
A Gradient Derivation

This section derives the gradient ∂L
∂θ in equation (12) in full details. Recall L is defined as:

L =

∫
pE(V) log

pE(V)

pQ(V |UB,Σ; θ)
dV

Firstly, we substitute L in ∂L
∂θ and rewrite log pE(V)

pQ(V |UB ,Σ;θ) as the difference between log pE(V)

and pQ(V |UB,Σ; θ).

∂L
∂θ

=
∂

∂θ

∫
pE(V) log

pE(V)

pQ(V |UB,Σ; θ)
dV

=

∫
pE(V)

∂

∂θ
log pE(V)dV −

∫
pE(V)

∂

∂θ
log pQ(V |UB,Σ; θ)dV

=−
∫

pE(V)
∂

∂θ
log pQ(V |UB,Σ; θ)dV (14)

Since pE(V) is independent of θ, the first derivative in the second line of equation (14) evaluates to
0. Next, we substitute pQ(V |UB,Σ; θ) using the optimal control sequence distribution expression in
equation (4):

∂L
∂θ

=−
∫

pE(V)
∂

∂θ
log

1

Z
pB(V |UB,Σ) exp(−

1

λ
S(V ; θ))dV

=−
∫

pE(V)
∂

∂θ
log pB(V |UB,Σ) dV −

∫
pE(V)

∂

∂θ
log exp(− 1

λ
S(V ; θ))dV

+

∫
pE(V)

∂

∂θ
logZdV

=−
∫

pE(V)
∂

∂θ
(− 1

λ
S(V ; θ))dV +

∫
pE(V)

∂

∂θ
logZdV (15)

Since pB(V |UB,Σ) is independent of θ, the first derivative in the second line of equation (14)
evaluates to 0. We are left with only two integrals in equation (15).

Next, we factorize out ∂
∂θ logZ from the integral since the partition function Z is constant to all V :

∂L
∂θ

=−
∫

pE(V)(− 1

λ

∂

∂θ
S(V ; θ))dV + (

∂

∂θ
logZ)

∫
pE(V)dV

=−
∫

pE(V)(− 1

λ

∂

∂θ
S(V ; θ))dV +

1

Z

∂Z

∂θ
(16)

The second line in equation (16) follows as
∫
pE(V)dV = 1.

Next, we substitute Z =
∫
pB(V |UB,Σ) exp(− 1

λS(V ; θ))dV in ∂Z
∂θ and simplify it:

∂L
∂θ

=−
∫

pE(V)(− 1

λ

∂

∂θ
S(V ; θ))dV +

1

Z

∂

∂θ

∫
pB(V |UB,Σ) exp(−

1

λ
S(V ; θ))dV

=−
∫

pE(V)(− 1

λ

∂

∂θ
S(V ; θ))dV +

1

Z

∫
pB(V |UB,Σ)

∂

∂θ
exp(− 1

λ
S(V ; θ))dV

=−
∫

pE(V)(− 1

λ

∂

∂θ
S(V ; θ))dV

+
1

Z

∫
pB(V |UB,Σ) exp(−

1

λ
S(V ; θ))

∂

∂θ
(− 1

λ
S(V ; θ))dV

=−
∫

pE(V)(− 1

λ

∂

∂θ
S(V ; θ))dV

+

∫
pB(V |UB,Σ) exp(− 1

λS(V ; θ))

Z

∂

∂θ
(− 1

λ
S(V ; θ))dV (17)

1

We rewrite 1
Z pB(V |UB,Σ) exp(− 1

λS(V ; θ)) in the last line of equation (17) as pQ(V |UB,Σ; θ) using
equation (4) and finally we have:

∂L
∂θ

=

∫
pE(V)(

1

λ

∂

∂θ
S(V ; θ))dV −

∫
pQ(V |UB,Σ; θ)(

1

λ

∂

∂θ
S(V ; θ))dV (18)

B Theorem 3.1 and Proof

We use T to denote the task horizon, and K to denote the receding time horizon for local optimization.
Let us simplify notations in the optimal control sequence distribution pQ(V |UB,Σ, xt; θ) and remove
the explicit dependency on UB and Σ. We assume that all control sequences are applied with UB as
the base distribution and Σ as the covariate matrix. We assume the expert’s underlying cost function
is parameterized by θE , so we have pE(.) = p(.; θE).

B.1 Sketch

We present a theoretical analysis on the convergence of RHIRL. Our main theorem 3.1 states that
given that the Kullback–Leibler (KL) divergence over local control sequence distribution for each
time step t = 0, 1, ...T − 1 is bounded by ϵ, though we do not query expert during the learning,
using the cached expert demonstrations alone allows us to bound the error over global state marginal
distribution linear in the task horizon T under total variance measure.

First, we show that if the KL-divergence over the local control sequence distribution is bounded by ϵ,
so is the KL-divergence over the resulting state distribution. At each time step t, the optimal control
sequences distribution pQ(Vt|xt; θt) at the initial state xt contains the full information to generate
the corresponding state trajectories p(τt|xt; θ), and consequently the state distributions pt(x|xt; θ)
(by neglecting the temporal information). Upon applying the information loss (lemma B.1), we
prove in lemma B.2 that, given initial state xt, if the KL-divergence over Vt is bound by ϵ, so is the
corresponding state distribution pt(x), i.e. DKL(pt(x|xt; θE) ∥ pt(x|xt; θ)) ≤ DKL(p(Vt|xt; θE) ∥
pQ(Vt|xt; θ)) ≤ ϵ.

Next, we show the KL-divergence over global state marginal distribution between two consecutive
time steps is also bounded by ϵ. For each optimal control sequence we compute, we only execute the
first control and use the rest to warm start the re-planning for the next time step. Therefore, for each
time step, we only change a small region of the global state distribution, i.e. reachable space of the
current time step. We use ptRHC(x; θ) to denote the global state marginal distribution by recursively
applying RHC from time step i = 0, ..., t under θ and switching to θE thereafter until T − 1. Using
generalized log sum inequality, we prove in lemma B.3 that if the KL-divergence over Vt is bounded
by ϵ for all t = 0, ..., T − 1, the KL-divergence over the global state marginal distribution between
each of the two consecutive time steps is bounded by ϵ, i.e. DKL(p

t
RHC(x; θ) ∥ pt+1

RHC (x; θ)) ≤ K+1
T ϵ.

Finally, we use Pinsker’s inequality to upper bound the total variation (TV) distance by KL-divergence
over state marginal distribution. Then we use the triangle inequality to show that the TV distance
between expert and the actual visited state distribution over the task horizon T using RHIRL is
bounded by an error linearly in T , i.e. DTV(pE(x) ∥ pRHC(x; θ)) < T

√
ϵ/2.

B.2 Proofs

First, we use Lemma B.1, B.2 to prove that the KL-divergence over control sequence space upper
bounds the KL-divergence over the resulting state distribution. We define the control sequence starts
at task time step t as Vt = {vt, vt+1, ..., vt+K−1}. Moreover, its corresponding trajectory segment
τt = {xt, xt+1, ..., xt+K} is computed uniquely from Vt and initial state xt by iteratively applying
the dynamic model xt+1 = f(xt, vt). We use p(xt) to denote the state density at a single time step t.
Assume Vt is optimized based on the cost parameterization θ, then the corresponding state distribution
is defined as the summation of all state density over horizon K, i.e. pt(x; θ) = 1

K+1

∑t+K
i=t p(xi; θ).

Lemma B.1 (Information loss[16]). Let a and b be two random variables and f(.) be a convex
function. Let P (a, b) be a joint probability distribution. The marginal distributions are P (a) =∑

b P (a, b) and P (b) =
∑

a P (a, b). Assume that a can explain away b. This is expressed as follows
– given any two probability distribution P (.), Q(.), assume the following equality holds for all a, b:

P (b|a) = Q(b|a) (19)

2

Under these conditions, the following inequality holds:∑
a

Q(a)f(
P (a)

Q(a)
) >

∑
b

Q(b)f(
P (b)

Q(b)
) (20)

Lemma B.2. Given the initial state xt and the two control sequence distributions p(Vt|xt; θE)
and pQ(Vt|xt; θ), the KL-divergence between the resulting state distribution is upper bounded by
KL-divergence between the control sequence distribution.

DKL(pt(x|xt; θE) ∥ pt(x|xt; θ)) ≤ DKL(p(Vt|xt; θE) ∥ pQ(Vt|xt; θ)) (21)

Proof. Firstly, we prove that the KL-divergence over state trajectory distribution p(τt) is upper
bounded by the KL-divergence between p(Vt). Given dynamical model f , the control sequence Vt

and the initial state xt contains all information to generate the corresponding τt. Therefore, for any
joint distribution P (τt, Vt|xt) and Q(τt, Vt|xt), the following is true

P (τt|Vt, xt) = Q(τt|Vt, xt)

Upon applying the information loss Lemma B.1, we have the inequality:

DKL(p(τt|xt; θE) ∥ p(τt|xt; θ)) ≤ DKL(p(Vt|xt; θE) ∥ pQ(Vt|xt; θ)) (22)

Next we prove that the KL-divergence between state distribution is upper bounded by the trajectory
distribution. Since a trajectory τt = {xt, xt+1, ..., xt+K} contains full information of the resulting
states (by neglecting the temporal information), for any joint distribution P (x|τt) and Q(x|τt), the
following is true

P (x|τt) = Q(x|τt) (23)
Upon applying Lemma B.1 we have the inequality:

DKL(pt(x|xt; θE) ∥ pt(x|xt; θ)) ≤ DKL(p(τt|xt; θE) ∥ p(τt|xt; θ)) (24)

Therefore, given the KL-divergence between the control sequence distribution is upper bounded by ϵ,
we use the equality in equation (22) and (24) to show that the KL-divergence between the resulting
state distribution is also upper bounded by ϵ.

DKL(pt(x|xt; θE) ∥ pt(x|xt; θ)) ≤ DKL(p(Vt|xt; θE) ∥ pQ(Vt|xt; θ)) ≤ ϵ (25)

Definition 1 (One-step Recoverability [32]). Assume that the state distribution of the learner and
expert are different at time t, that is DKL(p(xt; θE) ∥ p(xt; θ)) ̸= 0, there exists a policy πre that
when used for the learner, can bound:

DKL(p(xt+1; θE) ∥ p(xt+1;πre)) ≤ ϵ1 (26)

where the current initial state distribution of the student follows p(xt; θ).

Intuitively, this condition requires that, no matter what is the current state distribution, the learner
can recover to the expert demonstrated distribution in a single time-step. In our case, this is a natural
condition since the difference in the initial state distribution p(xt; θ) and p(xt; θE) is not arbitrarily
large: we use re-planning to ensure the receding state sequences is always bounded below ϵ, hence
this recoverability condition can be easily satisfied. We emphasize that this recoverable policy is
never executed in our algorithm, it is only used for the theoretical analysis.

Next, we derive a bound over the global state marginal distribution between two consecutive time
steps. At each time step t = 0, ..., T − 1, we re-optimize the local control sequence distribution
and only execute the first control, hence we only change state density over a small reachable
space. We define ptRHC(x, θ) as the global marginal state distribution by applying RHC from i =
0, 1, ..., t under θ and then using the recoverable policy πre to switch to the expert θE thereafter
until T − 1, i.e., ptRHC(x; θ) =

1
T (

∑t+1
i=0 p(xi; θ) + p(xt+2;πre) +

∑T
i=t+3 p(xi; θE)). According to

the definition of the recoverable policy, we have DKL(p(xt+2; θE) ∥ p(xt+2;πre)) ≤ ϵ1, therefore,
ptRHC(x; θ) ≈ 1

T (
∑t+1

i=0 p(xi; θ) +
∑T

i=t+2 p(xi; θE)). To quantify the change in global state marginal
distribution, we derive a bound for the KL-divergence between two consecutive time steps, i.e.
DKL(p

t−1
RHC (x; θ) ∥ ptRHC(x; θ)).

3

Lemma B.3. If the KL-divergence over resulting state density from the control sequence distribution
of length K are bounded by ϵ, i.e. DKL(pt(x|xt; θE) ∥ pt(x|xt; θ)) < ϵ, where xt is the state
encountered by our policy at t = 0, 1, ..., T − 1 and is one-step recoverable, then KL-divergence over
the global state marginal distribution between two consecutive control executions are bounded by ϵ,

DKL(p
t−1
RHC (x; θ) ∥ ptRHC(x; θ)) ≤

K + 1

T
ϵ (27)

for t = 1, ..., T − 1.

We state the generalized log sum inequality below in lemma B.4, the proof can be found in the
Appendix of [16]. Lemma B.4 and B.5 will be used in the proof for Lemma B.3.
Lemma B.4 (Generalized log sum inequality[16]). Let p1, ..., pn and q1, ..., qn be non-negative
numbers. Let p =

∑n
i=1 pi and q =

∑n
i=1 qi. Let f(.) be a convex function. We have the following:
n∑

i=1

qif(
pi
qi
) ≥ qf(

p

q
) (28)

Lemma B.5. Let p(x) and q(x) be non-negative functions, and c is a constant factor. We have the
following: ∫

cp(x) log
cp(x)

cq(x)
= c

∫
p(x) log

p(x)

q(x)
(29)

Proof. ∫
cp(x) log

cp(x)

cq(x)
dx =

∫
cp(x) log

p(x)

q(x)
dx = c

∫
p(x) log

p(x)

q(x)
dx (30)

Now, we are ready to prove lemma B.3.

Proof. For each t = 0, ..., T − 1, we re-plan for the optimal local control sequence start at xt so that
the resulting state distribution over horizon K is bounded, i.e. DKL(pt(x|xt; θE) ∥ pt(x|xt; θ)) < ϵ,
where pt(x|xt; θ) = 1

K+1

∑t+K
i=t p(xi; θ). However, instead of executing all K controls in the

sequence, we only execute the first control at the current time step t and change the state distribution
p(xt+1; θ) reachable for that single time step, then we use the remaining control sequence to warm
start the local control sequence optimization for the next time step. To account the effect of replanning,
for each time step t, since we do not change the state distribution after p(xt+1; θ), we can think of the
change in the global state distribution as if we follow the optimal control under θ at time step t and
then use the recoverable policy πre to switch to θE afterwards over the control sequence horizon K.
Hence, the actual state density is 1

K+1 (p(xt; θ) + p(xt+1; θ) + p(xt+2;πre) +
∑t+K

i=t+3 p(xi; θE)).
Theoretically, since we do not query the expert online, the initial state xt distribution in theorem 3.1
and lemma B.2 should follow the expert demonstration at time t, i.e. p(xt; θE). However, our MPC
controller cannot jump to this distribution and we replan from our current state distribution p(xt; θ).
To resolve this mismatch, we require the recoverability condition in our optimization procedure such
that, for each resulting state from the controller, there always exists a one-step recoverable policy πre

that can correct the current state distribution p(xt; θ) to p(xt+1; θE) in one step. Therefore, with this
one-step recoverable condition on every state xt induced by the cost function parameterized by θ, xt

in theorem 3.1 and lemma B.2 now follows the state distribution of our controller, i.e. p(xt; θ).

That is,

DKL(pt(x|xt; θE) ∥
1

K + 1
(p(xt) + p(xt+1; θ) +

t+K∑
i=t+2

p(xi; θE))

=DKL(
1

K + 1
(p(xt; θ) + p(xt+1;πre) +

t+K∑
i=t+2

p(x; θE)) ∥
1

K + 1
(p(xt; θ) + p(xt+1; θ) +

t+K∑
i=t+2

p(xi; θE))

≤DKL(
1

K + 1
(p(xt; θ) +

t+K∑
i=t+1

p(x; θE)) ∥
1

K + 1
(p(xt; θ) +

t+K∑
i=t+1

p(xi; θ))

=DKL(pt(x|xt; θE) ∥ pt(x|xt; θ)) ≤ ϵ (31)

4

Recall that we use ptRHC(x; θ) to account for the global state marginal distribution resulted from
executing a single optimal control at time step t. More specifically, ptRHC(x; θ) is defined as the state
marginal distribution by executing only the first optimal control from the replanned optimal control
sequence at each time step from i = 0, ..., t under θ and switching to θE thereafter by using the
recoverable policy πre until T − 1, i.e. ptRHC(x; θ) ≈ 1

T (
∑t+1

i=0 p(xi; θ) +
∑T

i=t+2 p(xi; θE)). We
bound the KL-divergence over global state distribution between two consecutive time step as follow:

DKL(p
t−1
RHC (x; θ) ∥ ptRHC(x; θ))

=DKL(
1

T
(

t∑
i=0

p(xi; θ) + p(xt+1;πre) +

T∑
i=t+2

p(xi; θE)) ∥
1

T
(

t+1∑
i=0

p(xi; θ) + p(xt+2;πre) +

T∑
i=t+3

p(xi; θE)))

≈DKL(
1

T
(

t∑
i=0

p(xi; θ) +

T∑
i=t+1

p(xi; θE)) ∥
1

T
(

t+1∑
i=0

p(xi; θ) +

T∑
i=t+2

p(xi; θE)))

=
1

T

∫
(

t∑
i=0

p(xi; θ) +

T∑
i=t+1

p(xi; θE)) log

∑t
i=0 p(xi; θ) +

∑
i=t+1 p(xi; θE)∑t+1

i=0 p(xi; θ) +
∑T

i=t+2 p(xi; θE)
dx

≤ 1

T
(

∫ t−1∑
i=0

p(xi; θ) log

∑t−1
i=0 p(xi; θ)∑t−1
i=0 p(xi; θ)

dx

+

∫
(p(xt; θ) +

t+K∑
i=t+1

p(xi; θE)) log
p(xt; θ) +

∑t+K
i=t+1 p(xi; θE)

p(xt; θ) + p(xt+1; θ) +
∑t+K

i=t+2 p(xi; θE)
dx

+

∫ T∑
i=t+K+1

p(xi; θE) log

∑T
i=t+K+1 p(xi; θE)∑T
i=t+K+1 p(xi; θE)

dx)

=
1

T

∫
(p(xt; θ) +

t+K∑
i=t+1

p(xi; θE)) log
p(xt; θ) +

∑t+K
i=t+1 p(xi; θE)

p(xt; θ) + p(xt+1; θ) +
∑t+K

i=t+2 p(xi; θE)
dx

=
K + 1

T

∫
1

K + 1
(p(xt; θ) +

t+K∑
i=t+1

p(xi; θE)) log
1

K+1 (p(xt; θ) +
∑t+K

i=t+1 p(xi; θE))

1
K+1 (p(xt; θ) + p(xt+1; θ) +

∑t+K
i=t+2 p(xi; θE))

dx

=
K + 1

T
DKL(

1

K + 1
(p(xt; θ) +

t+K∑
i=t+1

p(xi; θE)) ∥
1

K + 1
(p(xt; θ) + p(xt+1; θ) +

t+K∑
i=t+2

p(xi; θE)))

=
K + 1

T
DKL(pt(x|xt; θE) ∥

1

K + 1
(p(xt; θ) + p(xt+1; θ) +

t+K∑
i=t+2

p(xi; θE)))

≤K + 1

T
ϵ (32)

The first equality in equation (32) follows the definition of ptRHC(x; θ) and the second line follows the
definition of the recoverable policy πre. Then, we use lemma B.5 to factor out 1

T in the third line.
The next inequality follows from the generalized log sum inequality stated in lemma B.4, and we
have the first and third terms reduce to 0 and are left with the second term in the next line. We apply
lemma B.5 again to the integral using the constant factor 1

K+1 . In addition, to make the equality
hold, we multiply the inverse of the constant factor K + 1 outside the integral. We observe the
integral is now the KL divergence between the expert pt(x|xt; θE) and one-step-execution of our
policy 1

K+1 (p(xt; θ)+ p(xt+1; θ)+
∑t+K

i=t+2 p(xi; θE)). The final inequality follows from the bound
derived in equation (31).

For t = 0, we have p0RHC(x; θ) = 1
T (p(x0; θ) +

∑T−1
i=1 p(xi; θE)). Since the initial state x0 for

expert and our policy are sampled from the same initial state distribution µ, p(x0) is independent
of θ, i.e. p(x0; θ) = p(x0; θE). Therefore, pRHC(x; θE) = p(x0) +

∑T−1
i=1 p(xi; θE) = p0RHC(x; θ).

Moreover, the final global state marginal distribution pRHC(x; θ) is the same as the pT−1
RHC (x; θ),

5

i.e. pRHC(x; θ) =
∑T−1

i=0 p(xi; θ) = pT−1
RHC (x; θ). For any t = 1, 2, .., T − 1, we have proved

DKL(p
t−1
RHC (x; θ) ∥ ptRHC(x; θ)) ≤ K+1

T ϵ.

Finally, we are prepared to prove theorem 3.1.

Proof. We evaluate the TV distance over the state marginal distribution between the expert policy
and our control law.

DTV(pRHC(x; θE) ∥ pRHC(x; θ)) = DTV(p
0
RHC(x; θ) ∥ pT−1

RHC (x; θ))

≤
T−1∑
t=1

DTV(p
t−1
RHC (x; θ) ∥ ptRHC(x; θ)) (33)

The first equality in equation (33) follows from the fact that pRHC(x; θE) = p0RHC(x; θ) and pRHC(x; θ) =
pT−1

RHC (x; θ). We use triangle inequality of the TV distance measures to obtain the inequality in the
second line.

Recall that by Pinsker’s inequality, the total variation (TV) distance is related to Kullback–Leibler

(KL) divergence by the following inequality: DTV(P ∥ Q) ≤
√

1
2DKL(P ∥ Q). We apply Pinsker’s

inequality to each of the TV terms in the second line of equation (33) to bound them by a summation
of KL-divergence as shown in the first line of equation (34). Next, given the control sequence
distribution for every time step is bounded by ϵ, we apply lemma B.2 to show that the resulting state
distribution from the optimal control sequences for each time step t is also bounded by ϵ. Next, we
use this result and apply Lemma B.3 to bound the KL-divergence over the global state marginal
distribution between two consecutive time steps by K+1

T ϵ. Second line in equation (34) follows from
this result and finally we derive the final bound linear in T .

DTV(pRHC(x; θE) ∥ pRHC(x; θ)) ≤
T−1∑
t=1

√
1

2
DKL(p

t−1
RHC (x; θ) ∥ ptRHC(x; θ))

≤
T−1∑
t=1

√
(K + 1)ϵ

2T

= (T − 1)

√
K + 1

T

√
ϵ/2

≤ T
√

ϵ/2 (34)

The last line follows from the fact that K << T , so
√

K+1
T < 1.

C Extension to Stochastic Dynamics

RHIRL optimizes the trajectories in the space of control sequences p(V), whereas V =
{u0, u1, u2, ..., uK−1} is a sequence of controls. If the system is deterministic, we can apply
V to the dynamical system xt+1 = f(xt, vt) with start state x0 and obtain a state sequence
τ = (x0, x1, . . . , xK). We recall that total state trajectory cost of V defined in equation (3) as
follows:

S(V, x0; θ) =

K∑
k=0

g(xk; θ)

We use the information-theoretic MPC (MPPI) [37] to solve for an optimal control sequence dis-
tribution at the current start state xt in iteration t. The main result of MPPI suggests that, under a
deterministic system, the optimal control sequence distribution Q minimizes the “free energy” of the
dynamical system and this free energy can be calculated from the cost of the state trajectory under
Q. Mathematically, the probability density pQ(V

∗), as shown in equation (4) can be expressed as a

6

function of the state cost S(V, xt; θ), with respect to a Gaussian “base” distribution B(VB ,Σ) that
depends on the control cost:

pQ(V
∗|UB,Σ, xt; θ) =

1

Z
pB(V

∗|UB,Σ) exp(−
1

λ
S(V ∗, xt; θ)),

where Z is the partition function. Intuitively, this result shows that the control sequence V that results
in lower state-trajectory cost S(V) are exponentially more likely to be chosen.

In this section, we extend RHIRL to stochastic dynamics where xt+1 = f(xt, vt, ωt), where ωt is
a random variable that models the independent system noise. More specifically, we assume that
xt+1 ∼ p(xt+1|xt, vt). Due to the stochasticity of the dynamics, the state trajectory cost in equation
(3) and the optimal control distribution in equation (4) are affected. Therefore, we first redefine the
trajectory state cost under stochastic dynamics, then derive the counterpart of equation (4) for the
optimal control sequence distribution under the stochastic dynamics, finally we adapt our existing
RHIRL algorithm to stochastic dynamics.

C.1 State Trajectory Cost

Due to the stochasticity of the dynamics, given the initial state x0, we no longer have a one-to-one
mapping from the control sequence V to the resulting state trajectory τ = (x0, x1, ..., xK). Instead,
we have a distribution of state trajectories:

p(τ |x0, V) =

K−1∏
t=0

p(xt+1|xt, vt) (35)

To accommodate this change, the trajectory state cost of a control sequence S̃(V, x0; θ) is defined
over the distribution of the resulting state trajectories, instead of single trajectory:

S̃(V, x0; θ) =

∫
p(τ |x0, V)S(τ |x0; θ)dτ (36)

=

∫ K−1∏
t=0

p(xt+1|xt, vt)

K∑
t=0

g(xt; θ)dτ (37)

We always measure the preferences over the control sequence V by their resulting state trajectories τ .
Hence, when the resulting trajectories changes from a single deterministic sequence of states to a
distribution of state trajectories, we adapt our measure of the resulting cost: under the deterministic
dynamics where each V uniquely maps to the same state trajectory τ , the state trajectory cost is the
cost of that specific trajectory; while under the stochastic dynamics where the same control sequence
V maps to a distribution of τ , the state trajectory cost of a control sequence is now defined as the
expected state cost of the distribution of trajectory. We measure the state trajectory cost of a control
sequence S(V, x0; θ), instead of simply a state trajectory cost on the states itself S(τ, x0; θ), because
we want to use this measure to directly optimize the control sequence.

C.2 Optimal Control Sequence Distribution

Next, we derive the optimal control sequence distribution under the stochastic dynamics. Our
derivation is based on MPPI [37], which uses the “free-energy” principle to derive the optimal control
sequence distribution under deterministic dynamics.

Definition 2 (Free-energy ([33], Definition 1). Let P ∈ P(Z) and the function J (x): Z → R be a
measurable function. The the term:

E(J (x)) = log

∫
exp(ρJ (x))dP (38)

is called free energy of J (x) with respect to P, ρ is a constant.

Now we have the free-energy of a control system under stochastic dynamics as stated below. It has a
“Gaussian” base control sequence distribution B(UB,Σ) such that its control sequence distribution

7

follows pB(V
∗|UB,Σ) whereas Σ is the Gaussian control noise covariance matrix. S̃(V ; θ) denotes

the state trajectory cost function.

F(S̃, pB, x0, λ; θ) = log(EpB
[exp(− 1

λ
S̃(V, x0; θ))]), (39)

λ ∈ R+ is the inverse temperature of the control system.

Suppose now we have another control sequence distribution with probability measure p(V) and these
two distributions are absolutely continuous, then we can rewrite the free-energy w.r.t pB(V) using
the expectation over the density of p(V) use the standard importance sampling trick:

F(S̃, pB, x0, λ; θ) = log(EpB
[exp(− 1

λ
S̃(V, x0; θ))]) (40)

= log(EpB
[exp(− 1

λ
S̃(V, x0; θ)

pB(V
∗|UB,Σ)

p(V)
)]) (41)

≥ Ep[log(exp(−
1

λ
S̃(V, x0; θ)

pB(V
∗|UB,Σ)

p(V)
))] (42)

= − 1

λ
Ep[S̃(V, x0; θ) + λ log(

p(V)

pB(V ∗|UB,Σ)
)] (43)

= − 1

λ
(Ep[S̃(V, x0; θ)] + λEp[log(

p(V)

pB(V ∗|UB,Σ)
)]) (44)

= − 1

λ
(Ep[S̃(V, x0; θ)] + λDKL(p(V)||pB(V

∗|UB,Σ))) (45)

Therefore, we have

F(S, pB, x0, λ; θ) ≥ − 1

λ
(Ep[S̃(V, x0; θ)] + λDKL(p(V)||pB(V

∗|UB,Σ))) (46)

The right-hand side is the lower bound of the free-energy of the control system. We use pQ(V) to
denote the optimal control sequence distribution. This distribution is only optimal if and only
if the bound in the equation above is tight, i.e. F(S̃, pB, x0, λ; θ) = − 1

λEpQ
[S̃(V, x0; θ)] +

λDKL(pQ(V)||pB(V
∗|UB,Σ)).

We claim that the optimal control sequence distribution p̃Q under the stochastic dynamics is as
follows:

p̃Q(V
∗|UB,Σ, x0; θ) =

1

Z
exp(− 1

λ
S̃(V, x0; θ))pB(V

∗|UB,Σ), (47)

whereas Z =
∫
exp(− 1

λ S̃(V, x0; θ))pB(V
∗|UB,Σ)dV is the partition function.

We prove that equation (47) is the optimal control sequence distribution under stochastic dynamics
by showing that this p̃Q(V ∗|UB,Σ, x0; θ) tightens the bound of free-energy in equation (46). We
substitute p̃Q(V

∗|UB,Σ, x0; θ) into the RHS of equation (46) and simplify the expression of the
KL-divergence:

F(S̃, pB, x0, λ; θ) ≥ − 1

λ
(Ep̃Q

[S̃(V, x0; θ)] + λDKL(p̃Q(V
∗|UB,Σ, x0; θ)||pB(V

∗|UB,Σ))) (48)

= − 1

λ
(Ep̃Q

[S̃(V, x0; θ)] + λEp̃Q
[log(

p̃Q(V
∗|UB,Σ, x0; θ)

pB(V ∗|UB,Σ)
)]) (49)

= − 1

λ
Ep̃Q

[S̃(V, x0; θ)]− Ep̃Q
[log(

1
Z exp(− 1

λ S̃(V, x0; θ))pB(V
∗|UB,Σ)

pB(V ∗|UB,Σ)
)]

(50)

= − 1

λ
Ep̃Q

[S̃(V, x0; θ)]− (
1

λ
Ep̃Q

[S̃(V, x0; θ)]− log(Z)) (51)

8

Next we substitute the expression for the partition function Z and we found that the RHS is exactly
the definition of the the free-energy of the control system with base distribution B(UB,Σ):

F(S̃, pB, x0, λ; θ) ≥ log(Z) (52)

= log(

∫
exp(− 1

λ
S̃(V, x0; θ))pB(V

∗|UB,Σ)dV) (53)

= log(EpB
[exp(− 1

λ
S̃(V, x0; θ))]) (54)

= F(S̃, pB, x0, λ; θ) (55)
The final equality forces the inequality to be tight. Therefore, pQ(V ∗|UB,Σ, x0; θ) in equation (47)
is the optimal control sequence distribution under the stochastic dynamics.

We observe that the optimal control sequence distribution under deterministic system
pQ(V

∗|UB,Σ, x0; θ) in equation (4) and that under the stochastic dynamics p̃Q(V
∗|UB,Σ, x0; θ)

in equation (47) only differs in the calculation of the state trajectory cost of the control sequences.
Intuitively, it means that under deterministic dynamics, we choose the control sequence V that will,
for sure, leads to a state trajectory with lower cost; while when we extend to stochastic dynamics, the
control sequence V that results in lower state-trajectory cost S(V) in expectation are exponentially
more likely to be chosen. Practically, now we need more samples for a single control sequence to
compute the expectation in equation (37).

C.3 RHIRL under Stochastic Dynamics

Next, we adapt our RHIRL algorithm to this new state trajectory cost measure S̃(V, x0; θ) and the
optimal control sequences p̃Q(V

∗|UB,Σ, x0; θ) under stochastic dynamics. We recall that under the
deterministic dynamics, RHIRL uses importance sampling in equation (12) to estimate the ∂L

∂θ so as
to update the cost function parameter θ:

∂

∂θ
L(θ;D,x0) ≈

1

N

N∑
i=1

1

λ

∂

∂θ
S(Vi, x0; θ)−

1

M

M∑
j=1

1

λ
w(Vj)

∂

∂θ
S(Vj , x0; θ),

whereas the N control sequences in the first term are from the expert demonstration Dt and the M
control sequences in the second term are from our approximated optimal control sequence distribution
pQ(V

∗), and w(Vj) is the importance sampling weight.

To estimate ∂L
∂θ , we need to calculate/approximate the importance sampling weight w(V), and the

derivative of the state trajectory cost ∂
∂θS(V, x0; θ) w.r.t θ. We recall that the importance sampling

weight w(V) depends on the state trajectory cost S(V, x0; θ) in equation (11):

w(V) ∝ exp(− 1

λ

(
S(V, x0; θ) + λ

K−1∑
k=0

u⊺
kΣ

−1vk)

)
Under the deterministic dynamics, the importance sampling weight w(V) is estimated using Monte-
Carlo approximation with M state trajectory samples as follows:

w(V) ≈
exp

(
− 1

λ (S(V, x0; θ) + λ
∑K−1

k=0 u⊺
kΣ

−1vk)

)
∑M−1

j=0 exp

(
− 1

λ (S(Vj , x0; θ) + λ
∑K−1

k=0 uj⊺
k Σ−1vjk)

) (56)

=

exp

(
− 1

λ (
∑K

t=0 g(xt; θ) + λ
∑K−1

k=0 u⊺
kΣ

−1vk)

)
∑M−1

j=0 exp

(
− 1

λ (
∑K

t=0 g(x
j
t ; θ) + λ

∑K−1
k=0 uj⊺

k Σ−1vjk)

) (57)

Since the state trajectory cost S(V, x0; θ) is a linear sum of the cost of all states, ∂S
∂θ can be directly

computed as follows:

∂

∂θ
S(V, x0; θ) =

∂

∂θ

K∑
t=0

g(xt; θ) =

K∑
t=0

∂

∂θ
g(xt; θ) (58)

9

To extend RHIRL to stochastic dynamics, when the state trajectory cost function is now S̃(V, x0; θ),
we need to redefine how to estimate w̃(V) and consequently ∂S̃

∂θ .

When extend to stochastic dynamic, we have the following:

w̃(V) ∝ exp(− 1

λ

(
S̃(V, x0; θ) + λ

K−1∑
k=0

u⊺
kΣ

−1vk)

)
(59)

and we still adopts Monte-carlo sampling to approximate w̃(V). However, since S̃(V, x0; θ) now
measures the expected state trajectory cost under the stochastic dynamics, we need to go one
step further and use sampling to estimate S̃(V, x0; θ) using Ms number of state trajectories τh =
(x0, x

h
1 , ..., x

h
K) per (x0, V) pair:

S̃(V, x0; θ) ≈
1

Ms

Ms−1∑
h=0

K∑
t=0

g(xh
t ; θ) (60)

Therefore, now the importance sampling weight w̃(V) is approximated from M ×Ms state trajecto-
ries, with Ms trajectories from each (x0, Vj) pair as follows:

w̃(V) ≈
exp

(
− 1

λ (S̃(V, x0; θ) + λ
∑K−1

k=0 u⊺
kΣ

−1vk)

)
∑M−1

j=0 exp

(
− 1

λ (S̃(Vj , x0; θ) + λ
∑K−1

k=0 uj⊺
k Σ−1vjk)

) (61)

≈
exp

(
− 1

λ (
1

Ms

∑Ms−1
h=0

∑K
t=0 g(x

h
t ; θ) + λ

∑K−1
k=0 u⊺

kΣ
−1vk)

)
∑M−1

j=0 exp

(
− 1

λ (
1

Ms

∑Ms−1
h=0

∑K
t=0 g(x

jh

t ; θ) + λ
∑K−1

k=0 uj⊺
k Σ−1vjk)

) (62)

We emphasize that under the stochastic dynamics, we use the state trajectory samples to estimate
both the state trajectory cost S̃(V, x0; θ) and the importance sampling weight w̃(V). Since the S̃
now measures the expected cost over a distribution of trajectories, we need more samples to estimate
w̃(V) compared to the deterministic setting.

Moreover, in the final ∂L
∂θ , we need to differentiate S̃(V, x0; θ) w.r.t. θ. Since S̃ is estimated from

sampling, we have:

∂

∂θ
S̃(V, x0; θ) ≈

∂

∂θ

1

Ms

Ms−1∑
h=0

K∑
t=0

g(xh
t ; θ) ≈

1

Ms

Ms−1∑
h=0

K∑
t=0

∂

∂θ
g(xh

t ; θ) (63)

Finally, we summarize how to extend RHIRL to stochastic dynamics. In stochastic dynamics, each
control sequence V will map to a distribution of state trajectory p(τ |V, x0). Hence, we adapt our
measure of state trajectory cost S(V, x0; θ) from a single trajectory to be the expected cost over a
distribution of state trajectories S̃(V, x0; θ) in equation (37). Next, we revise the optimal control
sequence distribution to a stochastic setting p̃Q(V

∗|UB,Σ, x0; θ) in equation (47). More specifically,
we show under the stochastic dynamics, the optimal control sequences V ∗ is chosen based on the
expected cost of its resulting state trajectories. Finally, under this new state trajectory cost S̃(V, x0; θ)
and the optimal control sequence distribution p̃Q(V

∗|UB,Σ, x0; θ), we adapt the approximation of
the importance sampling weight w̃(V) and consequently the gradient of the overall loss w.r.t θ by
adding one more sampling process to estimate the new state trajectory cost. Moreover, in practice, we
can use the same set of samples to estimate both state trajectory cost S̃(V, x0; θ) and the importance
sampling weights w̃(V).

D Experimental Details

In this section, we list down the implementation details of RHIRL and the baselines. The code is
included in the supplementary material. We also report the hyperparameters used in the experiments,
the detailed network architectures, training procedures and evaluation procedures used for our
experiments.

10

D.1 Practical Issues of RHIRL

Control Noise Covariance Approximation

The actual control noise covariance Σ is unknown to RHIRL and the baselines. However, RHIRL
uses the noise covariance matrix Σ to sample the controls around the nominal control (Algorithm
1, line 6) and calculate the quadratic control cost in Equation (37). Since we have no access to
the true Σ, RHIRL approximates Σ as a constant factor of the identity matrix βI , whereas β is the
hyperparameter we optimize using grid search and I is the identify matrix with its width equals to
the dimension of the action space. Therefore, instead of sampling the controls from N (V |U,Σ), we
sample from N (V |U, βI) in practice. We also use βI in Equation (37) to replace the unknown Σ.
Even in the noise-free environment, we set β to a non-zero value to foster exploration; otherwise, the
importance sampling degenerates to the single nominal control.

Our experiment shows that RHIRL is robust to the choice of β: the cost learning performs well even
if βI ̸= Σ. This may be attributed to the fact that we jointly optimize the state cost function and β.
Therefore the learned state cost function may compensate for the inaccurate approximation for Σ.

Numerical Stability

Equation(11) forms the basis of importance sampling and estimation. However, the learned cost can
be a huge negative number, which causes numerical instability in estimating the importance weights.
To mitigate this issue, we subtract the minimum trajectory cost Smin from all rollouts to improve the
numeric stability. Since subtracting the same number from all rollouts does not change the order of
the preference, this operation does not affect the optimality of our derivation.

Nominal Control Initialization and Local Optimality

RHIRL samples around the nominal control sequence to collect the samples for importance sampling.
However, if the initial nominal control sequence performs poorly, it is not easy to generate any good
samples to improve the current control sequences. To mitigate this problem, we add an exploration
strategy to the sampling process in (Algorithm 1, line 6): with probability α, we continue with the
standard sampling strategy to sample around the nominal control; with probability 1− α we sample
uniformly from the entire action space. This helps RHIRL to correct from the unsuitable nominal
control initialization and also helps RHIRL to escape the local optimal solution. We set α = 0.5 for
all tasks in our experiments.

Control Smoothness

Updating the optimal control by importance sampling might cause some jerk in the control space.
In order to make the control change smoothly in its local space, we apply a Savitzky–Golay filter
over the time horizon dimension to constrain the control that does not change too much over the time
horizon.

D.2 Training

We list the hyper-parameters of RHIRL for different tasks. These hyper-parameters were selected via
grid search.

Task K β batch size λ lr weight decay
Pendulum-v0 20 0.8 50 0.10 1e-4 8e-5
LunarLanderContinuous-v2 40 0.6 200 0.10 1e-4 8e-5
Hopper-v2 20 0.8 100 0.10 1e-4 8e-5
Walker2d-v2. 30 0.6 150 0.10 1e-4 8e-5
Ant-v2 15 1.2 200 0.10 1e-4 8e-5
CarRacing-v0 15 1.0 200 0.10 1e-4 8e-5

The implementation of the baselines (f-IRL, AIRL and GAIL) are adapted from f-IRL’s [27] official
repository. We use the hyperparameters reported in f-IRL for the MuJoCo tasks and performed grid
search on the hyperparameters for the rest of the tasks. SAC[12] is used as the base MaxEnt RL
algorithm for both expert policy and the baselines optimization algorithm. We use a tanh squashed
Gaussian as the policy network for Pendulum-v0, LunarLander-v2, and the MuJoCo tasks; and we

11

use a Gaussian Convolutional policy as the policy network for CarRacing-v0. The mean and std of
the Gaussian are parameterized by a ReLU MLP of size (64, 64). Adam is used as the optimizer. We
use the reported SAC temperature,α = 0.2, reward scale c = 0.2, and gradient penalty coefficient
λ = 4.0. The rest of the hyperparameters for f-IRL, GAIL and AIRL are listed below.

Task SAC learning rate SAC replay buffer size Reward/Value
model learning rate l2 weight decay

Pendulum-v0 1e-4 100000 1e-5 1e-3
LunarlanderContinuous-v2 1e-3 100000 1e-5 1e-3
Hopper-v2 1e-5 1000000 1e-5 1e-3
Walker2d-v2 1e-5 1000000 1e-5 1e-3
Ant-v2 3e-4 1000000 1e-4 1e-3
CarRacing-v0 4e-4 10000000 1e-4 1e-3

D.3 Reward Function and Discriminator Network Architectures

We use the same neural network architecture to parameterize the cost-function/reward-
function/discriminator for all methods. For continuous control task with raw state input, i.e. pendulum,
lunarlander and the MuJoCo tasks, we use two-layer of MLP with ReLU activation function to pa-
rameterized the cost function/discriminator. The hidden size for Pendulum-v0 is (32, 32), and (64,
64) for the rest of the tasks.

For continuous control task with image input, i.e. carracing, we use a four convolutional layer with
kernel size 3× 3 as the feature extractor. The output of the CNN layer is vector with size (128,) and
is fed into the same reward network as describe above.

D.4 Additional Experiments Results

We report the average returns and the standard deviation for Table 1 and Table 2 in Table 3 and
Table 4 respectively. The mean and standard deviation computed from 3 trials for each entry of the
tables.

12

Table 3: Performance of RHIRL, f-IRL, GAIL, and AIRL. We report the mean and the standard
deviation of the policy returns using the ground-truth task reward. Higher values indicate better
performance.

No Noise
Σ = 0

Mild Noise
Σ = 0.2

High Noise
Σ = 0.5

Pendulum Expert -154.69 ± 50.05 -156.50 ± 70.72 -168.54 ± 80.89
RHIRL -125.95 ± 1.21 -122.33 ± 3.44 -132.39 ± 10.36
f-IRL -121.94 ± 97.21 -127.51 ± 104.55 -197.36 ± 106.92
AIRL -131.64 ± 1.16 -184.62 ± 88.16 -203.12 ± 80.57
GAIL -207.05 ± 57.41 -207.14 ± 57.52 -253.85 ± 181.84

LunarLander Expert 235.13 ± 43.59 222.65 ± 56.35 164.52 ± 36.79
RHIRL 246.39 ± 10.96 233.73 ± 23.75 198.23 ± 47.8
f-IRL 179.03 ± 9.19 141.73 ± 11.81 121.67 ± 22.77
AIRL 174.49 ± 35.17 132.76 ± 85.59 95.61 ± 19.25
GAIL 169.98 ± 15.43 125.5 ± 16.78 100.24 ± 79.04

Hopper Expert 3222.48 ± 390.65 3159.32 ± 520.00 2887.72 ± 483.93
RHIRL 3071.63 ± 122.03 3121.72 ± 278.98 2776.2 ± 345.90
f-IRL 3080.34 ± 458.96 2580.19 ± 637.21 1270.24 ± 539.84
AIRL 18.9 ± 0.79 33.52 ± 3.86 18.38 ± 7.84
GAIL 2642.59 ± 187.33 1576.25 ± 1051.98 702.33 ± 151.37

Walker2d Expert 4999.47 ± 55.99 4500.43 ± 114.48 3624.48 ± 95.05
RHIRL 4939.44 ± 100.28 4473.332 ± 324.34 3446.55 ± 507.89
f-IRL 4927.92 ± 529.95 3697.36 ± 711.56 2831.91 ± 993.76
AIRL -2.51 ± 0.69 22.24 ± 10.74 6.5 ± 5.03
GAIL 2489.04 ± 813.31 2884.35 ± 59.88 1840.62 ± 778.3

Ant Expert 5759.22 ± 173.57 2557.37 ± 501.95 252.62 ± 91.44
RHIRL 4987.67 ± 149.2 2373.32 ± 529.3 230.8 ± 253.39
f-IRL 5022.42 ± 108.07 2034.87 ± 262.29 197.2 ± 200.45
AIRL 1000.4 ± 0.79 849.05 ± 30.15 -7.43 ± 6.01
GAIL 2784.87 ± 301.66 1022.04 ± 580.49 -416.69 ± 292.23

CarRacing Expert 903.25 ± 0.23 702.01 ± 0.3 281.12 ± 0.34
RHIRL 359.61 ± 40.32 206.21 ± 19.87 53.97 ± 3.24
f-IRL 85.45 ± 47.4 18.32 ± 27.89 2.04 ± 13.8
AIRL -21.97 ± 2.67 -25.25 ± 5.98 -32.31 ± 7.43
GAIL 2.62 ± 3.41 -7.65 ± 4.77 -15.88 ± 5.89

Table 4: Generalization of learned cost functions over different noise levels.

Noise-free for learning Noise Level Σ for Testing
0.2 0.5

Pendulum RHIRL -125.95 ± 1.21 -125.01 ± 4.53 -126.4 ± 7.73
f-IRL -121.94 ± 97.21 -199.44 ± 96.99 -220.74±79.75
AIRL -131.64 ± 1.16 -247.86±11.44 -304.48±20.78
GAIL -207.05 ± 57.41 -220.6± 69.82 -270.81± 79.68

LunarLander RHIRL 246.39 ± 10.96 205.66±24.67 175.82±52.12
f-IRL 179.03 ± 9.19 121.80±20.94 102.06±22.31
AIRL 174.49 ± 35.17 31.46±9.68 22.29±14.01
GAIL 169.98 ± 15.43 101.80 ± 23.12 78.33± 24.15

Hopper RHIRL 3071.63 ± 122.03 2577.28 ±409.33 2152.08 ±342.21
f-IRL 3080.34 ± 458.96 2110.52±26.71 1984.29±31.88
AIRL 18.9 ± 0.79 18.86±4.80 8.78±10.89
GAIL 2642.59 ± 187.33 215.29± 27.76 132.15± 30.20

Walker2d RHIRL 4939.44 ± 100.28 4039.44±39.2 3440.23±531.08
f-IRL 4927.92 ± 529.95 2976.66±396.57 1090.11±1389.56
AIRL -2.51 ± 0.69 1380.84±364.95 1787.15±230.94
GAIL 2489.04 ± 813.31 103.15± 121.84 124.15±82.84

Ant RHIRL 4987.67 ± 149.2 3192.82±162.12 867.08±204.28
f-IRL 5022.42 ± 108.07 2042.41±129.89 472.77±110.2
AIRL 1000.4 ± 0.79 845.69 ±29.01 0.69 ±20.49
GAIL 2784.87 ± 301.66 -6.41± 21.17 -79.89± 142.43

CarRacing RHIRL 359.61 ± 40.32 261.78±54.44 110.12±58.90
f-IRL 85.45 ± 47.4 16.12±67.82 -24.78±2.12
AIRL -21.97 ± 2.67 -27.09±6.65 -23.96±4.11
GAIL 2.62 ± 3.41 -6.41±3.22 -49.89±7.98

13

