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Abstract

In image segmentation, the classic approach of learning a deterministic segmenta-
tion neither accounts for noise and ambiguity in the data nor for expert disagree-
ments about the correct segmentation. This has been addressed by architectures that
predict heteroscedastic (input-dependent) segmentation uncertainty, which indi-
cates regions of segmentations that should be treated with care. What is missing are
structural insights into the uncertainty, which would be desirable for interpretability
and systematic adjustments. In the context of state-of-the-art stochastic segmen-
tation networks (SSNs), we solve this issue by dismantling the overall predicted
uncertainty into smaller uncertainty components. We obtain them directly from
the low-rank Gaussian distribution for the logits in the network head of SSNs,
based on a previously unconsidered view of this distribution as a factor model.
The rank subsequently encodes a number of latent variables, each of which con-
trols an individual uncertainty component. Hence, we can use the latent variables
(called factors) for fine-grained sample control, thereby solving an open problem
from previous work. There is one caveat though–factors are only unique up to
orthogonal rotations. Factor rotations allow us to structure the uncertainty in a
way that endorses simplicity, non-redundancy, and separation among the individual
uncertainty components. To make the overall and factor-specific uncertainties at
play comprehensible, we introduce flow probabilities that quantify deviations from
the mean prediction and can also be used for uncertainty visualization. We show
on medical-imaging, earth-observation, and traffic-scene data that rotation criteria
based on factor-specific flow probabilities consistently yield the best factors for
fine-grained sampling.
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1 Introduction

Semantic Segmentation is the computer vision task of assigning a class to each pixel of an image.
Examples for popular applications are the segmentation of medical images [1, 2, 39], land-cover
classification in earth observation [28, 37, 42], and segmentation of imagery taken by autonomous
vehicles [14, 25, 43]. Semantic segmentation tasks are affected by heteroscedastic (input-dependent)
aleatoric uncertainty [26, 27] that is also called data uncertainty. Aleatoric uncertainty can emerge
in form of label noise in the training data, differing expert opinions about the true segmentation, or
ambiguity already contained in the data, for example, caused by technical restrictions like the image
resolution [16, 20, 27].

To account for the prevailing aleatoric uncertainty, various probabilistic architectures have been
proposed [3, 21, 24, 27, 28, 31]. The work [11] demonstrates that in general, uncertainties predicted
by probabilistic segmentation architectures correlate positively with estimation errors, including
those obtained from ensemble methods [23, 29] and MC-dropout [15]. Nevertheless, deterministic
segmentation architectures [7, 35] are still pre-dominantly used [2, 44]. This may be because for
practitioners it is often not clear how to take advantage of the predicted uncertainties. For instance,
a limited number of sampled segmentations usually does not represent the predicted uncertainty
well. As shown in Figure 1 (top), overview plots for the predicted uncertainty like entropy [11, 27]
can be generated. They indicate areas of high uncertainty, where practitioners should take care.
However, they do not convey pixel-wise correlations of uncertainty, that is, how changes in the
segmentation of one region of an image affect changes in another. Moreover, overview plots cannot
explain the overall uncertainty in terms of smaller uncertainty components, which would be desirable
towards an interpretation of the uncertainty following the principles of problem decomposition and
divide-and-conquer [30].
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Figure 1: Segmentation uncertainty for an image from the SEN12MS data set [37]. Top row: image,
ground truth with coarse labels, mean prediction, overview plot for the predicted uncertainty using
full flow probabilities (FP), entropy (bright colors mean high entropy). Bottom rows: Factor-specific
flow probabilities for the unrotated factors from the network output (top) and FP-Quartimax factors
(bottom). Bright colors mean that the prediction changes with high probability to the class indicated
by the color. Flow probability rotations like FP-Quartimax greatly reduce redundancy. Here, they
yield only three distinguished factors that encode larger uncertainty components and can be used as
the main controls for fine-grained sampling, which was requested in [31].

In the context of the recently introduced stochastic segmentation networks (SSNs) [31] that we
explain below, the lack of understanding the overall uncertainty in terms of independent components
connects to a problem that was also observed by the authors of [31]. They pointed out in their
accompanying demo that ’fine-grained sample control’ is still missing. Indeed, the identification
of independent or at least reasonably distinguished components of uncertainty represents a natural
solution to this problem. We seek such components for SSNs with the goal of manipulating them
individually for generating and fine-adjusting segmentations.
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SSNs model uncertainty via a low-rank multivariate Gaussian distribution on the logits, that is, on
the network output before the softmax is applied, see Section 2. Surprisingly, it has not been made
use of the fact that this uncertainty model itself offers a straightforward way for distinguishing
between uncertainty components. This may be because the low-rank model was originally proposed
for reducing the number of parameters. Here, we center our approach around the semantics of the
low-rank model as a factor model. Factor models structure the overall uncertainty into individual
components of uncertainty, each of which is governed by a single latent variable (called factor).
Therefore, we solve the open problem from [31] by using the latent factor variables as control
variables for a systematic exploration of the predicted heteroscedastic segmentation uncertainty. For
the best result, however, some additional work is necessary: As is known from exploratory factor
analysis [13, 40], the latent variables in factor models are only unique up to orthogonal rotations.
Hence, they should be rotated for increased interpretability [6, 9, 40], which in our case amounts to
generating more useful controls.

Good controls encode uncertainty components that are simple, non-redundant, and separable in the
sense that they affect distinguished image regions or classes. To evaluate these aspects, in Section 3
we introduce flow probabilities that quantify deviations from the mean prediction, which also enables
uncertainty visualization, see Figure 1. Specifically, we compute factor-specific flow probabilities
that quantify the impact of the uncertainty components encoded by individual factors. In Section 4,
we fuse factor-specific flow probabilities with classic rotation criteria [6, 10] from exploratory factor
analysis. In Section 5, we show that these fused criteria generally result in the best possible controls.
Note that as a by-product, computing full flow probabilities for the overall uncertainty also yields a
new type of overview plot that does not aggregate class-specific information about the uncertainty,
see Figure 1 (top).

Before we summarize our main contributions, we would like to emphasize that we do not benchmark
SSNs as they have already been proven to produce state-of-the-art results w.r.t. various metrics, for
instance, generalized energy distance to the ground truth distribution [24, 31]. Hence, it is safe for us
to assume that after successful training, SSNs are capable of predicting the aleatoric uncertainty for a
given input image reasonably well. Based on that our main contributions are:

(1) control variables for the contributions of individual, factor-specific uncertainty components
for fine-grained sampling (given by the latent factor variables),

(2) flow probabilities for quantifying and visualizing overall and factor-specific uncertainties,
(3) rotations based on factor-specific flow probabilities, which structure the uncertainty compo-

nents and thereby provide simpler, less redundant, and well-separated control variables.

Please find an overview figure of our contributions in Section A of our supplement. Ad-
ditionally, we made the code for the proposed methods and experiments available under
https://github.com/JakobCode/StructuringSSNs.

2 Factor modeling in stochastic segmentation networks

Stochastic segmentation networks (SSNs) [31] are characterized by modeling the pixel-wise logits in
the network head as a low-rank multivariate Gaussian distribution, that is,

p(η | x) ∼ N
(
µ(x),Γ(x)Γ(x)> + Ψ(x)

)
.

Here, η ∈ Rn are the n = hwc logits for an input image x of size h × w and a classification
problem with c classes. The parameters of the Gaussian distribution are the mean µ(x) ∈ Rn and
the covariance matrix, which decomposes into a matrix of rank bounded by r�n with square root
Γ(x) ∈ Rn×r and a diagonal matrix Ψ(x) ∈ Rn×n with positive diagonal elements. The parameters
of the Gaussian distribution are the output of a backbone segmentation network with input x [7, 35].

Originally, the low-rank parameterization was solely introduced as a means for reducing the number
of parameters [31]. However, the low-rank covariance model has a deeper structural meaning as
a factor model [13, 38, 40]. Factor models are characterized by a typically small number of latent
variables, called factors, that explain all correlations among a larger number of observed variables. In
our case, the joint distribution of the observed logits and the latent factor variables z ∈ Rr is given by

(η, z) ∼ N
((

µ
0

)
,

(
ΓΓ> + Ψ Γ

Γ> Ir

))
,
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where Ir is the (r × r) identity matrix, and for brevity, we omit the dependence on the input x in
the notation from now on. Here, the interactions of the latent variables with the observed logits are
described in the matrix Γ of factor loadings: Each column contains the loadings of one latent factor
variable on the observed logits, yielding structured uncertainty. The loading characteristic becomes
clear in the following sampling procedure for the logits from the factor model:

η = µ+ Γz + Ψ1/2ε, where z ∼ N (0, Ir), ε ∼ N (0, In). (1)

This procedure results from sampling from the joint distribution p(η, z) = p(z)p(η | z) as follows:
First, the latent variables are sampled according to z ∼ N (0, Ir). Second, the logits are sampled
from the conditional distribution η | z ∼ N (µ+ Γz,Ψ). Subsequently, only the logits are observed.

Sampling the logits as in Equation (1) provides control over the contributions of the different latent
factor variables. This invites for an individual manipulation of the factors, enabling fine-grained
sampling. However, as pointed out in the introduction, factors should be rotated beforehand because
they are only unique up to orthogonal rotations, see Lemma 1 in the supplement. In particular,
orthogonal rotations of the latent factor variables do not change the marginal distribution p(η) of
the logits. Indeed, replacing Γz by ΓOz for an orthogonal matrixO ∈ Rr×r in Equation (1) yields
an equivalent sampling procedure. Therefore, one way to understand orthogonal rotations is that
they change the basis of the r-dimensional affine space {µ+ Γz : z ∈ Rr} of the (noiseless) logits,
where the basis elements are the columns of the factor loading matrix.

3 Flow probabilities

In this section, we develop the notion of flow probabilities as our main tool for the analysis of factor
models in SSNs. Flow probabilities can roughly be understood as probabilities of deviations from the
mean prediction. We use flow probabilities for uncertainty quantification and visualization.

3.1 Factor-specific flow probabilities

Because we need to understand and assess individual factors, it is important to analyze and quantify
the uncertainty that is encoded in them. A useful tool for that is to compute factor-wise distributions
of class predictions, for which we vary an individual latent factor variable z with associated factor
loadings γ (a column of Γ, later we use the notation Γ:,j for a specific column of Γ). We keep the
influence of all other latent factor and noise variables fixed to zero. Consequently, for z ∼ N (0, 1)
we compute the following expected value:

P = P (γ) =

∫
E(µ+ γz)p(z)dz ∈ [0, 1](wh)×c. (2)

Here, E(µ+ γz) ∈ {0, 1}(wh)×c is the matrix whose rows correspond to the pixel-wise one-hot
encoded class predictions, which are obtained by reshaping the logits µ + γz into shape (wh, c)
and then applying an argmax along the class dimension. Note that the class probabilities P can
be understood as a function of the factor loadings γ since the mean logits µ are fixed. We solve
Equation (2) analytically. For that, we consider pixels separately since for (flat) spatial index
i ∈ [wh] = {1, . . . , wh}, the probabilities pik from the i-th row of P only depend on its associated
mean logits and factor loadings. Specifically, with the definition gik(z) = µik + γikz for k ∈ [c], for
fixed z the predicted class is argmaxk gik(z). Hence, from Equation (2) we get that

pik = pik(γ) =

∫
1[k = argmaxk′ gik′(z)]p(z)dz, k ∈ [c] = {1, . . . , c}, (3)

where 1 is the indicator function. We solve Equation (3) for binary classification first (k ∈ {1, 2}).
Assuming that only the logits for the class k = 2 are learned, we set gi1(z) = 0 for consistency in
Equation (3). Then, with µ = µi2 and assuming that γ = γi2 6= 0, the probability pi2 evaluates as

pi2 =

∫
1[µ+ γz ≥ 0]p(z)dz =

{
ψ(−µ/γ), γ < 0

1− ψ(−µ/γ), γ > 0
.

Here, ψ is the cumulative distribution function of a standard normal random variable. For the last
equality, observe that −µ/γ is the intersection point of the straight line gi2(z) = µ + γz with the
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z-axis gi1. If γ = 0, the argmax is not unique and probabilities can be split. For clarity of the
technical exposition, we assume that the argmax is unique in the following.

For general multi-class problems, the probabilities pik in Equation (3) can be derived from
the class-prediction function z 7→ argmaxk′ gik′(z). In this function, the class prediction
can only change at intersection points z of two non-parallel straight lines gik and gik′ , that is,
z = (µik − µik′)/(γik′ − γik). Generally, if a class k is predicted for some z, then all z values for
which the k-th class is predicted form a non-empty interval (zik, zik) ⊂ R. The end points of this
interval can either be −∞, an intersection point of gik, or∞. In practice, the intervals (zik, zik) can
be computed by sorting all intersection points and checking the values of the class-prediction function
on the resulting partition of the z-axis. If a class k is never predicted, we set zik = zik = −∞.
Finally, the class probability is given by pik = ψ(zik)− ψ(zik), where we use the conventions that
ψ(−∞) = 0 and ψ(∞) = 1. Observe that the formula for binary problems given above is a special
case of the one given for pik here. Overall, we obtain the following result:

Proposition 1. Define Z = (zik) and Z = (zik) with entries i ∈ [wh] and k ∈ [c]. Then, the
distribution of predicted classes under variation of the factor with associated loadings γ is given by

P (γ) = ψ(Z)− ψ(Z),

where ψ applies the cumulative distribution function of a standard normal variable element-wise.

Now, to highlight the difference to the prediction from the mean µ, we compute factor-specific flow
probabilities as

F (γ) = P (γ)− E(µ) = ψ(Z)− ψ(Z)− E(µ) ∈ [−1, 1](wh)×c.

Positive entries in the k-th column F (γ):,k indicate that the prediction for the corresponding pixels
changes with positive probability from the mean prediction to class k. Based on this fact, factor-
specific flow probabilities enable visualizations of the impact of individual factors, see Figure 1
(bottom rows). The visualizations are obtained by calculating a mixture of class-specific colors with
weights given by the (factor-specific) flow probabilities, see the supplement for details.

As factor-specific flow probabilities represent the real impact of a factor on output segmentations,
they will also be a key to quality assessment of the factors, see Section 4. For future reference, we
denote by F (Γ) ∈ [−1, 1](whc)×r the matrix of all factor-specific flow probabilities that is obtained
by concatenating the factor-specific flow probabilities F (Γ:,j) as columns after flattening, where
Γ:,j is the j-th column of Γ. Finally, since we use the latent factor variables as control variables
for fine-grained sampling, it is helpful to also compute one-sided flow probabilities that encode the
uncertainty for respectively positive and negative values of the latent factor variable.
Corollary 1. Using the notation from Proposition 1, the one-sided factor-specific flow probabilities
for a factor with loadings γ compute as

F+(γ) =

∫
[0,∞)

E(µ+ γz)p(z)dz − E(µ) = ψ(max(0,Z))− ψ(max(0,Z))− E(µ),

F−(γ) =

∫
(−∞,0]

E(µ+ γz)p(z)dz − E(µ) = ψ(min(0,Z))− ψ(min(0,Z))− E(µ).

3.2 Uncertainty quantification for the full factor model

The idea of computing factor-specific flow probabilities for uncertainty quantification and visualiza-
tion extends to the full factor model. For that, analogous to Equation (2), we compute the distribution
of class predictions. However, this time we take the expected value over the full distribution of the
logits given in Equation (1):

P full =

∫
E(η)p(η)dη =

∫
E(µ+ Γz + Ψ1/2ε)p(z)p(ε)dzdε ∈ [0, 1](wh)×c. (4)

The change from the mean prediction E(µ) is then given by the full flow probabilities, which we
compute as F full = P full − E(µ) ∈ [−1, 1](wh)×c. Visualizing full flow probabilities as above by
weighted mixtures of class-specific colors yields a new type of overview plot for the uncertainty, see
Figure 1 (top row) for an example. Though for our work only a by-product, it has the advantage that
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it does not aggregate information about class-specific uncertainties, in contrast to overview plots like
entropy (see also Figure 1, top row).

In practice, the integral from Equation (4) is difficult to evaluate. This is because the argmax in
E(η) technically amounts to determining a maximum of multivariate linear functions. Hence, we
approximate the integral using Monte-Carlo integration with m i.i.d. samples z(1), . . . ,z(m) ∈ Rr
drawn fromN (0, Ir) and i.i.d. samples ε(1), . . . , ε(m) ∈ Rwhc drawn from N (0, Iwhc). The matrix
P full of class probabilities is thus approximated by

P full ≈ 1

m

m∑
j=1

E(µ+ Γz(j) + Ψ1/2ε(j)) ∈ [0, 1](wh)×c.

The matrix F full of flow probabilities can be approximated similarly. In the supplement, we show
empirically that the diagonal noise term has little impact on the flow probabilities. Hence, we can
focus on the structural uncertainty that is induced by the latent factor variables.

4 Factor rotations

As pointed out in Section 2, the latent variables/factors in factor models are only unique up to
orthogonal rotations. Therefore, it is common practice in exploratory factor analysis to rotate them
in order to maximize their interpretability [6, 22, 38]. The factor model in a SSN represents the
predicted uncertainty for a given input image, where the factors themselves encode components of
the overall uncertainty. We intend to use them as control variables for fine-grained sampling. From
that we derive the following quality criteria:

(1) The number of ’relevant’ factors should be small, where relevant factors are characterized
by having a ’significant’ effect on output segmentations.

(2) Relevant factors should be separable from each other in the sense that they encode distin-
guished uncertainty components.

(3) Each area in the input image should be affected by only few factors.

Here, the first criterion ensures that the number of impactful control variables is reduced to a
necessary minimum, and the second criterion requires that the corresponding uncertainty components
are distinct. Together, the first two criteria discourage factor redundancy. The last criterion reflects
the general requirement of sparsity and simplicity that is also found among Thurstone’s rules [41] for
simple structure of a factor loading matrix, which is the primary goal in exploratory factor analysis
[13]. However, in our case we rather require a simple structure on the matrix F (Γ) of factor-specific
flow probabilities (see Section 3.1) since they measure the actual impact of the factors on output
segmentations. In Section 5, we evaluate different rotation criteria that we present in the following.

First, we consider classic rotation criteria. Here, for a factor loading matrix Γ = (γij) ∈ Rn×r,
Crawson and Ferguson [10] defined the CF family of rotation criteria:

qκ(Γ) = (1− κ)
n∑
i=1

r∑
j=1

γ2ij

r∑
l:j 6=l

γ2il + κ

r∑
j=1

n∑
i=1

γ2ij

n∑
l:i 6=l

γ2lj , κ ∈ [0, 1].

The CF family is a generalization of the widely used orthomax family [17], where the parameter κ
controls a trade-off between row complexity (first sum) and column complexity (second sum). We
focus on popular choices: κ = 1/n yields an equivalent version of the Varimax criterion [22], which
is the most used method. Intuitively, it tries to maximize the variance of the squared factor loadings.
Next, κ = 0 yields the Quartimax criterion that minimizes the number of factors needed to explain a
variable (in our case segmentation uncertainty of a pixel). Finally, κ = r/(2n) yields the Equamax
criterion that represents a combination of Varimax and Quartimax.

Classic rotation criteria do not consider the actual impact of factors on predicted segmentations
because they only take the factor loadings Γ but not the mean µ into account. Therefore, we incorpo-
rate factor-specific flow probabilities into rotation criteria by applying a base rotation criterion q on
the flow probabilities instead of the factor loadings. Hence, the objective function to be minimized
becomesO 7→ q(F (ΓO)) instead ofO 7→ q(ΓO). We call the new family of rotation criteria the FP
family. For instance, FP-Varimax applies the Varimax criterion on the flow probabilities.
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5 Experiments

The purpose of our experiments is to (1) evaluate rotation criteria based on the quality of rotated
factors, (2) demonstrate the merits of fine-grained sample control based on reasonably-rotated factors.

Data sets and training. First, we use the LIDC data set [1] in its pre-processed version from [28]
that contains 2D slices of 3D thorax scans of size 128× 128 pixels. Each slice respectively has four
ground truth segmentations from different experts. Second, we use the multi-spectral Sentinel-2 data
from the SEN12MS data set [36] with images of size 244× 244 pixels and coarse labels for semantic
segmentation of 10 types of land cover. Third, we use the CamVid data set [5], which contains images
of road scenes in resolution 480× 360 and is pixel-wise labeled into 11 different classes. Additional
details and statistics about the data sets (including splits) can be found in the supplement, where we
also detail all training procedures. We respectively use r = 10 in our experiments, which accounts
for the varying uncertainty in different images and has also been used in [31]. We would like to
emphasize again that we do not benchmark SSNs since they have already shown to be state of the art
[24, 31]. For examples of uncertainty predictions, see Figure 1, Figure 2, and the supplement.

Image Ground truth  Mean pred. FP full Image Ground truth Mean prediction FP full

Figure 2: Left: LIDC example including ground truth (split to show annotations of four experts),
mean prediction, full flow-probability (FP) overview plot for the uncertainty. Right: CamVid example
with uncertainty mostly at class borders. More examples can be found in the supplement.

Computational aspects. We used Python 3.7, particularly with the libraries PyTorch 1.11 [32],
scikit-learn [33], NumPy [18], and einops [34]. On a single core of an Intel Xeon Platinum 8260,
factor-specific and full flow probabilities can be computed in the sub-second range without significant
differences w.r.t. the used rotation, see the supplement for details.

To obtain the optimal rotation matrices for the different rotation criteria, we adapted gradient
projection algorithms from [4] to our needs. In our current implementation, optimization for criteria
based on flow probabilities can take up to a few minutes, see the supplement for details. In practice,
we recommend pre-computing rotations whenever possible.

5.1 Evaluation of rotation criteria

We evaluate rotations according to the quality criteria from Section 4, that is, (1) the relevance of
individual factors, (2) the separability of the relevant factors, and (3) the sparsity of the factors.

5.1.1 Factor relevance

Here, we measure the impact of individual factors on the segmentation. In this section, we use the
notation Γ̃ to denote a matrix of factor loadings that can be either rotated or unrotated. A simple
measure for the impact of the j-th factor with loadings Γ̃:,j ∈ Rn is given by the `1-norm ‖F (Γ̃:,j)‖1
of the factor-specific flow probabilities. In what follows, we consider relevance curves that show how
many factors exceed the overall uncertainty for varying thresholds τ ≥ 0. Specifically, we compute

nτ = |Rτ |, where Rτ = {j : ‖F (Γ:,j)‖1 ≥ τ‖F full(Γ)‖1},

and we measure the overall uncertainty by the `1-norm of the full flow probabilities, approximated by
100 Monte-Carlo samples.

Results and discussion. The results of averaging nτ over the respective test images are shown in
Figure 3 (top row). First, classic rotations barely reduce the number of relevant factors compared to
the unrotated representation. This is no surprise since they do not take the mean logits into account
and only try to simplify the structure of the factor loadings Γ̃. Nevertheless, even classic rotations
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already seem to decrease redundancy. However, as intended by design, FP rotations reduce the
number of relevant factors to a much greater extent. Especially for LIDC and SEN12MS, already
small thresholds τ are sufficient to cut off most factors below the threshold: Figure 3 (top) shows that
all FP rotations behave similarly with curves declining sharply for small τ . Consequently, FP rotations
tend to produce a huge gap between a small number of relevant factors and the remaining ones, see
Figure 1 for a visual example. This is desirable since it allows to focus only on a few relevant and
meaningful factors during the exploration of the predicted uncertainty. It may be harder to find such
factors if the predicted uncertainty has less inherent structure. CamVid is an example in this regard as
uncertainty predictions are often restricted to class borders, which means that they are less spatially
correlated. However, even for CamVid, there is structured uncertainty, see Figure 13 (Section D.2.3)
in the supplement. Figure 3 (top) shows that also for CamVid, FP rotations significantly reduce the
number of relevant factors.

5.1.2 Separability of relevant factors

The second quality criterion from Section 4 concerns factor separation. Here, for a separation
threshold ρ ∈ [0, 1], we compute the largest possible fraction of pairwise separated relevant factors:

sτ (ρ) = n
−1
τ ·max{|J | : J ⊂ Rτ , cos(F (Γ̃:,j), F (Γ̃:,j′)) ≤ ρ for all j 6= j′ ∈ J} ∈ [0, 1].

If nτ = 0, we set sτ (ρ) = 0 for all ρ. The separation of two factors is measured by the cosine
similarity of their factor-specific flow probabilities, which is always non-negative since corresponding
entries cannot have opposing signs. For sτ (ρ), a value of one is best since it means that all relevant
factors are also separated. For fixed relevance thresholds τ , we also compute the area under the curve
AUC(sτ ) for the comparison of different rotation criteria.

Results and discussion. In Figure 3 (bottom row), we show the separation scores AUC(sτ ) for
different relevance thresholds τ , respectively averaged over all test images. FP rotations consistently
beat classic rotations by a factor of around two in terms of AUC. Classic rotation criteria are still
better than the unrotated representations (which form the real baseline). The AUC separation scores
drop for thresholds τ that fail to determine the number of relevant factors sensefully because they
are too small or too large. Notably, for classic rotation criteria, the separation scores AUC(sτ )
respectively peak at a threshold τ for which the number of relevant factors nearly coincides with the
one from FP rotations, compare the intersection of the curves in Figure 3 (top row). The peak of the
separation scores is less pronounced for FP rotations, particularly for LIDC and SEN12MS, where
the set of relevant factors is more stable across different thresholds τ . For SEN12MS, the results also
distinguish among the FP-rotation criteria, where FP-Quartimax seems to be slightly favored over the
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Figure 3: Number of relevant factors nτ (top row) and separation via area under the curve AUC(sτ )
(bottom row), respectively for different relevance thresholds τ and averaged over all images from
the corresponding test data sets. In the bottom row, high values signify a high degree of separation
among the relevant factors. Error bars are deferred to the supplement for visual clarity.
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other FP rotations. This may be because Quartimax emphasizes row sparsity the most, which reduces
cosine similarities. We investigate row sparsity further in the next section.

5.1.3 Factor sparsity

To evaluate to which degree different factors affect the same regions of the input image, we measure
row sparsity of the factor-specific flow probabilities F (Γ̃) ∈ [−1, 1](whc)×r. For that, for a (row)
vector v ∈ Rr let

h(v) =

√
r − ‖v‖1/‖v‖2√

r − 1
∈ [0, 1]

be the Hoyer measure [19], where values close to one indicate a high degree of sparsity. For us,
sparsity only matters in rows with actual uncertainty for the pixel/class, therefore we additionally
weigh each row proportional to its `1-norm. Hence, as a final measure, we compute the weighted
Hoyer measure

H(Γ̃) = ‖F (Γ̃)‖−11 ·
whc∑
i=1

‖F (Γ̃)i,:‖1 · h(F (Γ̃)i,:).

Results and discussion. FP rotations generally concentrate the uncertainty for single re-
gions/classes in only few components, see Table 1. This means that FP rotation yield the most disen-
tangled uncertainty components, which also indicates strong separation. For LIDC and SEN12MS,
the amount of predicted uncertainty varies greatly across test images, causing high standard deviations.
However, in general, large correlating uncertainty components can be found, allowing high row
sparsity. This is in contrast to CamVid, where uncertainty is typically predicted for class borders.

Table 1: Mean and standard deviation of row sparsity (100 times weighted Hoyer measure) for
different rotations. FP rotations yield the most sparsity. For a more detailed figure, see the supplement.

Unrotated Varimax Equamax Quartimax FP-Vari FP-Equa FP-Quarti

LIDC 29.3±14 48.2±19 37.9±18 47.7±19 82.8±13 81.8±14 82.7±13
SEN12MS 33.0±17 52.7±16 50.4±17 45.6±19 74.1±11 74.3±12 77.7±13
CamVid 26.1± 2 30.4± 3 30.3± 3 30.7± 3 50.1± 3 50.0± 3 49.9± 3

5.2 Fine-grained sampling

Monteiro et al. [31] already manipulated samples post-hoc by simple linear inter- or extrapolation
w.r.t. the mean. However, they noted that additional more fine-grained sample control is necessary for
a systematic exploration of the sample space: The interpolation approach lacks a solid foundation in
the uncertainty model, and it relies on having a useful sample to start with. The meaningful control
variables that we obtain by rotating factors provide all that has been missing. They enable users to
systematically explore the sample space by fine-grained sampling: Starting from the mean prediction,
they can inspect alternatives, correct possible mistakes, and fine-adjust borders. Particularly, they can

Fa
ct

or
 1

Fa
ct

or
 3

Fa
ct

or
 2

Fa
ct

or
 4

Figure 4: Pseudo-samples obtained by an individual manipulation of the four most relevant factors of
the FP-Quartimax rotation for the example image from Figure 1. For each factor, five pseudo-samples
are respectively obtained by setting the associated factor to −1,−0.5, 0, 0.5, 1, while keeping all
other factors fixed to zero. The pseudo-sample continuum is intuitively described by one-sided flow
probabilities (shown to the left and right of the boxes) derived in Corollary 1. The fourth factor
(bottom right) has little impact, which can also be deduced from its nearly zero flow probabilities.
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manipulate the contribution of individual uncertainty components by manually setting the values of
the corresponding factors. Pseudo-samples obtained in this way are shown in Figure 4.

Alongside this paper, we provide an interface for fine-grained sampling. It allows the selection of
a rotation criterion for a given input image (we recommend FP-Quartimax for a start), and control
variables can be set conveniently using sliders. In the supplement, we provide some visuals.

6 Discussion and conclusion

In this work, we interpreted the uncertainty model of stochastic segmentation networks (SSNs) as a
factor model, which provides control variables for fine-grained sampling as requested by the authors
of [31]. By (re-)structuring the uncertainty using rotations, we improved the controls and obtained
as few as possible, but as many as necessary relevant uncertainty components. Here, it turned out
that rotation criteria based on flow probabilities yield the most meaningful controls, where flow
probabilities are a new quantification and visualization technique for the uncertainty in SSNs.

Our controls allow to systematically explore the predicted uncertainty and to fine-adjust samples.
However, the exploration of the sample space is only useful if the overall predicted uncertainty
makes sense. This can be ensured by proper training. Structuring and examining the uncertainty is
especially useful if there is a significant amount of aleatoric uncertainty. We note that one limitation
caused by our current implementation is that the computation of flow-probability based rotations
may take too long for performing it in an interactive scenario. However, there is significant potential
for improving the optimization (scheme and parallelization). In any case, rotations should be pre-
computed whenever possible.

Overall, we see a broader impact of our approach, which extends beyond the scope of SSNs. For
instance, we believe that it could be used for large-scale image classification, where factor models
have recently been employed for modeling class correlations [8]. Another promising application
is to learn and inspect more structured latent spaces in (variational) autoencoders [12]. Structuring
uncertainty as we do may be useful whenever a multivariate Gaussian forms part of a model. Next,
flow probabilities can also be used for other probabilistic segmentation architectures that have a mean
prediction as a reference point. Notably, flow-probability overview plots for the predicted uncertainty
keep class-specific information, in contrast to other overview plots like entropy.

To sum up, it is often easier to understand the whole in terms of smaller parts. In this light, we
structured the predicted uncertainty of SSNs into meaningful smaller uncertainty components. Jointly,
they enable fine-grained sample control, so for us, the sum of the parts is also greater than the whole.
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