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Abstract

In image segmentation, the classic approach of learning a deterministic segmenta-
tion neither accounts for noise and ambiguity in the data nor for expert disagree-
ments about the correct segmentation. This has been addressed by architectures that
predict heteroscedastic (input-dependent) segmentation uncertainty, which indi-
cates regions of segmentations that should be treated with care. What is missing are
structural insights into the uncertainty, which would be desirable for interpretability
and systematic adjustments. In the context of state-of-the-art stochastic segmen-
tation networks (SSNs), we solve this issue by dismantling the overall predicted
uncertainty into smaller uncertainty components. We obtain them directly from
the low-rank Gaussian distribution for the logits in the network head of SSNs,
based on a previously unconsidered view of this distribution as a factor model.
The rank subsequently encodes a number of latent variables, each of which con-
trols an individual uncertainty component. Hence, we can use the latent variables
(called factors) for fine-grained sample control, thereby solving an open problem
from previous work. There is one caveat though–factors are only unique up to
orthogonal rotations. Factor rotations allow us to structure the uncertainty in a
way that endorses simplicity, non-redundancy, and separation among the individual
uncertainty components. To make the overall and factor-specific uncertainties at
play comprehensible, we introduce flow probabilities that quantify deviations from
the mean prediction and can also be used for uncertainty visualization. We show
on medical-imaging, earth-observation, and traffic-scene data that rotation criteria
based on factor-specific flow probabilities consistently yield the best factors for
fine-grained sampling.
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1 Introduction

Semantic Segmentation is the computer vision task of assigning a class to each pixel of an image.
Examples for popular applications are the segmentation of medical images [1, 2, 39], land-cover
classi�cation in earth observation [28, 37, 42], and segmentation of imagery taken by autonomous
vehicles [14, 25, 43]. Semantic segmentation tasks are affected by heteroscedastic (input-dependent)
aleatoric uncertainty [26, 27] that is also called data uncertainty. Aleatoric uncertainty can emerge
in form of label noise in the training data, differing expert opinions about the true segmentation, or
ambiguity already contained in the data, for example, caused by technical restrictions like the image
resolution [16, 20, 27].

To account for the prevailing aleatoric uncertainty, various probabilistic architectures have been
proposed [3, 21, 24, 27, 28, 31]. The work [11] demonstrates that in general, uncertainties predicted
by probabilistic segmentation architectures correlate positively with estimation errors, including
those obtained from ensemble methods [23, 29] and MC-dropout [15]. Nevertheless, deterministic
segmentation architectures [7, 35] are still pre-dominantly used [2, 44]. This may be because for
practitioners it is often not clear how to take advantage of the predicted uncertainties. For instance,
a limited number of sampled segmentations usually does not represent the predicted uncertainty
well. As shown in Figure 1 (top), overview plots for the predicted uncertainty like entropy [11, 27]
can be generated. They indicate areas of high uncertainty, where practitioners should take care.
However, they do not convey pixel-wise correlations of uncertainty, that is, how changes in the
segmentation of one region of an image affect changes in another. Moreover, overview plots cannot
explain the overall uncertainty in terms of smaller uncertainty components, which would be desirable
towards an interpretation of the uncertainty following the principles of problem decomposition and
divide-and-conquer [30].

Figure 1: Segmentation uncertainty for an image from the SEN12MS data set [37]. Top row: image,
ground truth with coarse labels, mean prediction, overview plot for the predicted uncertainty using
full �ow probabilities (FP), entropy (bright colors mean high entropy). Bottom rows: Factor-speci�c
�ow probabilities for the unrotated factors from the network output (top) and FP-Quartimax factors
(bottom). Bright colors mean that the prediction changes with high probability to the class indicated
by the color. Flow probability rotations like FP-Quartimax greatly reduce redundancy. Here, they
yield only three distinguished factors that encode larger uncertainty components and can be used as
the main controls for �ne-grained sampling, which was requested in [31].

In the context of the recently introducedstochastic segmentation networks(SSNs) [31] that we
explain below, the lack of understanding the overall uncertainty in terms of independent components
connects to a problem that was also observed by the authors of [31]. They pointed out in their
accompanying demo that '�ne-grained sample control' is still missing. Indeed, the identi�cation
of independent or at least reasonably distinguished components of uncertainty represents a natural
solution to this problem. We seek such components for SSNs with the goal of manipulating them
individually for generating and �ne-adjusting segmentations.
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SSNs model uncertainty via a low-rank multivariate Gaussian distribution on the logits, that is, on
the network output before the softmax is applied, see Section 2. Surprisingly, it has not been made
use of the fact that this uncertainty model itself offers a straightforward way for distinguishing
between uncertainty components. This may be because the low-rank model was originally proposed
for reducing the number of parameters. Here, we center our approach around the semantics of the
low-rank model as a factor model. Factor models structure the overall uncertainty into individual
components of uncertainty, each of which is governed by a single latent variable (called factor).
Therefore, we solve the open problem from [31] by using the latent factor variables as control
variables for a systematic exploration of the predicted heteroscedastic segmentation uncertainty. For
the best result, however, some additional work is necessary: As is known from exploratory factor
analysis [13, 40], the latent variables in factor models are only unique up to orthogonal rotations.
Hence, they should be rotated for increased interpretability [6, 9, 40], which in our case amounts to
generating more useful controls.

Good controls encode uncertainty components that are simple, non-redundant, and separable in the
sense that they affect distinguished image regions or classes. To evaluate these aspects, in Section 3
we introduce �ow probabilities that quantify deviations from the mean prediction, which also enables
uncertainty visualization, see Figure 1. Speci�cally, we computefactor-speci�c�ow probabilities
that quantify the impact of the uncertainty components encoded by individual factors. In Section 4,
we fuse factor-speci�c �ow probabilities with classic rotation criteria [6, 10] from exploratory factor
analysis. In Section 5, we show that these fused criteria generally result in the best possible controls.
Note that as a by-product, computingfull �ow probabilities for the overall uncertainty also yields a
new type of overview plot that does not aggregate class-speci�c information about the uncertainty,
see Figure 1 (top).

Before we summarize our main contributions, we would like to emphasize that we do not benchmark
SSNs as they have already been proven to produce state-of-the-art results w.r.t. various metrics, for
instance, generalized energy distance to the ground truth distribution [24, 31]. Hence, it is safe for us
to assume that after successful training, SSNs are capable of predicting the aleatoric uncertainty for a
given input image reasonably well. Based on that our main contributions are:

(1) control variables for the contributions of individual, factor-speci�c uncertainty components
for �ne-grained sampling (given by the latent factor variables),

(2) �ow probabilities for quantifying and visualizing overall and factor-speci�c uncertainties,
(3) rotations based on factor-speci�c �ow probabilities, which structure the uncertainty compo-

nents and thereby provide simpler, less redundant, and well-separated control variables.

Please �nd an overview �gure of our contributions in Section A of our supplement. Ad-
ditionally, we made the code for the proposed methods and experiments available under
https://github.com/JakobCode/StructuringSSNs.

2 Factor modeling in stochastic segmentation networks

Stochastic segmentation networks (SSNs) [31] are characterized by modeling the pixel-wise logits in
the network head as a low-rank multivariate Gaussian distribution, that is,

p(� j x ) � N
�
� (x ); � (x )� (x )> + 	 (x )

�
:

Here, � 2 Rn are then = hwc logits for an input imagex of sizeh � w and a classi�cation
problem withc classes. The parameters of the Gaussian distribution are the mean� (x ) 2 Rn and
the covariance matrix, which decomposes into a matrix of rank bounded byr � n with square root
� (x ) 2 Rn � r and a diagonal matrix	 (x ) 2 Rn � n with positive diagonal elements. The parameters
of the Gaussian distribution are the output of a backbone segmentation network with inputx [7, 35].

Originally, the low-rank parameterization was solely introduced as a means for reducing the number
of parameters [31]. However, the low-rank covariance model has a deeper structural meaning as
a factor model [13, 38, 40]. Factor models are characterized by a typically small number of latent
variables, called factors, that explain all correlations among a larger number of observed variables. In
our case, the joint distribution of the observed logits and the latent factor variablesz 2 Rr is given by

(� ; z) � N
��

�
0

�
;
�

�� > + 	 �
� > I r

��
;
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whereI r is the(r � r ) identity matrix, and for brevity, we omit the dependence on the inputx in
the notation from now on. Here, the interactions of the latent variables with the observed logits are
described in the matrix� of factor loadings: Each column contains the loadings of one latent factor
variable on the observed logits, yielding structured uncertainty. The loading characteristic becomes
clear in the following sampling procedure for the logits from the factor model:

� = � + � z + 	 1=2" ; where z � N (0; I r ); " � N (0; I n ): (1)

This procedure results from sampling from the joint distributionp(� ; z) = p(z)p(� j z) as follows:
First, the latent variables are sampled according toz � N (0; I r ). Second, the logits are sampled
from the conditional distribution� j z � N (� + � z; 	 ). Subsequently, only the logits are observed.

Sampling the logits as in Equation(1) provides control over the contributions of the different latent
factor variables. This invites for an individual manipulation of the factors, enabling �ne-grained
sampling. However, as pointed out in the introduction, factors should be rotated beforehand because
they are only unique up to orthogonal rotations, see Lemma 1 in the supplement. In particular,
orthogonal rotations of the latent factor variables do not change the marginal distributionp(� ) of
the logits. Indeed, replacing� z by � Oz for an orthogonal matrixO 2 Rr � r in Equation(1) yields
an equivalent sampling procedure. Therefore, one way to understand orthogonal rotations is that
they change the basis of ther -dimensional af�ne spacef � + � z : z 2 Rr g of the (noiseless) logits,
where the basis elements are the columns of the factor loading matrix.

3 Flow probabilities

In this section, we develop the notion of �ow probabilities as our main tool for the analysis of factor
models in SSNs. Flow probabilities can roughly be understood as probabilities of deviations from the
mean prediction. We use �ow probabilities for uncertainty quanti�cation and visualization.

3.1 Factor-speci�c �ow probabilities

Because we need to understand and assess individual factors, it is important to analyze and quantify
the uncertainty that is encoded in them. A useful tool for that is to compute factor-wise distributions
of class predictions, for which we vary an individual latent factor variablez with associated factor
loadings
 (a column of� , later we use the notation� :;j for a speci�c column of� ). We keep the
in�uence of all other latent factor and noise variables �xed to zero. Consequently, forz � N (0; 1)
we compute the following expected value:

P = P(
 ) =
Z

E(� + 
 z)p(z)dz 2 [0; 1](wh ) � c: (2)

Here,E(� + 
 z) 2 f 0; 1g(wh ) � c is the matrix whose rows correspond to the pixel-wise one-hot
encoded class predictions, which are obtained by reshaping the logits� + 
 z into shape(wh; c)
and then applying anarg max along the class dimension. Note that the class probabilitiesP can
be understood as a function of the factor loadings
 since the mean logits� are �xed. We solve
Equation(2) analytically. For that, we consider pixels separately since for (�at) spatial index
i 2 [wh] = f 1; : : : ; whg, the probabilitiespik from thei -th row ofP only depend on its associated
mean logits and factor loadings. Speci�cally, with the de�nitiongik (z) = � ik + 
 ik z for k 2 [c], for
�xed z the predicted class isarg maxk gik (z). Hence, from Equation (2) we get that

pik = pik (
 ) =
Z

1[k = arg max k 0 gik 0(z)]p(z)dz; k 2 [c] = f 1; : : : ; cg; (3)

where1 is the indicator function. We solve Equation(3) for binary classi�cation �rst (k 2 f 1; 2g).
Assuming that only the logits for the classk = 2 are learned, we setgi 1(z) = 0 for consistency in
Equation (3). Then, with� = � i 2 and assuming that
 = 
 i 2 6= 0 , the probabilitypi 2 evaluates as

pi 2 =
Z

1[� + 
z � 0]p(z)dz =
�

 ( � �=
 ); 
 < 0
1 �  ( � �=
 ); 
 > 0

:

Here, is the cumulative distribution function of a standard normal random variable. For the last
equality, observe that� �=
 is the intersection point of the straight linegi 2(z) = � + 
z with the
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z-axis gi 1. If 
 = 0 , thearg max is not unique and probabilities can be split. For clarity of the
technical exposition, we assume that thearg max is unique in the following.

For general multi-class problems, the probabilitiespik in Equation (3) can be derived from
the class-prediction functionz 7! arg maxk 0 gik 0(z). In this function, the class prediction
can only change at intersection pointsz of two non-parallel straight linesgik and gik 0, that is,
z = ( � ik � � ik 0)=(
 ik 0 � 
 ik ). Generally, if a classk is predicted for somez, then allz values for
which thek-th class is predicted form a non-empty interval(zik ; zik ) � R. The end points of this
interval can either be� 1 , an intersection point ofgik , or 1 . In practice, the intervals(zik ; zik ) can
be computed by sorting all intersection points and checking the values of the class-prediction function
on the resulting partition of thez-axis. If a classk is never predicted, we setzik = zik = � 1 .
Finally, the class probability is given bypik =  (zik ) �  (zik ), where we use the conventions that
 ( � 1 ) = 0 and (1 ) = 1 . Observe that the formula for binary problems given above is a special
case of the one given forpik here. Overall, we obtain the following result:

Proposition 1. De�ne Z = ( zik ) and Z = ( zik ) with entriesi 2 [wh] and k 2 [c]. Then, the
distribution of predicted classes under variation of the factor with associated loadings
 is given by

P(
 ) =  (Z ) �  (Z );

where applies the cumulative distribution function of a standard normal variable element-wise.

Now, to highlight the difference to the prediction from the mean� , we computefactor-speci�c�ow
probabilities as

F (
 ) = P(
 ) � E (� ) =  (Z ) �  (Z ) � E (� ) 2 [� 1; 1](wh ) � c:

Positive entries in thek-th columnF (
 ):;k indicate that the prediction for the corresponding pixels
changes with positive probability from the mean prediction to classk. Based on this fact, factor-
speci�c �ow probabilities enable visualizations of the impact of individual factors, see Figure 1
(bottom rows). The visualizations are obtained by calculating a mixture of class-speci�c colors with
weights given by the (factor-speci�c) �ow probabilities, see the supplement for details.

As factor-speci�c �ow probabilities represent the real impact of a factor on output segmentations,
they will also be a key to quality assessment of the factors, see Section 4. For future reference, we
denote byF (� ) 2 [� 1; 1](whc ) � r the matrix of all factor-speci�c �ow probabilities that is obtained
by concatenating the factor-speci�c �ow probabilitiesF (� :;j ) as columns after �attening, where
� :;j is thej -th column of� . Finally, since we use the latent factor variables as control variables
for �ne-grained sampling, it is helpful to also computeone-sided�ow probabilities that encode the
uncertainty for respectively positive and negative values of the latent factor variable.

Corollary 1. Using the notation from Proposition 1, the one-sided factor-speci�c �ow probabilities
for a factor with loadings
 compute as

F + (
 ) =
Z

[0;1 )
E(� + 
 z)p(z)dz � E (� ) =  (max(0; Z )) �  (max(0; Z )) � E (� );

F � (
 ) =
Z

( �1 ;0]
E(� + 
 z)p(z)dz � E (� ) =  (min(0; Z )) �  (min(0; Z )) � E (� ):

3.2 Uncertainty quanti�cation for the full factor model

The idea of computing factor-speci�c �ow probabilities for uncertainty quanti�cation and visualiza-
tion extends to the full factor model. For that, analogous to Equation(2), we compute the distribution
of class predictions. However, this time we take the expected value over the full distribution of the
logits given in Equation (1):

P full =
Z

E(� )p(� )d� =
Z

E(� + � z + 	 1=2" )p(z)p(" )dzd" 2 [0; 1](wh ) � c: (4)

The change from the mean predictionE(� ) is then given by thefull �ow probabilities, which we
compute asF full = P full � E (� ) 2 [� 1; 1](wh ) � c. Visualizing full �ow probabilities as above by
weighted mixtures of class-speci�c colors yields a new type of overview plot for the uncertainty, see
Figure 1 (top row) for an example. Though for our work only a by-product, it has the advantage that
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it does not aggregate information about class-speci�c uncertainties, in contrast to overview plots like
entropy (see also Figure 1, top row).

In practice, the integral from Equation(4) is dif�cult to evaluate. This is because thearg max in
E(� ) technically amounts to determining a maximum of multivariate linear functions. Hence, we
approximate the integral using Monte-Carlo integration withm i.i.d. samplesz (1) ; : : : ; z (m ) 2 Rr

drawn fromN (0; I r ) and i.i.d. samples" (1) ; : : : ; " (m ) 2 Rwhc drawn fromN (0; I whc ). The matrix
P full of class probabilities is thus approximated by

P full �
1
m

mX

j =1

E(� + � z ( j ) + 	 1=2" ( j ) ) 2 [0; 1](wh ) � c:

The matrixF full of �ow probabilities can be approximated similarly. In the supplement, we show
empirically that the diagonal noise term has little impact on the �ow probabilities. Hence, we can
focus on the structural uncertainty that is induced by the latent factor variables.

4 Factor rotations

As pointed out in Section 2, the latent variables/factors in factor models are only unique up to
orthogonal rotations. Therefore, it is common practice in exploratory factor analysis to rotate them
in order to maximize their interpretability [6, 22, 38]. The factor model in a SSN represents the
predicted uncertainty for a given input image, where the factors themselves encode components of
the overall uncertainty. We intend to use them as control variables for �ne-grained sampling. From
that we derive the following quality criteria:

(1) The number of 'relevant' factors should be small, where relevant factors are characterized
by having a 'signi�cant' effect on output segmentations.

(2) Relevant factors should be separable from each other in the sense that they encode distin-
guished uncertainty components.

(3) Each area in the input image should be affected by only few factors.

Here, the �rst criterion ensures that the number of impactful control variables is reduced to a
necessary minimum, and the second criterion requires that the corresponding uncertainty components
are distinct. Together, the �rst two criteria discourage factor redundancy. The last criterion re�ects
the general requirement of sparsity and simplicity that is also found among Thurstone's rules [41] for
simple structure of a factor loading matrix, which is the primary goal in exploratory factor analysis
[13]. However, in our case we rather require a simple structure on the matrixF (� ) of factor-speci�c
�ow probabilities (see Section 3.1) since they measure the actual impact of the factors on output
segmentations. In Section 5, we evaluate different rotation criteria that we present in the following.

First, we consider classic rotation criteria. Here, for a factor loading matrix� = ( 
 ij ) 2 Rn � r ,
Crawson and Ferguson [10] de�ned the CF family of rotation criteria:

q� (� ) = (1 � � )
nX

i =1

rX

j =1


 2
ij

rX

l :j 6= l


 2
il + �

rX

j =1

nX

i =1


 2
ij

nX

l :i 6= l


 2
lj ; � 2 [0; 1]:

The CF family is a generalization of the widely used orthomax family [17], where the parameter�
controls a trade-off between row complexity (�rst sum) and column complexity (second sum). We
focus on popular choices:� = 1=n yields an equivalent version of the Varimax criterion [22], which
is the most used method. Intuitively, it tries to maximize the variance of the squared factor loadings.
Next, � = 0 yields the Quartimax criterion that minimizes the number of factors needed to explain a
variable (in our case segmentation uncertainty of a pixel). Finally,� = r=(2n) yields the Equamax
criterion that represents a combination of Varimax and Quartimax.

Classic rotation criteria do not consider the actual impact of factors on predicted segmentations
because they only take the factor loadings� but not the mean� into account. Therefore, we incorpo-
rate factor-speci�c �ow probabilities into rotation criteria by applying a base rotation criterionq on
the �ow probabilities instead of the factor loadings. Hence, the objective function to be minimized
becomesO 7! q(F (� O)) instead ofO 7! q(� O). We call the new family of rotation criteria the FP
family. For instance, FP-Varimax applies the Varimax criterion on the �ow probabilities.
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5 Experiments

The purpose of our experiments is to (1) evaluate rotation criteria based on the quality of rotated
factors, (2) demonstrate the merits of �ne-grained sample control based on reasonably-rotated factors.

Data sets and training. First, we use the LIDC data set [1] in its pre-processed version from [28]
that contains 2D slices of 3D thorax scans of size128� 128pixels. Each slice respectively has four
ground truth segmentations from different experts. Second, we use the multi-spectral Sentinel-2 data
from the SEN12MS data set [36] with images of size244� 244pixels and coarse labels for semantic
segmentation of10types of land cover. Third, we use the CamVid data set [5], which contains images
of road scenes in resolution480� 360and is pixel-wise labeled into11 different classes. Additional
details and statistics about the data sets (including splits) can be found in the supplement, where we
also detail all training procedures. We respectively user = 10 in our experiments, which accounts
for the varying uncertainty in different images and has also been used in [31]. We would like to
emphasize again that we do not benchmark SSNs since they have already shown to be state of the art
[24, 31]. For examples of uncertainty predictions, see Figure 1, Figure 2, and the supplement.

Figure 2: Left: LIDC example including ground truth (split to show annotations of four experts),
mean prediction, full �ow-probability (FP) overview plot for the uncertainty. Right: CamVid example
with uncertainty mostly at class borders. More examples can be found in the supplement.

Computational aspects. We used Python 3.7, particularly with the librariesPyTorch 1.11[32],
scikit-learn[33], NumPy[18], andeinops[34]. On a single core of an Intel Xeon Platinum 8260,
factor-speci�c and full �ow probabilities can be computed in the sub-second range without signi�cant
differences w.r.t. the used rotation, see the supplement for details.

To obtain the optimal rotation matrices for the different rotation criteria, we adapted gradient
projection algorithms from [4] to our needs. In our current implementation, optimization for criteria
based on �ow probabilities can take up to a few minutes, see the supplement for details. In practice,
we recommend pre-computing rotations whenever possible.

5.1 Evaluation of rotation criteria

We evaluate rotations according to the quality criteria from Section 4, that is, (1) the relevance of
individual factors, (2) the separability of the relevant factors, and (3) the sparsity of the factors.

5.1.1 Factor relevance

Here, we measure the impact of individual factors on the segmentation. In this section, we use the
notation~� to denote a matrix of factor loadings that can be either rotated or unrotated. A simple
measure for the impact of thej -th factor with loadings~� :;j 2 Rn is given by thè 1-normkF (~� :;j )k1
of the factor-speci�c �ow probabilities. In what follows, we consider relevance curves that show how
many factors exceed the overall uncertainty for varying thresholds� � 0. Speci�cally, we compute

n� = jR� j; whereR� = f j : kF (� :;j )k1 � � kF full (� )k1g;

and we measure the overall uncertainty by the`1-norm of the full �ow probabilities, approximated by
100Monte-Carlo samples.

Results and discussion. The results of averagingn� over the respective test images are shown in
Figure 3 (top row). First, classic rotations barely reduce the number of relevant factors compared to
the unrotated representation. This is no surprise since they do not take the mean logits into account
and only try to simplify the structure of the factor loadings~� . Nevertheless, even classic rotations
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