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Abstract

We generalise the problem of reward modelling (RM) for reinforcement learning
(RL) to handle non-Markovian rewards. Existing work assumes that human evalua-
tors observe each step in a trajectory independently when providing feedback on
agent behaviour. In this work, we remove this assumption, extending RM to capture
temporal dependencies in human assessment of trajectories. We show how RM can
be approached as a multiple instance learning (MIL) problem, where trajectories
are treated as bags with return labels, and steps within the trajectories are instances
with unseen reward labels. We go on to develop new MIL models that are able to
capture the time dependencies in labelled trajectories. We demonstrate on a range
of RL tasks that our novel MIL models can reconstruct reward functions to a high
level of accuracy, and can be used to train high-performing agent policies.

1 Introduction

There is growing consensus around the view that aligned and beneficial AI requires a reframing
of objectives as being contingent, uncertain, and learnable via interaction with humans [35]. In
reinforcement learning (RL), this proposal has found one formalisation in reward modelling (RM):
the inference of agent objectives from human preference information such as demonstrations, pairwise
choices, approval labels, and corrections [29]. Prior work in RM typically assumes that a human
evaluates the return (quality) of a sequential trajectory of agent behaviour by summing equal and
independent reward assessments of instantaneous states and actions, with the aim of RM being
to reconstruct the underlying reward function. However, in reality the human’s experience of a
trajectory is likely to be temporally extended (e.g., via a video clip [12] or real-time observation),
which opens the door to dependencies between earlier events and the assessment of later ones. The
independence assumption may be both psychologically unrealistic given human memory limitations
[26], and technically naïve given the difficulty of building complete instantaneous state representations
[25]. We thus seek to generalise RM to allow for temporal dependencies in human evaluation, by
postulating hidden state information that accumulates over a trajectory. Reconstruction of the human’s
preferences now requires the modelling of hidden state dynamics alongside the reward function itself.

In tackling this generalised problem, we identify a structural isomorphism between RM (specifically
from trajectory return labels) and the established field of multiple instance learning (MIL) [10].
Trajectories are recast as bags and constituent state-action pairs as instances, which collectively
contribute to labels provided at the bag level by interacting in potentially complex ways. This
mapping inspires a range of novel MIL model architectures that use long short-term memory (LSTM)
modules [19] to recover the hidden state dynamics, and learn instance-level reward predictions from
return-labelled trajectories of arbitrary length. In experiments with synthetic oracle labels, we show
that our MIL RM models can accurately reconstruct ground truth hidden states and reward functions
for non-Markovian tasks, and can be straightforwardly integrated into RL agent training to achieve
performance matching, or even exceeding, that of agents with direct access to true hidden states and
rewards. We then apply interpretability analysis to understand what the models have learnt.

∗Equal contribution
†University of Southampton, United Kingdom; {J.A.Early,C.Evers,sdr1}@soton.ac.uk
‡University of Bristol, United Kingdom; tom.bewley@bristol.ac.uk
§The Alan Turing Institute, United Kingdom

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Our contributions are as follows:

1. We generalise RM to handle non-Markovian rewards that depend on hidden features of the
environment or the psychology of the human evaluator in addition to visible states/actions.

2. We identify a structural connection between RM and MIL, creating the opportunity to
transfer concepts and methods between the two fields.

3. We propose novel LSTM-based MIL models for this generalised RM problem, and develop
interpretability techniques for understanding and verifying the learnt reward functions.

4. We compare our proposed models to existing MIL baselines on five non-Markovian tasks,
evaluating return prediction, reward prediction, robustness to label noise, and interpretability.

5. We demonstrate that the hidden state and reward predictions of our MIL RM models can be
used by RL agents to solve non-Markovian tasks.

The remainder of this work is as follows. Section 2 discusses related work in RM and MIL, Section
3 gives a formal problem definition and describes our MIL-inspired methodology, and Section 4
presents our experiments and results. We discuss key findings in Section 5, and Section 6 concludes.
All of our source code is available in a public repository.1

2 Background and Related Work

Reward Modelling RM [29] aims to infer a reward function from revealed human preference
information such as demonstrations [32], pairwise choices [12], corrections [4], good/bad/neutral
labels [33], or combinations thereof [24]. Most prior work assumes a human evaluates a trajectory by
summing independent rewards for each state-action pair, but in practice their experience is likely to
be temporally extended (e.g., via a video clip), creating the opportunity for dependencies to emerge
between earlier events and the assessment of later ones. As noted by Chan et al. [11] and Bewley
and Lecue [8], such dependencies may arise from cognitive biases such as anchoring, prospect bias,
and the peak-end rule [26], but they could equally reflect rational drivers of human preferences not
captured by the state representation. Some efforts have been made to model temporal dependencies,
such as a discrete psychological mode which evolves over consecutive queries about hypothetical
trajectories [6], or a monotonic bias towards more recently-viewed timesteps due to human memory
limitations [28]. Elsewhere, Shah et al. [36] use human demonstrations and binary approval labels
to learn temporally extended task specifications in logical form. In comparison to these restricted
examples, our work provides a more general approach to capturing temporal dependencies in RM.

Non-Markovian Rewards In the canonical RL problem setup of a Markov decision process (MDP),
rewards depend only on the most recent state-action pair. In a non-Markovian reward decision process
(NMRDP) [2], rewards depend on the full preceding trajectory [2]. NMRDPs can be expanded into
MDPs (and thus solved by RL) by augmenting the state with a hidden state that captures all reward-
relevant historical information, but this is typically not known a priori. Data-driven approaches to
learning NMRDP expansions [21] often make use of domain-specific propositions and temporal logic
operators [3, 39, 41]. Outside of the RM context, recurrent architectures such as LSTMs have been
used in NMRDPs to reduce reliance on pre-specified propositions [23]. They also have a long history
of use in partially observable MDPs, where dynamics are also non-Markovian [5, 17, 46].

Multiple Instance Learning In MIL [10], datasets are structured as collections of bags Xi ∈ X,
each of which is comprised of instances {xi

1, . . . , x
i
k} and has an associated bag-level label Yi and

instance-level labels {yi1, . . . , yik}. The aim is to construct a model that learns solely from bag labels;
instance labels are not available during training, but may be used later to evaluate instance-level
predictions. The simplest MIL approaches assume that instances are independent and that the bag is
unordered, but models exist for capturing various types of instance dependencies [22, 42, 45]. LSTMs
have emerged as a natural architecture for modelling temporal dependencies among ordered bags,
where they can be utilised to aggregate instance information into an overall bag representation. They
have previously been applied to standard MIL benchmarks [44], as well as specific problems such as
Chinese painting image classification [30]. As we discuss in Section 3.2, these existing models are
somewhat unsuitable for use in RM, leading us to propose our own novel model architectures.

1https://github.com/JAEarly/MIL-for-Non-Markovian-Reward-Modelling
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3 Methodology

In this section, we present the core methodology of our work. We formally define the new paradigm
of non-Markovian RM (Section 3.1), before drawing on the MIL literature to propose models that
can be used to solve this generalised problem (Section 3.2). We then go on to discuss how we can use
our learnt RM models for training RL agents on non-Markovian tasks (Section 3.3).

3.1 Formal Definition of Non-Markovian RM

Consider an agent interacting with an environment with Markovian dynamics. At discrete time t,
the current environment state st ∈ S and agent action at ∈ A condition the next environment state
st+1 according to the dynamics function D : S × A → ∆S. A trajectory ξ ∈ Ξ is a sequence of
state-action pairs, ξ = ((s0, a0), ..., (sT−1, aT−1)), and a human’s preferences about agent behaviour
respect a real-valued return function G : Ξ → R. In traditional (Markovian) RM, return is assumed
to decompose into a sum of independent rewards over state-action pairs, G(ξ) =

∑T−1
t=0 R(st, at),

and the aim is to reconstruct R′ ≈ R from possibly-noisy sources of preference information. In our
generalised non-Markovian model, we consider the human to observe a trajectory sequentially and
allow for the possibility of hidden state information that accumulates over time and parameterises R:

G(ξ) =

T−1∑
t=0

R(st, at, ht+1) where ht+1 = δ(ht, st, at), (1)

δ is a hidden state dynamics function, and h0 is a fixed value for the initial hidden state. Reconstruction
of the human’s preferences now requires the estimation of δ′ ≈ δ and h′

0 ≈ h0 alongside R′ ≈ R.
We visualise the difference between Markovian and non-Markovian RM in Figure 1.

Figure 1: In Markovian RM, the human is assumed to sum (+) over independent and equal reward
assessments for the state-action pairs in a trajectory. In non-Markovian RM, per-timestep rewards
additionally depend on hidden state information h that accumulates over time.

The hidden state h may be interpreted as (1) an external feature of the environment that is detectable
by the human but excluded from the state, or (2) a psychological feature of the person themselves,
through which their response to each new observation is influenced by what they have seen already.
The latter framing is more interesting for our purposes, and connects to the psychological literature
on human judgement, memory, and biases [26]. In practice, hidden state information may encode the
human’s preferences about the order in which a sequence of behaviours should be performed, the
effect of historic observations on their subjective mood (and in turn on their reward evaluations), or
cognitive biases which corrupt the way they aggregate instantaneous rewards into trajectory-level
feedback. All of these complications are liable to arise in practical RM applications, but cannot be
handled when the Markovian reward assumption is made. Appendix B elaborates on this discussion,
presenting motivating use cases and limitations of non-Markovian RM.

In this work, we focus on one of the simplest and most explicit forms of preference information: direct
labelling of returns G(ξi) for a dataset of N trajectories {ξi}Ni=1. We aim to solve the reconstruction
problem by minimising the squared error in predicted returns:

argmin
R′,δ′,h′

0

N∑
i=1

(
G(ξi)−

Ti−1∑
t=0

R′(si,t, ai,t, h
′
i,t+1)

)2
where

h′
i,0 = h′

0

h′
i,t+1 = δ′(h′

i,t, si,t, ai,t)
∀i ∈ {1..N}.

(2)
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We observe that Equation 2 perfectly matches the definition of a MIL problem. Each trajectory ξi
can be considered as an ordered bag of instances ((si,0, ai,0), ..., (si,Ti−1, ai,Ti−1)) with unobserved
instance labels R(si,t, ai,t, hi,t+1), an observed bag label G(ξi) =

∑T−1
t=0 R(si,t, ai,t, hi,t+1), and

temporal instance interactions via the changing hidden state hi,t. This correspondence motivates us
to review the space of existing MIL models (specifically those that model temporal dependencies
among instances) to provide a starting point for developing our non-Markovian RM approach.

3.2 MIL RM Architectures

The MIL literature contains a variety of architectures for handling temporal instance dependencies,
including graph neural networks (GNNs) [42] and transformers [37]. While effective for many
problems, such architectures are an unnatural fit to non-Markovian RM as they contain no direct
analogue of a hidden state h′ carried forward in time, instead handling dependencies via some variant
of message-passing between instances. LSTM-based MIL architectures [30, 44] provide a more
promising starting point since they explicitly represent both h′ (implemented as a continuous-valued
vector) and its temporal dynamics function δ′ (a particular arrangement of gating functions).
Starting from an existing LSTM-based MIL architecture, we propose two successive extensions as
well as a naïve baseline that cannot handle temporal dependencies. All four architectures include a
feature extractor (FE) for mapping state-action pairs into feature vectors and a head network (HN) that
outputs predictions. These architectures are depicted in Figure 2. Note we use the same nomenclature
as [10] and [45]: embedding space approaches produce an overall bag representation that is used for
prediction, while instance space approaches produce predictions for each instance in the bag and
then aggregate those predictions to a final bag prediction.

Base Case: Embedding Space LSTM This architecture, proposed by Wang et al. [44], processes
all instances in a bag sequentially and uses the final LSTM hidden state as a bag embedding. This is
fed into the HN, which predicts the bag label g′ (return in the RM context). Although this model can
account for temporal dependencies, it does not inherently produce instance predictions (rewards),
which require some post hoc analysis to recover. While methods exist for computing instance
importance values as a form of interpretability [13], these are not guaranteed to sum to the bag label
as stipulated by the reward-return formulation. We propose a new method: at time t, the predicted
reward r′t is calculated by feeding the LSTM hidden state at times t−1 and t into the HN to obtain two
partial bag labels/returns g′t−1 and g′t, and computing the difference of the two, i.e., r′t = g′t − g′t−1.
We define g′0 = 0. This post hoc computation is shown in purple in Figure 2.

Extension 1: Instance Space LSTM The post hoc computation of reward proposed above is rather
inelegant and often yields poor predictions (see Section 4 and Appendix D), likely because rewards
are never computed or back-propagated through during learning. This leads us to propose an improved
architecture, which is structurally similar but differs in how network outputs are mapped onto RM
concepts. The change places reward predictions on the back-propagation path. Given the LSTM
hidden state at time t, the output of the HN is taken to be the instantaneous reward r′t rather than the
partial return. Rewards are computed sequentially for all timesteps in a trajectory and summed to
give the return prediction g′. We thereby obtain a model that both handles temporal dependencies
and produces explicitly-learnt reward predictions.

Extension 2: Concatenated Skip Connection (CSC) Instance Space LSTM In both of the
preceding architectures, the LSTM hidden state h′

t is the sole input to the HN. This requires h′
t to

represent all reward-relevant information from both the true hidden state ht and the latest state-action
pair st−1, at−1 to achieve good performance. To lighten the load on the LSTM, we further extend the
Instance Space LSTM model with a skip connection [18, 20] which concatenates the FE output onto
the hidden state before feeding it to the HN. In principle, this should allow the hidden state to solely
focus on representing temporal dependencies. As well as improving RM performance compared to
an equivalent model without skip connections, we find in Section 5.1 that this modification tends to
yield more interpretable and disentangled hidden state representations.

Markovian Baseline: Instance Space Neural Network (NN) To quantify the cost of ignoring
temporal dependencies, we also run experiments with a baseline architecture that feeds only the FE
output for each state-action pair into the HN, yielding fully-independent reward predictions which are
summed to give the return prediction. This independent predict-and-sum architecture has precedence
in both MIL, where it is referred to as mi-Net by Wang et al. [45], and in RM, where it embodies the
de facto standard Markovian reward assumption [12].
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Figure 2: MIL architectures used in this work. FE = feature extractor; HN = head network; (+) =
scalar summation; (−) = scalar subtraction; (C) = vector concatenation.

3.3 Training Agents with Non-Markovian RM Models

In this work, as in RM more widely, we are not solely interested in learning reward functions to
represent human preferences, but also in the downstream application of rewards to train agents’
action-selection policies. After optimising our LSTM-based models on offline trajectory datasets, we
deploy them at the interface between conventional RL agents and their environments. Going beyond
prior work, where a learnt model is used to either generate a reward signal for an agent to maximise
[12] or augment its observed state representation with hidden state information [21], our models serve
a dual role, providing both rewards and state augmentations. Figure 3 describes this setup in detail.

Figure 3: During RL agent training, our LSTM MIL models sit at the centre of the agent-environment
loop by which states st and actions at are exchanged. We focus on episodic tasks, where the
environment state periodically resets. The LSTM hidden state is simultaneously reset to h′

0 at the
start of an episode, then is iteratively updated over time t given the state-action pairs st, at. At time t
the environment state st is augmented with the post-update hidden state h′

t+1 by concatenation, and
this augmented state is observed by the agent. st, at and h′

t+1 are used to compute a reward r′t+1
following the relevant steps from Figure 2, and the reward is also sent to the agent. In the language
of NMRDPs, the hidden state augmentation expands the agent’s learning problem into an MDP by
providing the additional information required to make the rewards Markovian. Note that unlike
during learning of the MIL models, return predictions are never required.

4 Experiments and Results

After initially validating our models on several toy datasets (see Appendix D), we focus the bulk of
our evaluation on five RL tasks. As running experiments with people is costly, we use the standard
RM approach of generating synthetic preference data (here trajectory return labels) using ground
truth oracle reward functions [12] (for a discussion comparing the use of oracle and human labels,
see Appendix C). Unlike prior work, these oracle reward functions depend on historical information
that cannot be recovered from the instantaneous environmental state, thereby emulating the disparity
between the information that a human evaluator possesses while viewing a trajectory sequentially,
and that contained in the state alone. In this section, we introduce our RL tasks (Section 4.1), evaluate
the quality of reward reconstruction (Section 4.2), investigate the use of MIL RM models for agent
training (Section 4.3), and evaluate their robustness to label noise (Section 4.4).
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4.1 RL Task Descriptions

We apply our methods to five non-Markovian RL tasks, the first four of which are within a common
2D navigation environment and are specifically designed to capture different kinds of non-Markovian
structure. Each environment has two spawn zones and an episode time limit of T = 100; see Figure
4. In each case, the environment state contains the x, y position of the agent only. The tasks involve
moving into a treasure zone, contingent on some hidden information that cannot be derived from the
current x, y position, but is instead a function of the full preceding trajectory. In the first two cases the
hidden information varies with time only, but in the other two it depends on the agent’s past positions.
Timer For times t ≤ 50 the treasure gives a reward of −1 for each timestep that the agent spends
inside it, before switching to +1 thereafter. Since time is not included in the environment state,
recovering the reward function by only observing the agent’s current position is impossible.
Moving The Timer task only captures a binary change, therefore we generalise it to be continuous.
In this case, the treasure zone oscillates left and right at a constant speed. Again, this is not captured
in the environment state, but can be recovered if the length of the preceding trajectory is known.
Key Before reaching the treasure zone, the agent must first enter a second zone to collect a key;
otherwise it receives 0 reward. As the key’s status is not captured in the environment state, a temporal
dependency exists between the agent’s past positions and the reward it obtains from the treasure.
Charger We generalise the Key task by replacing the key zone with a charging zone that builds up
the amount of reward the agent will receive when it reaches the treasure. The reward now depends
not only on whether the agent visits a zone (binary), but how long it spends there (continuous).

For the fifth and most complex task, we adapt Lunar Lander from OpenAI Gym [9], adding the
condition that the lander should take off again and stably hover after 50 timesteps on the landing
pad. This is analogous to the Charger task but with a larger state-action space and longer episodes
(T = 500). Further details on the tasks and MIL model hyperparameters are given in Appendix E.

Spawn
zones

Treasure:
-1  when t < 50
+1 when t > 50

Timer Moving Key

Constant +1
but oscillates
horizontally

0 without key
+1 with key

Key:
collected

when entered
Charger

+1 × charge level

Charging zone:
increments charge

by 0.02 per step
(max = 1)

Lunar Lander

Landing pad:
+1 when pad < 50
0 when pad > 50,

increments pad
by 1 per step

Hover zone:
0 when pad < 50
+1 when pad > 50

Spawn zone

Figure 4: Visualisations of the five non-Markovian RL tasks.

An important design decision for the LSTM-based models is the size of the hidden state, as it affects
both performance and interpretability. For all the above tasks, we know a priori that it is possible to
capture the temporal dependencies in at most two dimensions, so we constrain our models to use 2D
hidden states. This allows us to visualise and interpret the hidden representations in Section 5.1.

4.2 Reward Modelling Results

Below we discuss the performance of the reward reconstruction for the different MIL RM models on
our five RL tasks. For each task, we generate initial trajectories to form our MIL RM datasets (see
Appendix E). Results from MIL models trained on these trajectories are given in Table 1. We observe
that the CSC Instance Space LSTM model is on average the best-performing model for predicting
both trajectory returns and timestep rewards. While the Embedding Space LSTM model performs
best at predicting return on the Key and Lunar Lander tasks (as is not constrained to the summation
of reward predictions as in the other architectures), it struggles on the reward metric (due to the use
of a proxy post hoc method). As it is important for these models to achieve strong performance on
both return and reward prediction, the Instance Space LSTM and CSC Instance Space LSTM models
are better candidates than the Embedding Space LSTM. Also note that the Instance Space NN that
serves as our Markovian RM baseline performs very poorly on return prediction, indicating that these
tasks indeed cannot be learnt without modelling temporal dependencies.
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Table 1: MIL RM return (top) and reward (bottom) results, using ten repeats. The Lunar Lander
results are the average test set MSE of the top five models (with scaling; see Appendices E.4 and
E.5). For the other tasks, each measurement is the test set MSE averaged over all ten repeats. The
standard errors of the mean are given, and the Lunar Lander reward results are scaled by 1× 10−5.

Model Timer Moving Key Charger Lunar Lander

Instance Space NN 130.8 ± 1.530 22.24 ± 0.441 7.764 ± 0.232 7.783 ± 0.214 2.297 ± 0.058
Embedding Space LSTM 3.151 ± 0.662 13.04 ± 0.899 0.360 ± 0.055 0.689 ± 0.124 0.416 ± 0.048
Instance Space LSTM 7.313 ± 2.627 11.13 ± 1.169 0.488 ± 0.062 0.628 ± 0.126 1.223 ± 0.431
CSC Instance Space LSTM 0.605 ± 0.166 5.307 ± 0.299 0.391 ± 0.083 0.125 ± 0.012 0.501 ± 0.035

Instance Space NN 0.217 ± 0.001 0.068 ± 0.000 0.011 ± 0.000 0.025 ± 0.000 7.484 ± 0.861
Embedding Space LSTM 101.8 ± 60.35 3.033 ± 0.715 0.010 ± 0.008 0.037 ± 0.016 120.2 ± 24.27
Instance Space LSTM 0.263 ± 0.038 0.069 ± 0.005 0.002 ± 0.000 0.005 ± 0.001 9.336 ± 3.116
CSC Instance Space LSTM 0.073 ± 0.016 0.026 ± 0.002 0.001 ± 0.000 0.001 ± 0.000 7.365 ± 1.032

4.3 RL Training Results

Following the method in Section 3.3, we then train Soft Actor-Critic [15] (Lunar Lander) and Deep
Q-Network [31] (all others) RL agents to optimise the rewards learnt by the LSTM-based models.
We evaluate agent performance in a post hoc manner by passing its trajectories to the relevant oracle.
This evaluation provides an end-to-end measure of both reward reconstruction and policy learning,
and is standard in RM [12]. We baseline against agents trained with access to: a) the oracle reward
function and the oracle hidden states, and b) just the oracle reward function without hidden states (i.e,
using only the environment states that are missing information). In Figure 5, we observe that the CSC
Instance Space LSTM model enables the best RL agent performance, coming closest to the oracle.
Interestingly, for the Timer and Lunar Lander tasks, the CSC Instance Space LSTM model actually
outperforms the use of the oracle, suggesting that the learnt hidden states are easier to exploit for
policy learning than the raw oracle state (we investigate what these models have learnt in Section
5.1). Note the poor performance of agents trained without hidden state information, which aligns
with expectations. For further details on agent training, see Appendix F.

Oracle (without hidden state) Embedding Space LSTM Instance Space LSTM CSC Instance Space LSTMOracle
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Figure 5: RL performance for different training configurations on our five RL tasks. The results given
are the medians and interquartile ranges. For the oracle results, we trained ten repeats, and for the
MIL-LSTM results, we performed one RL training run for each MIL-LSTM model repeat.

For Lunar Lander, we perform a deeper analysis of RL training performance, by decomposing the
oracle return curves from Figure 5 into the four reward components Rpad, Rno_contact, Rhover and
Rshaping (see Appendix E.1 for definitions). The decomposed curves, shown in Figure 6, allow us
to diagnose the origins of the performance disparity between runs using different LSTM model
architectures. There is relatively little separation in performance on the shaping reward Rshaping and
pad contact reward Rpad (for the latter, all runs end up reliably achieving the maximum possible
reward of 49, although those using Embedding Space LSTM models require significantly more
training time). This suggests that all models have been able to recover these components with
reasonable fidelity. However, there are marked differences in performance on Rno_contact and Rhover
(the components relating to the second task stage of taking off and moving to the hover zone). For
Rhover, runs using the CSC Instance Space LSTM peak at a return of around 200 from this component,
while those using the other two models almost never achieve non-zero return, i.e., only the RL agents
trained using the CSC Instance Space LSTM RM models reliably learn to hover. This indicates that
the models have learnt very different representations of reward and hidden state dynamics, which are
effective for policy learning in the case of the CSC model, and highly ineffective for the others.
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Observe that runs using CSC Instance Space LSTM models outperform those with direct access
to the ground truth oracle on all components, and most markedly on Rhover. This counterintuitive
finding suggests that this model reliably learns hidden state representations that are easier for RL
agents to leverage for policy learning than the ground truth ones, and potentially that certain errors in
the reward prediction may actually be beneficial for the purpose of helping agents to complete the
underlying task (especially the hovering stage). In typical RL parlance: the model’s reward function
appears to be better shaped than the ground truth. The potential origins of this better-than-oracle
phenomenon are investigated in Figure A5 (Appendix G).

Embedding Space LSTM Instance Space LSTM CSC Instance Space LSTMOracle
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Figure 6: Decomposed oracle return curves for Lunar Lander.

4.4 Robustness to Mislabelling

In this work, the return labels are provided by oracles rather than real people. When using human
evaluators, there is likely to be uncertainty in the labels, and it is important to evaluate model
robustness against such noise [28]. We implement noise through label swapping [34]; this ensures
the marginal label distribution remains the same and does not include out-of-distribution returns.
In Figure 7, we show how both return and reward prediction decay with noise levels increasing
from 0 (no labels swapped) to 0.5 (half swapped). The rate, smoothness, and consistency (across
three repeats) of this decay varies between tasks, with decays in return prediction generally being
smoother. We observe that the CSC Instance Space LSTM model remains the strongest predictor of
both return and reward in the majority of cases, indicating general robustness and providing evidence
that the model should still be effective with imperfect human labels. On all metrics aside from Timer
reward loss (where the mix of negative and positive rewards makes the effect of noise especially
unpredictable), a noise level of at least 0.3 is required for the CSC Instance Space LSTM model to
perform as badly as the Instance Space NN baseline does with no noise at all.
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Figure 7: Performance of MIL RM models subject to label noise. We omit the Embedding Space
LSTM reward losses as they are very high, and the Lunar Lander task due to long training times.

5 Discussion

In this section, we seek to interpret our MIL RM models, analysing the distribution of learnt hidden
states (Section 5.1) as well as their temporal dynamics over the course of a trajectory (Section 5.2).
Finally, in Section 5.3 we discuss the limitations of this work and potential areas for future work.
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5.1 Hidden State Analysis

The primary purpose of RM is to perform accurate reward reconstruction to facilitate agent training,
but there is a secondary opportunity to improve understanding of human preferences through inter-
pretability analysis of the learnt models. We can directly visualise the 2D LSTM hidden states of our
oracle experiments, which enables a qualitative comparison of the various model architectures (see
Figure 8). Visualising the hidden states with respect to the temporal dependencies indicates that the
CSC Instance Space LSTM model has learnt insightful hidden state representations. Breaking down
the CSC Instance Space LSTM model hidden embeddings: for the Timer task, time is represented
along a curve, with a sparser representation around t = 50 (the crossover point when the treasure
becomes positive). For the Moving task, time is similarly captured along with an additional notion of
the change in treasure direction from right to left. For the Key task, the binary state of no key vs key
is separated, with additional partitioning based on x position, denoting the two different start points
of the agent. In the Lunar Lander task, the model has learnt a strong separation between states either
side of the crossover point when the time on the pad is equal to 50, with high sparsity around the
crossover point. In comparison, the Embedding and Instance Space LSTM models have not learnt as
sparse a representation. We discuss the Charger task in Section 5.2.
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Figure 8: Learnt hidden state embeddings for our MIL RM models. For each model and task, we
categorise the hidden state embeddings depending on the true environment state (first column for
each model). In and Out environments states indicate whether the agent is in the treasure zone or
not, and for the Moving task, Left and Right indicate the direction in which the goal is currently
moving. We also provide labelling based on temporal information (second column for each model).
Furthermore, we include markers to indicate the hidden states for the centres of the agent spawn
zones. In each case, we elected to use the best-performing repeat for each model as assessed by the
reward reconstruction (see Table 1). Note, for the Key task, as the temporal information is captured in
the state categorisation (No Key vs Key), we use the second column to show the relationship between
the hidden embeddings and the agent’s x position.

5.2 Trajectory Probing

We further interpret our models by visualising the learnt reward with respect to the environment state,
and by using hand-specified probe trajectories to verify that the learnt hidden state transitions mimic
the true transitions. We present the above for the CSC Instance Space LSTM model on the Charger
task in Figure 9 (Appendix G contains similar figures for all other tasks). The top row shows that the
model has correctly learnt the relationships between position, charge, and reward (reward increases
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in the treasure zone as charge increases). From the probes, we can see how the charge level can be
recovered from the hidden states. We also note that the inflection point between under-charging and
over-charging is captured, i.e., this is where the optimal charge level lies, subject to some noise based
on where the agent starts in the spawn zones. Furthermore, with the Challenging probe, we observe
that the learnt hidden states align with the agent moving in and out of the charging zone.
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Figure 9: Interpretability for the CSC Instance Space LSTM model on the Charger task. Top: the
learnt relationship between agent position, charge level, and reward. Middle/bottom: Four probe
trajectories demonstrating hidden state transitions as the trajectory progresses. Optimal: best possible
return (charge to sufficient level then maximise time in treasure). Over-charged: continuing to charge
after maximum charge of 1 is reached. “xn” labels indicate the agent remains in a position for n
timesteps. As in Figure 8, we use the best-performing model according to reward reconstruction.

5.3 Limitations and Future Work

Although we analyse the performance of our methods in the presence of noisy labels in Section 4.4, a
major area of future work is to apply our methods to human labelling (for a discussion of this, see
Appendix C). Another area of future work involves more complex environments, for example the use
of tasks with image observations, similar to the Atari environments in Open AI Gym [9]. Furthermore,
we perform RM from either an offline dataset or from only one RL training iteration; an iterative
bootstrapping approach with multiple RL + RM training iterations could lead to improved RL results.
There are also limitations with our MIL RM approach for the Lunar Lander task; see Appendix E.5
for details and suggestions for future work. More generally, we hope that our identification of the
link between RM and MIL may inspire a bidirectional transfer of tools and techniques.

6 Conclusion

We posed the problem of non-Markovian RM, which removes an unrealistic assumption about how
humans evaluate temporally extended agent behaviours. After identifying an isomorphism between
RM and MIL, we proposed and evaluated novel MIL-inspired models that allow us to reconstruct
non-Markovian reward functions, augment agent training, and interpret their learnt representations.
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