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Abstract

Data continuously emitted from industrial ecosystems such as social or e-commerce
platforms are commonly represented as heterogeneous graphs (HG) composed
of multiple node/edge types. State-of-the-art graph learning methods for HGs
known as heterogeneous graph neural networks (HGNNs) are applied to learn
deep context-informed node representations. However, many HG datasets from
industrial applications suffer from label imbalance between node types. As there
is no direct way to learn using labels rooted at different node types, HGNNs have
been applied on only a few node types with abundant labels. We propose a zero-
shot transfer learning module for HGNNs called a Knowledge Transfer Network
(KTN) that transfers knowledge from label-abundant node types to zero-labeled
node types through rich relational information given in the HG. KTN is derived
from the theoretical relationship, which we introduce in this work, between distinct
feature extractors for each node types given in a HGNN model. KTN improves
performance of 6 different types of HGNN models by up to 960% for inference on
zero-labeled node types and outperforms state-of-the-art transfer learning baselines
by up to 73% across 18 different transfer learning tasks on HGs.

1 Introduction

Large technology companies commonly maintain large relational datasets, derived from their internal
logs, that can be represented as or joined into a massive heterogeneous graph (HG) composed of
nodes and edges with multiple types (30). For instance, in e-commerce networks, there are product,
user, and review nodes, all interconnected by many edge types that represent forms of interactions
such as spending (user-product), reviewing (user-review), and reviews-of (product-review). To learn
powerful features representing the complex multimodal structure of HGs, various heterogeneous
graph neural networks (HGNN) have been proposed (15; 26; 35; 43).

A common issue in these industrial applications of HGNNs is the label imbalance among different
node types. For instance, publicly available content nodes – such as those representing video, text,
and image content – are abundantly labelled, whereas labels for other types (such as user or account
nodes) may be much more expensive to collect (or even not available, e.g. due to privacy restrictions).
This means that in most standard training settings, HGNN models can only learn to make good
inferences for a few label-abundant node types, and can usually not make any inferences for the
remaining node types, given the absence of any labels for them.

If there is a pair of label-abundant and zero-labeled node types which share an inference task, could we
transfer knowledge between them? One body of work has focused on transferring knowledge between
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nodes of thesametype from twodifferentHGs (i.e., graph-to-graph transfer learning) (16; 40).
However, these approaches are not applicable in many real-world scenarios for three reasons. First,
any external large-scale HG that could be used in a graph-to-graph transfer learning setting would
almost surely be proprietary. Second, even if practitioners could obtain access to an external industrial
HG, it is unlikely the distribution of that (source) graph would match their target graph well enough
to apply transfer learning. Finally, node types suffering label scarcity are likely to suffer the same
issue on other HGs (e.g. user nodes).

In this paper, we introduce a zero-shot transfer learning approach for asingleHG (assumed to be
fully-owned by the practitioners), transferring knowledge from labelled to unlabelled node types.
This setting is distinct from any graph-to-graph transfer learning scenarios, since the source and target
domains exist in the same HG dataset, and are assumed to have different node types. Our model
utilizes the shared context between source and target node types; for instance, in the e-commerce
network, the latent (unknown) labels of user nodes can be strongly correlated with spending/reviewing
patterns that are encoded in the cross-edges between user nodes and product/review nodes. We propose
a novel zero-shot transfer learning problem for this HG learning setting as follows:
Informal Problem De�nition 1. Zero-shot cross-type transfer learning running on a HG:
Given a heterogeneous graphGwith node typesf s; t ; � � � g with abundant labels for source types but
no labels for target typet , can we train HGNNs to infer the labels of target-type nodes?
A naïve solution to this problem would be to re-use an HGNN pre-trained on the source nodes for
target node inference, given that both domains exist in the same HG. However, as we show in our
paper, HGNNs have distinct parameter sets for each node type (15), edge type (26), and meta-path
type (8; 35). These facts cause HGNNs to learn entirely differentfeature extractorsfor nodes and
edges of different types – in other words, the �nal embeddings for source and target nodes are
computed by different sets of parameters in HGNNs. Thus, a classi�er pre-trained on source nodes
will fail to perform well on inference tasks for target nodes. The �eld of domain adaptation (DA)
targets this setting, seeking to transfer knowledge from a source domain with abundant labels to a
target domain which lacks them (9; 19; 20; 27). However, distinct feature extractors across node
types in HGNNs break a standard assumption of DA setting, namely that source and target domains
share the same feature extractors (e.g., CNNs for both source and target image domains). As we
demonstrate in this paper, in our problem setting, DA approaches fail to achieve the outstanding
performance they are known for in computer vision and NLP.

In our work, we �rst dissect the gradient path of HGNN models to see how feature extractors are
designed independently for each node type, and some empirical consequences. Then we theoretically
analyze how feature extractors across node types relate to each other and how their output distributions
could be represented in terms of each other. We model this theoretical relationship between two
feature extractors as a Knowledge Transfer Network (KTN) which can be optimized to transform
target embeddings to �t the source domain distribution. We perform an extensive evaluation of our
method on 18 different transfer learning tasks on HGs where we compare against state-of-the-art
domain adaptation baselines. Additionally, in order to understand which environments are ideal for
transferring knowledge between different node types for HGs, we formulate a synthetic heterogeneous
graph generator that allows us to study the sensitivity of these methods.

Our main contributions are:

• Novel and practical problem de�nition: To the best of our knowledge,KTN is the �rst zero-shot
cross-type transfer learning method running on a heterogeneous graph — transfer knowledge
across different node types within a heterogeneous graph.

• Generality: KTN is a principled approach analytically induced from the architecture of HGNNs,
thus applicable to any HGNN models, showing up to960%performance improvement for zero-
labeled node inference across6 different HGNN models.

• Effectiveness:We show thatKTN outperforms state-of-the-art domain adaptation methods, being
up to73:3%higher in MRR on18different transfer learning tasks on HGs.

• Sensitivity Analysis: We provide a HG generator model to analyze how the node attribute and
edge distributions of HGs affect the performance of KTN and other methods on the task.

2 Related Work

Various transfer learning problems have been de�ned on the graph domain. (21; 22; 38; 42) construct
synthetic graphs from unstructured data and transfer knowledge over the graphs using GNNs. On
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the other hand, (13; 14; 24; 37) focus on extracting knowledge from the existing graph structures.
They pretrain a GNN model on a source graph and re-use the model on a target graph. While these
methods focus on homogeneous graphs, (16; 40) transfer HGNNs across different HGs. However,
none of them can be directly applied to our cross-type transfer learning problem running on a single
HG. Here we cover two classes of learning approaches that are related to our problem. As HGNNs
are the models to which our method can be applied, we cover them extensively in Section 3.

Zero-shot domain adaptation (DA) transfers knowledge from a source domain with abundant
labels to a target domain which lacks them. Zero-shot DA can be categorized into three groups
— MMD-based methods, adversarial methods, and optimal-transport-based methods. MMD-based
methods (18; 20; 29) minimize the maximum mean discrepancy (MMD) (11) between the mean
embeddings of two distributions in reproducing kernel Hilbert space. Adversarial methods (9; 19)
are motivated by theory in (2; 3) suggesting that a good cross-domain representation contains no
discriminative information about the origin of the input. They learn domain-invariant features by
a min-max game between the domain classi�er and the feature extractor. Optimal transport-based
methods (27) estimate the empirical Wasserstein distance (25) between two domains and minimizes
the distance in an adversarial manner. All three categories rely on two networks — a feature extractor
network and a task classi�er network. Adversarial and OT-based methods use an additional domain
classi�er network. Due to the assumption that source and target domains have the same modality2,
the standard DA setting assumes identical feature extractors across domains. More descriptions can
be found in Appendix A.9.

Label propagation (LP) approaches (e.g., (45)) use message-passing to pass each node's label to its
neighbors according to normalized edge weights. LP relies on only a graph's edges, and is therefore
easily applied to a heterogeneous graph – labels are simply propagated across edges, regardless of
type. In this paper we also evaluate a similarly-simple baseline, embedding propagation (EP). Similar
to LP, EP recursively propagates source embeddings (computed using source labels) until they reach
the target domain. EP exploits both node attribute information and the node adjacencies, but only
uses the source node embeddings.

3 Preliminaries

In this section we review heterogeneous graphs and heterogeneous graph neural networks (HGNNs).

3.1 Heterogeneous graph

Heterogeneous graphs (HGs) are an important abstraction for modeling the relational data of multi-
modal systems. Formally, a heterogeneous graph is de�ned asG = ( V; E; T ; R) where the node set
V; the edge setE consisting of ordered tupleseij := ( i; j ) with i; j 2 V , whereeij 2 E iff an edge
exists fromi to j ; the set of node typesT with associated map� : V 7! T ; the set of relation types
R with associated map� : E 7! R . This �exible formulation allows directed, multi-type edges. We
additionally assume the existence of a node attribute vectorx i 2 X � ( i ) for eachi 2 V , whereXt is
an attribute matrix speci�c to nodes of typet.

3.2 Heterogeneous Graph Neural Networks (HGNN)

Various HGNN models have been proposed (15; 26; 35; 41; 43). Fully-speci�ed HGNN models
have specialized parameters for each node type (15), edge type (26), and meta-path type (8) to most
effectively utilize the complex relationships encoded in the HG data structure. In this paper, we use a
�avor of HGNN known as a Heterogeneous Message-Passing Neural Network (HMPNN) as our base
model on which to demonstrateKTN (thoughKTN can be implemented in almost any HGNN, as
we show in experiments in Section 6). The HMPNN merely extends the standard MPNN (10) by
specializing all transformation and message matrices in each node/edge type. With its generality,
HMPNN is itself a base model for RGCN (26) and HGT (15), and is also widely used as a default
HGNN model in popular GNN libraries (e.g., pyG (7), TF-GNN (6), DGL (34)).

2In our problem, source and target node types could have either (1) different distributions on the same
attribute space or (2) entirely different attribute spaces
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In a HMPNN, for any nodej , the embedding of nodej at thel-th layer is obtained with the following
generic formulation:

h( l )
j = Transform ( l )

�
Aggregate( l ) (E(j ))

�
(1)

whereE(j ) = f (i; j ) 2 E : i; j 2 Vg denotes all the edges which connect (directionally) toj . The
above operations typically involve type-speci�c parameters to exploit the inherent multiplicity of
modalities in heterogeneous graphs. First, we de�ne a linearMessagefunction:

Message( l ) (i; j ) = M ( l )
� (( i;j )) �

�
h( l � 1)

i k h( l � 1)
j

�
(2)

whereM ( l )
r are the speci�c message passing parameters for each edge typer 2 R and each ofL

HMPNN layers. Then de�ningEr (j ) as the set of edges of typer pointing to nodej , theAggregate
function mean-pools messages by edge type, and concatenates:

Aggregate( l ) (E(j )) = k
r 2R

1
jE r ( j ) j

X

e2E r ( j )

Message( l ) (e) (3)

Finally, theTransform function maps the message into a type-speci�c latent space:
Transform ( l ) (j ) = � (W ( l )

� ( j ) � Aggregate( l ) (E(j ))) (4)

whereW ( l )
t are the speci�c transformation parameters for each node typet 2 T and each ofL

HMPNN layers. By stackingL layers, HMPNN outputs highly contextualized �nal node represen-
tations, and the �nal node representations can be fed into another model to perform downstream
heterogeneous network tasks, such as node classi�cation or link prediction.

3.3 Problem de�nition

Using notations de�ned above, we formalize our novel transfer learning problem on HGs.
Problem De�nition 1. Zero-shot cross-type transfer learning running on a HG:
In a given heterogeneous graphG = ( V; E; T ; R) with node attributesX = [ t 2T Xt , assume node
typess andt share a classi�cation taskf (i; y i ) : i 2 Vs; Vt g. During the training phase, using labels
f (i; y i ) : i 2 Vsg only for source-type nodes, we train an HGNN modelf : f(G; X ) = hi to get node
embeddingshi for all nodesi 2 V and a classi�erg : g(hi ) = ŷi to predict labelŝyi from the node
embeddingshi . During the test phase, our task is to predict labelsf (j; y j ) : j 2 Vt g of target-type
nodes where none of labels of target-type nodes were used for training.

4 Cross-Type Feature Extractor Transformations in HGNNs

We de�nef t : G 7! Rd to be the “feature extractor" of a HGNN, which is composed of parameters
participating to map input node attributes of typet into a shared feature spaceRd. In this section, we
derive a strict transformation between feature extractors within a HMPNN. Speci�cally, for any two
nodesi; j with types� (i ) = s and� (j ) = t, we derive an expression forf s in terms off t , and use
that expression to inspire a trainable transfer learning module calledKTN in the following section.
For simplicity, throughout this section we ignore the activation� (�) within theTransform function
in Equation (4).

4.1 Feature extractors in HMPNNs

We �rst reason intuitively about the differences betweenf s andf t whens 6= t, using a toy hetero-
geneous graph shown in Figure 1(a). Consider nodesv1 andv2, noticing that� (1) 6= � (2). Using
HMPNN's equations (2)-(4) from Section 3.2, for anyl 2 f 0; : : : ; L � 1g we have

h( l )
1 = W ( l )

s

h
M ( l )

ss

�
h( l � 1)

3 k h( l � 1)
1

�
k M ( l )

ts

�
h( l � 1)

2 k h( l � 1)
1

�i
(5)

h( l )
2 = W ( l )

t

h
M ( l )

st

�
h( l � 1)

1 k h( l � 1)
2

�
k M ( l )

tt

�
h( l � 1)

4 k h( l � 1)
2

�i
(6)

whereh(0)
j = x j . From these equations, we see thath( l )

1 andh( l )
2 , which are features of different

types, are extracted usingdisjoint sets of model parameters atl-th layer. In a 2-layer HMPNN,
this creates unique gradient backpropagation paths between the two node types, as illustrated in
Figures 1(b)-1(c). In other words, even though the same HMPNN is applied to node typess andt, the
feature extractorsf s andf t have different computational paths. Therefore they project node features
into different latent spaces, and have different update equations during training.
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