be submitted on Codabench (tab "My submissions"). The participant has to select
the list of benchmark tasks he wants to test his simulator against (see Figure 4)

Figure 4: Submission and monitoring of an Augmented Simulator submission to Codabench

Based on this configuration, the selected benchmarks are instantiated, each on an isolated
Docker container, and an instance of the provided augmented simulator is created for
each selected benchmark. During the execution of the benchmark, a set of logs are
displayed in order to check if it is running smoothly.

Once the execution is finished, the status of the submission is updated (see Figure 5:
"Finished" in case of successful execution). It may be a "Failed" in some cases, for
example if the provided Augmented Simulator implementation does not comply with the
required interface or if a timeout occurs.

Figure 5: Status of an Augmented Simulator submission to Codabench

3. Obtain results and ranking – A leaderboard is then available (Figure 6), on which the
user can see the results of his Augmented Simulator for the selected benchmarks and
according to the different criteria we explained in this paper. This table allows to compare
with other submissions.

Figure 6: Leaderboard for Power System Benchmark 1 on Codabench

Potential issues or bugs found when using the LIPS Codabench instance may be reported in the
LIPS github as issues: https://github.com/IRT-SystemX/LIPS/issues.
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I Platform documentation

The platform’s documentation is available at https://lips.readthedocs.io/en/latest/. All
the classes, variables and corresponding functions are explained in greater details with more
examples.

J Computation time investigation

To investigate the computation time of physical solvers and augmented simulators, we consider
the whole inference procedure which consists in the following three steps:

• Pre-processing: the time required for the data to be prepared as to respect the right format
(dimension) and scale used by a physical solver or an augmented simulator;

• Solving/Inference: the time required by a physical solver or an augmented simulator to
solve one instance of the problem (one powerflow for power grid use case);

• Post-processing: The time required to reformat or re-scale the results.

In the following section, we provide more details concerning how the computation time is com-
puted for physical solvers and augmented simulators.

J.1 Physical solvers

The time spent in the solver can be split into different “steps” that depend on the actual imple-
mentation of the solver.

1. This can include some pre-processing step(s)

• transfer between RAM and GPU (if computing happens on GPU)
• data copied in the RAM:

– data are sent to the python virtual machine by grid2op and could need to be
transferred to the JVM if solver is written in java for example

– data can be copied somehow if the solver if not “fully integrated” to grid2op
• transfer between RAM and “network card”: if the solver is accessed through a REST

API for example
• serialization / deserialization of the send by grid2op to be “understood” by the solver
• computation of some initial data
• etc.

This steps depends on the technology used by the solver and also the implementation
of the “Backend” class (it can be more or less optimized) as well as the internal data
representation used by the solver (which may be different from grid2op and require more
or less “copy” and serialization / deserialization) etc.

2. Then the computation of the powerflow takes place. This depends “only” on the solver
used.

3. Then, finally, post-processing step(s) can happen:

• conversion between some internal variables and output variable (eg computation of
the flows knowing all the complex voltages at each nodes)

• transfer between GPU and RAM
• data copied in the RAM
• transfer from “network card” to RAM (eg. if using a backend connected to a REST

API)
• serialization / deserialization of the data to be consistent with grid2op representation
• etc.

As for step 1 above, this depends only on the actual implementation of the backend (if
read from grid2op). The most important part for this “post processing step” would be the
possibility to get the results (mainly the flows) in a convenient format (numpy / pandas /
etc.) in python.
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Solver time And of course it is still possible to “go down a level” by splitting the “compute a
powerflow” into different steps that, this time, heavily depends on the implementation of the
solver.

For example, for lightsim2grid:

• α the topology / shunts of the grid is transformed into a Ybus matrix (the admittance
matrix)

• β the productions / loads are transformed into a Sbus vector

• β (bis) Get initial guess for internal (solver) variables (eg V, theta)

• γ Ybus, Sbus and the initial guess are then given to a “Powerflow solver” that computes a
powerflow and output (V, theta) at each bus (each row / column of Ybus)

• del t a (V, theta) at each bus are then transformed to flows, voltages, production values
etc. and can then be read by grid2op

Security analysis For example, in real time, each 5 minutes a “security analysis” is run. This
consists in computing a first time (with a full grid) α, β, γ, δ in order to get a good initial state (and
reusing the matrix / vector computed in α and β). Then you slightly modify the matrix obtained
after α and recompute γ and δ. You can do this last part “asynchronously” (“in parallel”) as each
computation is independent. This is the case for the first benchmark of power grid use case.

J.2 Augmented simulators

To evaluate the computation time of augmented simulators, we compute the time passed by the
methods during the predict function of augmented simulators. This function shall include the
three above-mentioned steps. An example of this function for Tensorflow based models is shown
below.

def predict(self, dataset: DataSet, **kwargs) -> dict:
"""_summary_

Parameters
----------
dataset : DataSet

test datasets to evaluate
"""
# preprocess the data
processed_x, _ = self.process_dataset(dataset, training=False)

# make the predictions
predictions = self._model.predict(processed_x, batch_size)

# post process the data
predictions = self._post_process(dataset, predictions)

return predictions

K Batch Size considerations for industrial Applications

As we can see in Figure 7, the speed-up factor depends on the batch size and increases with
the batch size. Indeed for small batch sizes, there exists some overhead time unrelated to the
pure inference time that needs to be considered. This overhead time becomes negligible as the
batch size increases. In industrial applications, only a given amount of simulations might be run
simultaneously. This hence define the target batch size for this application. And the speed-up
factor needs to be evaluated in that context to be relevant for that application.

Benchmark 1 For the power grid risk assessment, operators perform near real-time at a given
time simulations of security analysis (simulating every line contingency) over a temporal horizon
of about 100 timesteps (equivalent to a day horizon) and for difference reference topologies. Hence
the Batch size is of the order of:

B atch_si ze = nl i nes ∗100∗ntopo_r e f
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Benchmark 2 For remedial action search, operators are looking for solutions on a given situation
when there is a risky contingency that creates an overload. There are about 7-10% of such risky
contingencies for a given situation. There is usually about 20 to 50 known remedial action
candidates for a given risky contingency. Hence the Batch size is of the order of:

B atch_si ze = nl i nes ∗10%∗nacti ons

Figure 7: Inference Batch-size time complexity using LeapNet

L Further investigations (beside the provided developments)

L.1 Convergence

Hereafter, we have presented the convergence behavior of the augmented simulators (see Figure
8). In these figures, we have presented the loss curves related to the training (blue curve) and to
the validation steps (orange curve) of augmented simulators computed over 200 epochs. As it can
be observed in these figures, the both models (FC and LeapNets) have been converged over 200
epochs. The validation curve remains relatively close to the training curve and we do not observe
an abrupt increase in its behavior, which confirms the fact that the models have not overfitted
during the training phase. The difference between two models resides in the fact that the LeapNet
model starts with higher losses than the Fully Connected model at the beginning, and it gradually
reduces over time.

(a) Fully Connected model (b) LeapNet model

Figure 8: Analysis of the convergence behavior of the augmented simulators
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L.2 Investigation of required data volume for online learning

In the real-world, it is also in interest to determine the required volume of data for obtaining a
desired inference precision. To perform this benchmark, the data volume is varied between 1,024
and one million samples and the averaged NRMSE measure is reported for each data volume (see
Figure 9). It should be noted that the models were configured to learn progressively (learning on-
the-fly) as the samples are observed over time. It is a requirement for power network industries to
be able to train the models in this way, as the space of possible topological actions is humonguous
and all the possible situations could not be included in the training set. From these figures, it
can be observed that all the experimented models require at least about 400,000 data samples to
converge.

(a) Fully connected (b) ResNet (c) LeapNet

Figure 9: Data volume benchmark
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