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Abstract

Making language models bigger does not inherently make them better at following
a user’s intent. For example, large language models can generate outputs that are
untruthful, toxic, or simply not helpful to the user. In other words, these models are
not aligned with their users. In this paper, we show an avenue for aligning language
models with user intent on a wide range of tasks by fine-tuning with human
feedback. Starting with a set of labeler-written prompts and prompts submitted
through a language model API, we collect a dataset of labeler demonstrations of
the desired model behavior, which we use to fine-tune GPT-3 using supervised
learning. We then collect a dataset of rankings of model outputs, which we use to
further fine-tune this supervised model using reinforcement learning from human
feedback. We call the resulting models InstructGPT. In human evaluations on
our prompt distribution, outputs from the 1.3B parameter InstructGPT model are
preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.
Moreover, InstructGPT models show improvements in truthfulness and reductions
in toxic output generation while having minimal performance regressions on public
NLP datasets. Even though InstructGPT still makes simple mistakes, our results
show that fine-tuning with human feedback is a promising direction for aligning
language models with human intent.

1 Introduction

Large language models (LMs) can be prompted to perform a range of natural language process-
ing (NLP) tasks, given some examples of the task as input. However, these models often express
unintended behaviors such as making up facts, generating biased or toxic text, or simply not following
user instructions (Bender et al., 2021; Bommasani et al., 2021; Kenton et al., 2021; Weidinger et al.,
2021; Tamkin et al., 2021; Gehman et al., 2020). This is because the language modeling objective
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Figure 1: Human evaluations of various models on the API prompt distribution, evaluated by how
often outputs from each model were preferred to those from the 175B SFT model. Our InstructGPT
models (PPO-ptx) as well as its variant trained without pretraining mix (PPO) significantly outperform
the GPT-3 baselines (GPT, GPT prompted); outputs from our 1.3B PPO-ptx model are preferred to
those from the 175B GPT-3. Error bars throughout the paper are 95% confidence intervals.

used for many recent large LMs—predicting the next token on a webpage from the internet—is
different from the objective “follow the user’s instructions helpfully and safely” (Radford et al., 2019;
Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021; Thoppilan et al., 2022). Thus, we say that
the language modeling objective is misaligned. Averting these unintended behaviors is especially
important for language models that are deployed and used in hundreds of applications.

We make progress on aligning language models by training them to act in accordance with the user’s
intention (Leike et al., 2018). This encompasses both explicit intentions such as following instructions
and implicit intentions such as staying truthful, and not being biased, toxic, or otherwise harmful.
Using the language of Askell et al. (2021), we want language models to be helpful (they should
help the user solve their task), honest (they shouldn’t fabricate information or mislead the user), and
harmless (they should not cause physical, psychological, or social harm to people or the environment).
We elaborate on the evaluation of these criteria in Section 3.5.

We focus on fine-tuning approaches to aligning language models. Specifically, we use reinforcement
learning from human feedback (RLHF; Christiano et al., 2017; Stiennon et al., 2020) to fine-tune
GPT-3 to follow a broad class of written instructions (see Figure 2). This technique uses human
preferences as a reward signal to fine-tune our models. We first hire a team of 40 contractors to label
our data, based on their performance on a screening test (see Section 3.3 and Appendix B.1 for more
details). We then collect a dataset of human-written demonstrations of the desired output behavior
on (mostly English) prompts submitted to a language model API and some labeler-written prompts,
and use this to train our supervised learning baselines. Next, we collect a dataset of human-labeled
comparisons between outputs from our models on a larger set of API prompts. We then train a reward
model (RM) on this dataset to predict which model output our labelers would prefer. Finally, we
use this RM as a reward function and fine-tune our supervised learning baseline to maximize this
reward using the PPO algorithm (Schulman et al., 2017). We illustrate this process in Figure 2. This
procedure aligns the behavior of GPT-3 to the stated preferences of a specific group of people (mostly
our labelers and researchers), rather than any broader notion of “human values”; we discuss this
further in Appendix G.2. We call the resulting models InstructGPT.

We mainly evaluate our models by having our labelers rate the quality of model outputs on our test
set, consisting of prompts from held-out users (who are not represented in the training data). We also
conduct automatic evaluations on a range of public NLP datasets. We train three model sizes (1.3B,
6B, and 175B parameters), and all of our models use the GPT-3 architecture. Our main findings are:

Labelers significantly prefer InstructGPT outputs over outputs from GPT-3. Outputs from the
1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3, despite having
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over 100x fewer parameters. These models have the same architecture, and differ only by the fact that
InstructGPT is fine-tuned on our human data. This result holds true even when we add a few-shot
prompt to GPT-3 to make it better at following instructions. Outputs from our 175B InstructGPT are
preferred to 175B GPT-3 outputs 85 ± 3% of the time, and preferred 71 ± 4% of the time to few-shot
175B GPT-3. InstructGPT also generates more appropriate outputs according to our labelers.

InstructGPT models show improvements in truthfulness over GPT-3. On the TruthfulQA
benchmark, InstructGPT generates truthful and informative answers more often than GPT-3. On
“closed-domain” tasks from our API prompt distribution, where the output should not contain
information that is not present in the input, InstructGPT models make up information not present in
the input about half as often as GPT-3 (a 21% vs. 41% hallucination rate, respectively).

InstructGPT shows small improvements in toxicity over GPT-3, but not bias. To measure
toxicity, we use the RealToxicityPrompts dataset (Gehman et al., 2020) and conduct both automatic
and human evaluations. InstructGPT models generate about 25% fewer toxic outputs than GPT-3
when prompted to be respectful. InstructGPT does not significantly improve over GPT-3 on the
Winogender (Rudinger et al., 2018) and CrowSPairs (Nangia et al., 2020) datasets.

We can minimize performance regressions on public NLP datasets by modifying our RLHF
fine-tuning procedure. During RLHF fine-tuning, we observe performance regressions compared
to GPT-3 on certain public NLP datasets. We can greatly reduce the performance regressions on
these datasets by mixing PPO updates with updates that increase the log likelihood of the pretraining
distribution (PPO-ptx), without compromising labeler preference scores.

Our models generalize to the preferences of “held-out” labelers that did not produce any
training data. To test the generalization of our models, we conduct a preliminary experiment with
held-out labelers, and find that they prefer InstructGPT outputs to outputs from GPT-3 at about the
same rate as our training labelers. However, more work is needed to study how these models perform
on broader groups of users, and how they perform on inputs where humans disagree about the desired
behavior.

Public NLP datasets are not reflective of how our language models are used. We compare
GPT-3 fine-tuned on our human preference data (i.e. InstructGPT) to GPT-3 fine-tuned on two
different compilations of public NLP tasks: the FLAN (Wei et al., 2021) and T0 (Sanh et al., 2021)
(in particular, the T0++ variant). These datasets consist of a variety of NLP tasks, combined with
natural language instructions for each task. On our API prompt distribution, our FLAN and T0
models perform slightly worse than our SFT baseline, and labelers significantly prefer InstructGPT
to these models.

InstructGPT models show promising generalization to instructions outside of the RLHF fine-
tuning distribution. We qualitatively probe InstructGPT’s capabilities, and find that it is able to
follow instructions for summarizing code, answer questions about code, and sometimes follows
instructions in different languages, despite these instructions being very rare in the fine-tuning
distribution. This result is exciting because it suggests that our models are able to generalize the
notion of “following instructions.” They retain some alignment even on tasks for which they get very
little direct supervision.

InstructGPT still makes simple mistakes. For example, InstructGPT can still fail to follow
instructions, make up facts, give long hedging answers to simple questions, or fail to detect instructions
with false premises.

Overall, our results indicate that fine-tuning large language models using human preferences signifi-
cantly improves their behavior on a wide range of tasks, though much work remains to be done to
improve their safety and reliability.

2 Related work

Research on alignment and learning from human feedback. We build on previous techniques
to align models with human intentions, particularly reinforcement learning from human feed-
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Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers.

back (RLHF). Originally developed for training simple robots in simulated environments and Atari
games (Christiano et al., 2017; Ibarz et al., 2018), it has recently been applied to fine-tuning language
models to summarize text (Ziegler et al., 2019; Stiennon et al., 2020; Böhm et al., 2019; Wu et al.,
2021). This work is in turn influenced by similar work using human feedback as a reward in domains
such as dialogue (Jaques et al., 2019; Yi et al., 2019; Hancock et al., 2019), translation (Kreutzer et al.,
2018; Bahdanau et al., 2016), semantic parsing (Lawrence and Riezler, 2018), story generation (Zhou
and Xu, 2020), review generation (Cho et al., 2018), and evidence extraction (Perez et al., 2019). In
concurrent work, Askell et al. (2021); Bai et al. (2022) propose language assistants as a testbed for
alignment research, and train models using RLHF. Our work can be seen as a direct application of
RLHF to aligning language models on a broad distribution of language tasks.

Training language models to follow instructions. Our work is also related to research on cross-
task generalization in language models, where LMs are fine-tuned on a broad range of public NLP
datasets (usually prefixed with an appropriate instruction) and evaluated on a different set of NLP
tasks. There has been a range of work in this domain (Yi et al., 2019; Mishra et al., 2021; Wei et al.,
2021; Khashabi et al., 2020; Sanh et al., 2021; Aribandi et al., 2021), which differ in training and
evaluation data, formatting of instructions, size of pretrained models, and other experimental details.

Mitigating the harms of language models. A goal of modifying the behavior of language models
is to mitigate the harms of these models when they’re deployed in the real world. These risks have
been extensively documented (Bender et al., 2021; Bommasani et al., 2021; Kenton et al., 2021;
Weidinger et al., 2021; Tamkin et al., 2021). Language models can produce biased outputs (Dhamala
et al., 2021; Liang et al., 2021; Manela et al., 2021; Caliskan et al., 2017; Kirk et al., 2021), leak
private data (Carlini et al., 2021), generate misinformation (Solaiman et al., 2019; Buchanan et al.,
2021), and be used maliciously; for a thorough review we direct the reader to Weidinger et al.
(2021). There are many ways to mitigate these harms, including by fine-tuning on a small, value-
targeted dataset (Solaiman and Dennison, 2021), filtering the pretraining dataset (Ngo et al., 2021),
or human-in-the-loop data collection (Dinan et al., 2019; Xu et al., 2020).
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3 Methods and experimental details

3.1 High-level methodology

Our methodology follows that of Ziegler et al. (2019) and Stiennon et al. (2020), who applied
it in the stylistic continuation and summarization domains. We start with a pretrained language
model (Radford et al., 2019; Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021; Thoppilan et al.,
2022), a distribution of prompts on which we want our model to produce aligned outputs, and a
team of trained human labelers (see Section 3.3 for details). We then apply the following three steps
(Figure 2).

Step 1: Collect demonstration data, and train a supervised policy. Our labelers provide demon-
strations of the desired behavior on the input prompt distribution (see Section 3.2 for details on this
distribution). We then fine-tune a pretrained GPT-3 model on this data using supervised learning.

Step 2: Collect comparison data, and train a reward model. We collect a dataset of comparisons
between model outputs, where labelers indicate which output they prefer for a given input. We then
train a reward model to predict the human-preferred output.

Step 3: Optimize a policy against the reward model using PPO. We use the output of the
RM as a scalar reward. We fine-tune the supervised policy to optimize this reward using the PPO
algorithm (Schulman et al., 2017).

Steps 2 and 3 can be iterated continuously; more comparison data is collected on the current best
policy, which is used to train a new RM and then a new policy. In practice, most of our comparison
data comes from our supervised policies, with some coming from our PPO policies.

3.2 Dataset

Our prompt dataset consists primarily of text prompts submitted to a commercial language model API,
as well as a small number of labeler-written prompts. These prompts are very diverse and include
generation, question answering, dialog, summarization, extractions, and other natural language
tasks (see Appendix A). Our dataset is over 96% English. We heuristically deduplicate prompts, and
ensure that the validation and test sets contain no data from users whose data is in the training set.
We also filter prompts containing personally identifiable information (PII).

From these prompts, we produce three different datasets used in our fine-tuning procedure: (1) our
SFT dataset, with labeler demonstrations used to train our SFT models, (2) our RM dataset, with
labeler rankings of model outputs used to train our RMs, and (3) our PPO dataset, without any human
labels, which are used as inputs for RLHF fine-tuning. The SFT dataset contains about 13k training
prompts (from the API and labeler-written), the RM dataset has 33k training prompts (from the API
and labeler-written), and the PPO dataset has 31k training prompts (only from the API). More details
on dataset sizes are provided in Table 3.

3.3 Human data collection

To produce our demonstration and comparison data, and to conduct our main evaluations, we hired
a team of about 40 contractors on Upwork and through ScaleAI. Compared to earlier work that
collects human preference data on the task of summarization (Ziegler et al., 2019; Stiennon et al.,
2020; Wu et al., 2021), our inputs span a much broader range of tasks, and can occasionally include
controversial and sensitive topics. Our aim was to select a group of labelers who were sensitive to the
preferences of different demographic groups, and who were good at identifying outputs that were
potentially harmful. Thus, we conducted a screening test designed to measure labeler performance
on these axes (see Appendix B.1). As an initial study to see how well our model generalizes to the
preferences of other labelers, we hire a separate set of labelers who do not produce any of the training
data. These labelers are sourced from the same vendors, but do not undergo a screening test.

Despite the complexity of the task, we find that inter-annotator agreement rates are quite high:
training labelers agree with each-other 72.6 ± 1.5% of the time, while for held-out labelers this
number is 77.3 ± 1.3%. For comparison, in the summarization work of Stiennon et al. (2020)
researcher-researcher agreement was 73± 4%.
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3.4 Models

Starting from GPT-3 (Brown et al., 2020), we train models with three different techniques:

Supervised fine-tuning (SFT). We fine-tune GPT-3 on our labeler demonstrations using supervised
learning. We trained for 16 epochs, using a cosine learning rate decay, and residual dropout of 0.2.
We do our final SFT model selection based on the RM score on the validation set. Similarly to Wu
et al. (2021), we find that our SFT models overfit on validation loss after 1 epoch; however, we find
that training for more epochs helps both the RM score and human preference ratings.

Reward modeling (RM). We fine-tune GPT-3 to take in a prompt and response, and output a scalar
reward. In this paper we only use 6B RMs, as this saves a lot of compute, and we found that 175B
RM training could be unstable and thus was less suitable to be used as the value function during RL
(see Appendix D for more details).

In Stiennon et al. (2020), the RM is trained on a dataset of comparisons between two model outputs
on the same input. They use a cross-entropy loss, with the comparisons as labels—the difference in
rewards represents the log odds that one response will be preferred to the other by a human labeler. In
order to speed up comparison collection, we have labelers rank between K = 4 and K = 9 responses,
and train on all

(
K
2

)
comparisons from each prompt as a single batch element, for computational

efficiency (see Appendix D. The loss function for the RM becomes:

loss (θ) = − 1(
K
2

)E(x,yw,yl)∼D [log (σ (rθ (x, yw)− rθ (x, yl)))] (1)

where rθ(x, y) is the scalar output of the reward model for prompt x and completion y with parameters
θ, yw is the preferred completion out of the pair of yw and yl, and D is the comparison dataset.

Reinforcement learning (RL). Again following Stiennon et al. (2020), we fine-tuned the SFT
model using PPO (Schulman et al., 2017). The environment is a bandit environment which presents
a random user prompt and expects a response to the prompt. Given the prompt and response, it
produces a reward determined by the reward model and ends the episode. In addition, we add a
per-token KL penalty from the SFT model at each token to mitigate over-optimization of the reward
model. The value function is initialized from the RM. We call these models “PPO.”

We also experiment with mixing the pretraining gradients into the PPO gradients, in order to fix
the performance regressions on public NLP datasets (see Appendix D.4). We call these models
“PPO-ptx.” Unless otherwise specified, in this paper InstructGPT refers to the PPO-ptx models.

Baselines. We compare the performance of our PPO models to our SFT models and GPT-3. We also
compare to GPT-3 when it is provided a few-shot prefix to ‘prompt’ it into an instruction-following
mode (GPT-3-prompted). This prefix is prepended to the user-specified instruction.

We additionally compare InstructGPT to fine-tuning 175B GPT-3 on the FLAN (Wei et al., 2021)
and T0 (Sanh et al., 2021) datasets, which both consist of a variety of NLP tasks, combined with
natural language instructions for each task (they differ in the NLP datasets included, and the style of
instructions used). We fine-tune them on approximately 1 million examples and choose the checkpoint
which obtains the highest RM score on the validation set (see Appendix D for more details).

3.5 Evaluation

Following Askell et al. (2021), we say our models are aligned if they are helpful, truthful, and
harmless (we elaborate in Appendix C.2). We divide our quantitative evaluations into two parts:

Evaluations on API distribution. Our main metric is human preference ratings on a held out set
of prompts from the same source as our training distribution. When using prompts from the API
for evaluation, we only select prompts by users we haven’t included in training. For each model we
calculate how often its outputs are preferred to a baseline policy; we choose our 175B SFT model
as the baseline since its performance is near the middle of the pack. Additionally, we ask labelers
to judge the overall quality of each response on a 1-7 Likert scale and collect a range of metadata
for each model output (see Table 11). In particular, we collect data that aims to capture different
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Figure 3: Preference results of our models, measured by winrate against the 175B SFT model.
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Figure 4: Metadata results on the API distribution, averaged over model sizes.

aspects of behavior in a deployed model that could end up being harmful: we have labelers evaluate
whether an output is inappropriate in the context of a customer assistant, denigrates a protected class,
or contains sexual or violent content.

Evaluations on public NLP datasets. We evaluate on two types of public datasets: those that
capture an aspect of language model safety, particularly truthfulness, toxicity, and bias, and those
that capture zero-shot performance on traditional NLP tasks like question answering, reading com-
prehension, and summarization. We also conduct human evaluations on the RealToxicityPrompts
dataset (Gehman et al., 2020).

4 Results

4.1 Results on the API distribution

Labelers significantly prefer InstructGPT outputs over outputs from GPT-3. On our test
set, our labelers significantly prefer InstructGPT outputs across model sizes (Figure 1). We find
that GPT-3 outputs perform the worst, and one can obtain significant step-size improvements by
using a well-crafted few-shot prompt (GPT-3 (prompted)), then by training on demonstrations using
supervised learning (SFT), and finally by training on comparison data using PPO. Adding updates on
the pretraining mix during PPO does not lead to large changes in labeler preference. To illustrate the
magnitude of our gains: when compared directly, 175B InstructGPT outputs are preferred to GPT-3
outputs 85 ± 3% of the time, and preferred 71 ± 4% of the time to few-shot GPT-3.

In Figure 4 we show that labelers also rate InstructGPT outputs favorably along several more concrete
axes. Specifically, compared to GPT-3, InstructGPT outputs are more appropriate in the context of a
customer assistant, more often follow explicit constraints defined in the instruction (e.g. “Write your
answer in 2 paragraphs or less.”), are less likely to fail to follow the correct instruction entirely, and
make up facts (‘hallucinate’) less often in closed-domain tasks.
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Figure 5: (a) Comparing our models with GPT-3 fine-tuned on the FLAN and T0 datasets, in terms of
1-7 Likert scores, on our prompt distribution. (b) Human evaluations on the TruthfulQA dataset. Gray
bars indicate ratings of truthfulness; colored bars indicate ratings of truthfulness and informativeness.
(c) Human evaluations on RealToxicityPrompts, with and without "respectful" instructions.

Our models generalize to the preferences of "held-out" labelers that did not produce any train-
ing data. Held-out labelers have similar ranking preferences as workers who we used to produce
training data (see Figure 3). In particular, according to held-out workers, all of our InstructGPT
models still greatly outperform the GPT-3 baselines. Thus, our InstructGPT models aren’t simply
overfitting to the preferences of our training labelers.

Public NLP datasets are not reflective of how our language models are used. In Figure 5a,
we also compare InstructGPT to our 175B GPT-3 baselines fine-tuned on the FLAN (Wei et al.,
2021) and T0 (Sanh et al., 2021) datasets (see Appendix D for details). We find that these models
perform better than GPT-3, on par with GPT-3 with a well-chosen prompt, and worse than our SFT
baseline. This indicates that these datasets are not sufficiently diverse to improve performance on our
API prompt distribution. We believe this is partly because academic datasets focus on tasks where
performance is easily measured, like classification and QA, while our API distribution consists of
mostly (about 57%) open-ended generation tasks.

4.2 Results on public NLP datasets

InstructGPT models show improvements in truthfulness over GPT-3. As measured by human
evaluations on the TruthfulQA dataset, our PPO models show small but significant improvements
in generating truthful and informative outputs compared to GPT-3 (see Figure 5b). This behavior is
the default: our models do not have to be specifically instructed to tell the truth to exhibit improved
truthfulness. Interestingly, the exception is our 1.3B PPO-ptx model, which performs slightly worse
than a GPT-3 model of the same size. Our improvements in truthfulness are also evidenced by the
fact that our PPO models hallucinate less often on closed-domain tasks (Figure 4).

InstructGPT shows small improvements in toxicity over GPT-3, but not bias. We first evaluate
our models on the RealToxicityPrompts dataset (Gehman et al., 2020) using human evaluations.
Our results are in Figure 5c. We find that, when instructed to produce a safe and respectful output
(“respectful prompt”), InstructGPT models generate less toxic outputs than those from GPT-3
according to the Perspective API. This advantage disappears when the respectful prompt is removed
(“no prompt”). We see similar results when evaluating using the Perspective API (Appendix F.7).

We can minimize performance regressions on public NLP datasets by modifying our RLHF
fine-tuning procedure. In Figure 25 we show that adding pretraining updates to our PPO fine-
tuning (PPO-ptx) mitigates performance regressions on public NLP datasets, and even surpasses
GPT-3 on HellaSwag. The performance of the PPO-ptx model still lags behind GPT-3 on DROP,
SQuADv2, and translation; more work is needed to study and further eliminate these performance
regressions. We also find that mixing in pretraining updates performs better than the simpler solution
of increasing the KL coefficient (Figure 36).
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4.3 Qualitative results

InstructGPT models show promising generalization to instructions outside of the RLHF fine-
tuning distribution. In particular, we find that InstructGPT shows ability to follow instructions
in non-English languages, and perform summarization and question-answering for code. This is
interesting because non-English languages and code form a tiny minority of our fine-tuning data, and
it suggests that, in some cases, alignment methods could generalize to producing the desired behavior
on inputs that humans did not directly supervise. We show some qualitative examples in Figure 26.

InstructGPT still makes simple mistakes. In interacting with our 175B PPO-ptx model, we
have noticed it can still make simple mistakes, despite its strong performance on many different
language tasks. To give a few examples: (1) when given an instruction with a false premise, the model
sometimes incorrectly assumes the premise is true, (2) the model can overly hedge; when given a
simple question, it can sometimes say that there is no one answer to the question and give multiple
possible answers, even when there is one fairly clear answer from the context, and (3) the model’s
performance degrades when instructions contain multiple explicit constraints (e.g. “list 10 movies
made in the 1930’s set in France”) or when constraints can be challenging for language models (e.g.
writing a summary in a specified number of sentences).

We show some examples of these behaviors in Figure 27. We suspect that behavior (2) emerges
partly because we instruct labelers to reward epistemic humility; thus, they may tend to reward
outputs that hedge, and this gets picked up by our reward model. We suspect that behavior (1) occurs
because there are few prompts in the training set that assume false premises, and our models don’t
generalize well to these examples. We believe both these behaviors could be dramatically reduced
with adversarial data collection (Dinan et al., 2019).

5 Discussion

5.1 Implications for alignment research

Our approach to alignment research in this work is iterative: we are improving the alignment of
current AI systems instead of focusing abstractly on aligning AI systems that don’t yet exist, which
provides us with a clear empirical feedback loop of what works and what does not. We believe that
this feedback loop is essential to refine our alignment techniques, and it forces us to keep pace with
progress in machine learning.

From this work, we can draw lessons for alignment research more generally. First, the cost of
increasing model alignment is modest relative to pretraining. Training our 175B SFT model requires
4.9 petaflops/s-days and training our 175B PPO-ptx model requires 60 petaflops/s-days, compared
to 3,640 petaflops/s-days for GPT-3 (Brown et al., 2020). At the same time, our results show that
RLHF is very effective at making language models more helpful to users, more so than a 100x model
size increase. This suggests that right now increasing investments in alignment of existing language
models is more cost-effective than training larger models. Second, we’ve seen some evidence that
InstructGPT generalizes ‘following instructions’ to settings that we don’t supervise it in. This is an
important property because it’s prohibitively expensive to have humans supervise models on every
task they perform. Finally, we were able to mitigate most of the performance degradations introduced
by our fine-tuning. If this was not the case, these performance degradations would constitute an
alignment tax—an additional cost for aligning the model. Any alignment technique with a high tax
might not see adoption, and thus such a tax is important to avoid.

5.2 Limitations

Methodology. The behavior of our InstructGPT models is determined in part by the human feedback
obtained from our contractors. Some of the labeling tasks rely on value judgments that may be
impacted by the identity of our contractors, their beliefs, cultural backgrounds, and personal history.
We kept our team of contractors small because this facilitates high-bandwidth communication with
a smaller set of contractors who are doing the task full-time. However, this group is clearly not
representative of the full spectrum of people affected by these models. As a simple example, our
labelers are primarily English-speaking and our data consists almost entirely of English instructions.
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Models. Our models are neither fully aligned nor fully safe; they still generate toxic or biased
outputs, make up facts, and generate sexual and violent content without explicit prompting. They can
also fail to generate reasonable outputs on some inputs; we show some examples of this in Figure 27.
Perhaps the greatest limitation of our models is that, in most cases, they follow the user’s instruction,
even if that could lead to harm in the real world. For example, when prompting the models to be
maximally biased, InstructGPT generates more toxic outputs than equivalently-sized GPT-3 models.

5.3 Broader impacts

This work is motivated by our aim to increase the positive impact of large language models by training
them to do what a given set of humans want them to do. By default, language models optimize
the next word prediction objective, which is only a proxy for what we want these models to do.
Our results indicate that our techniques hold promise for making language models more helpful,
truthful, and harmless. In the longer term, alignment failures could lead to more severe consequences,
particularly if these models are deployed in safety-critical situations.

However, making language models better at following user intentions also makes them easier to
misuse. It may be easier to use these models to generate convincing misinformation, or hateful or
abusive content. Alignment techniques are not a panacea for resolving safety issues associated with
large language models; rather, they should be used as one tool in a broader safety ecosystem. Aside
from intentional misuse, there are many domains where large language models should be deployed
only with great care, or not at all. Examples include high-stakes domains such as medical diagnoses,
classifying people based on protected characteristics, determining eligibility for credit, employment,
or housing, generating political advertisements, and law enforcement.

Finally, the question of who these models are aligned to is extremely important, and will significantly
affect whether the net impact of these models is positive or negative; we discuss this in Appendix G.2.
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