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Abstract

We study a practical algorithm for sparse principal component analysis (PCA) of
incomplete and noisy data. Our algorithm is based on the semidefinite program
(SDP) relaxation of the non-convex l1-regularized PCA problem. We provide
theoretical and experimental evidence that SDP enables us to exactly recover the
true support of the sparse leading eigenvector of the unknown true matrix, despite
only observing an incomplete (missing uniformly at random) and noisy version
of it. We derive sufficient conditions for exact recovery, which involve matrix
incoherence, the spectral gap between the largest and second-largest eigenvalues,
the observation probability and the noise variance. We validate our theoretical
results with incomplete synthetic data, and show encouraging and meaningful
results on a gene expression dataset.

1 Introduction

Principal component analysis (PCA) is one of the most popular methods to reduce data dimension
which is widely used in various applications including genetics, image processing, engineering, and
many others. However, standard PCA is usually not preferred when principal components depend
on only a small number of variables, because it provides dense vectors as a solution which degrades
interpretability of the result. This can be worse especially in the high-dimensional setting where the
solution of standard PCA is inconsistent as addressed in several works [Paul, 2007, Nadler, 2008,
Johnstone and Lu, 2009]. To solve the inconsistency issue and improve interpretability, sparse PCA
has been proposed, which enforces sparsity in the PCA solution so that dimension reduction and
variable selection can be simultaneously performed. Theoretical and algorithmic researches on sparse
PCA have been actively conducted over the past few years [Zou et al., 2006, Amini and Wainwright,
2008, Journée et al., 2010, Ma, 2013, Lei and Vu, 2015, Berk and Bertsimas, 2019, Richtárik et al.,
2021].

In this paper, we consider a special situation where the data to which sparse PCA is applied are not
completely observed, but partially missing. Missing data frequently occurs in a wide range of machine
learning problems, where sparse PCA is no exception. There are various reasons and situations where
data becomes incomplete, such as failures of hardware, high expenses of sampling, and preserving
privacy. One concrete example is the analysis of single-cell RNA sequence (scRNA-seq) data [Park
and Zhao, 2019], where the cells are divided into several distinct types which can be characterized
with only a small number of genes among tens of thousands of genes. Sparse PCA can be effectively
utilized here to reduce the dimension (from numerous cells to a few cell types) and to select a small
number of genes that affect the reduced data. However, since scRNA-seq data usually have many
missing values due to technical and sampling issues, the existing sparse PCA theory and method
designed for fully observed data cannot be directly applied, and new methodology and theory are in
demand.
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Despite the need for theoretical research and algorithmic development of sparse PCA for incomplete
data, there have not been many studies yet. Lounici [2013] and Kundu et al. [2015] considered two
different optimization objectives for sparse PCA on incomplete data, which impose l1 regularization
and l0 constraint on the classic PCA loss function using a (bias-corrected) incomplete matrix,
respectively. It was shown that the solution of each problem has a non-trivial error bound under
certain conditions, but the optimization problems they considered are either nonconvex or NP-hard,
and thus theoretical studies of computational feasible algorithms are still lacking. More recently,
Park and Zhao [2019] proposed a computationally tractable two-step algorithm based on matrix
factorization and completion, but its first step is an iterative algorithm that requires singular value
decomposition in every iteration, which incurs a lot of cost in memory and time under a high-
dimensional setting.

With this motivation, we suggest a computational friendly convex optimization problem via a
semidefinite relaxation of the l1 regularized PCA, to solve the sparse PCA on incomplete data. We
note that very efficient scalable SDP solvers exist in practice [Yurtsever et al., 2021]. We assume that
the unknown true matrix MMM∗ ∈ Rd×d is symmetric and has a sparse leading eigenvector uuu1. Our
goal is to exactly recover the support of this sparse leading eigenvector, i.e., to find the set J correctly
where J = supp(uuu1) = {i : u1,i 6= 0}. Given a noisy observationMMM for the unknown true matrix
MMM∗, it is intuitive to consider imposing a regularization term on the PCA quadratic loss that aims to
find the first principal component. When using the l1 regularizer, the optimization problem can be
written as:

x̂xx = arg max
xxx>xxx=1

xxx>MMMxxx− ρ‖xxx‖21.

Hence, J is estimated with supp(x̂xx). However, this intuitively appealing objective is nonconvex and
very difficult to solve, so the following semidefinite relaxation can be considered as an alternative:

X̂XX = arg max
XXX�0 and tr(XXX)=1

〈MMM,XXX〉 − ρ‖XXX‖1,1.

By letting XXX = xxxxxx>, the equivalence of the above two objective functions can be easily justified.
Since supp(xxx) = supp(diag(xxxxxx>)), we estimate the support J by Ĵ = supp(diag(X̂XX)) in the
semidefinite problem. This kind of relaxation has been studied by d’Aspremont et al. [2004] and Lei
and Vu [2015], but their works were limited to complete data. Surprisingly, without any additional
modifications on the relaxation problem such as using matrix factorization or matrix completion, we
show that it is possible to exactly recover true support J with the above semidefinite program itself
whenMMM is an incomplete observation. Our main contribution is to prove this claim theoretically and
experimentally.

In Section 3, we provide theoretical justification (i.e., Theorem 1) that we can exactly recover the
true support J with high probability by obtaining a unique solution of the semidefinite problem,
under proper conditions. The conditions involve matrix coherence parameters, the spectral gap
between the largest and second-largest eigenvalues of the true matrix, the observation probability
and the noise variance, which are discussed in detail in Corollaries 1 and 2. Specifically, we show
that the sample complexity is related to the matrix coherence parameters as well as the matrix
dimension d and the support size s. We prove that the observation probability p has the bound of
p = ω

(
1

d−1+1

)
in the worst scenario in terms of the matrix coherence, while it has a smaller lower

bound p = ω
(

1
(log s)−1+1

)
in the best scenario. In Section 4, we provide experimental results on

incomplete synthetic datasets and a gene expression dataset. The experiment on the synthetic datasets
validate our theoretical results, and the experiment on the gene expression dataset gives us a consistent
result with prior studies. We also show that our SDP algorithm outperforms several other sparse PCA
approaches in the synthetic dataset.

2 Preliminaries

2.1 Notation

We first introduce the notations used throughout the paper. Matrices are bold capital, vectors are bold
lowercase and scalars or entries are not bold. For any positive integer n, we denote [n] := {1, . . . , n}.
For any vector aaa ∈ Rd and index set J ⊆ [d], aaaJ denotes the |J |-dimensional vector consisting of
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the entries of aaa in J . For any matrix AAA ∈ Rd1×d2 and index sets J1 ⊆ [d1] and J2 ⊆ [d2], AAAJ1,J2
andAAAJ1,:(AAA:,J2) denote the |J1| × |J2| sub-matrix ofAAA consisting of rows in J1 and columns in J2,
and the |J1| × d2 (d1 × |J2|) sub-matrix ofAAA consisting of rows in J1 (columns in J2), respectively.
‖aaa‖1, ‖aaa‖2 and ‖aaa‖∞ represent the l1 norm, l2 norm and maximum norm of a vector aaa, respectively.
{eeei : i ∈ [d]} indicates the standard basis of Rd.

A variety of norms on matrices will be used: we denote by ‖AAA‖2 the spectral norm and by ‖AAA‖F
the Frobenius norm of a matrix AAA. We let ‖AAA‖1,1 =

∑
i∈[d1],j∈[d2] |Ai,j |, ‖AAA‖max = ‖AAA‖∞,∞ =

maxi∈[d1],j∈[d2] |Ai,j |, ‖AAA‖2,∞ = maxj∈[d2] ‖AAA:,j‖2 and ‖AAA‖1,∞ = maxj∈[d2] ‖AAA:,j‖1 represent
the l1,1 norm, the entrywise l∞ norm, the l2,∞ norm and the l1,∞ norm of a matrixAAA, respectively.
The trace of AAA is denoted tr(AAA), and the matrix inner product of AAA and BBB is denoted 〈AAA,BBB〉.
Also, σi(AAA) and λi(AAA) represent the ith largest singular value and the ith largest eigenvalue of AAA,
respectively.

The notation C,C1, . . . , c, c1, . . . denote positive constants whose values may change from line to
line. The notation f(x) = o(g(x)) or f(x)� g(x) means limx→∞ f(x)/g(x) = 0; f(x) = ω(g(x))
or f(x) � g(x) means limx→∞ f(x)/g(x) = ∞; f(x) = O(g(x)) or f(x) . g(x) means that
there exists a constant C such that f(x) ≤ Cg(x) asymptotically; f(x) = Ω(g(x)) or f(x) & g(x)
means that there exists a constant C such that f(x) ≥ Cg(x) asymptotically; f(x) = Θ(g(x))
or f(x) ' g(x) means that there exists constants C and C ′ such that Cg(x) ≤ f(x) ≤ C ′g(x)
asymptotically.

2.2 Model

We now introduce our model assumption. Suppose that an unknown matrixMMM∗ ∈ Rd×d is symmetric.
The spectral decomposition ofMMM∗ is given by

MMM∗ =
∑
k∈[d]

λk(MMM∗)uuukuuu
>
k ,

where λ1(MMM∗) ≥ · · · ≥ λd(MMM
∗) are its eigenvalues and uuu1, . . . ,uuud ∈ Rd are the corresponding

eigenvectors. We assume that λ1(MMM∗) > λ2(MMM∗) and the leading eigenvector uuu1 ofMMM∗ is sparse,
that is, for some set J ∈ [d], {

u1,i 6= 0 if i ∈ J
u1,i = 0 otherwise.

With a notation supp(aaa) := {i ∈ [d] : ai 6= 0} for any vector aaa ∈ Rd, we can write J = supp(uuu1).
Also, we denote the size of J by s.

Incomplete and noisy observation Suppose that we have only noisy observations of the entries of
MMM∗ over a sampling set Ω ⊆ [d]× [d]. Specifically, we observe a symmetric matrixMMM ∈ Rd×d such
that

Mi,j = Mj,i = δi,j · (M∗i,j + εi,j)

for 1 ≤ i ≤ j ≤ d, where δi,j = 1 if (i, j) ∈ Ω and δi,j = 0 otherwise, and εi,j is the noise at
location (i, j). In this paper, we consider the following assumptions on random sampling and random
noise: for 1 ≤ i ≤ j ≤ d,

• Each (i, j) is included in the sampling set Ω independently with probability p (that is,
δi,j

i.i.d.∼ Ber(p).)

• δi,j’s and εi,j’s are mutually independent.

• E[εi,j ] = 0 and Var[εi,j ] = σ2.

• |εi,j | ≤ B almost surely.

Finally, we define the coherence parameters of the sub-matricesMMM∗J,J ,MMM∗Jc,J andMMM∗Jc,Jc .
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Definition 1 (Coherence parameters). We define the coherence parameters µ0(MMM∗J,J), µ1(MMM∗J,J),
µ2(MMM∗Jc,J) and µ3(MMM∗Jc,Jc) as follows:

µ0(MMM∗J,J) :=
‖MMM∗J,J‖max

λ1(MMM∗J,J)− λ2(MMM∗J,J)
, µ1(MMM∗J,J) :=

‖MMM∗J,J‖max

‖MMM∗J,J‖2,∞
,

µ2(MMM∗Jc,J) :=
‖MMM∗Jc,J‖max

‖MMM∗Jc,J‖F
, µ3(MMM∗Jc,Jc) :=

‖MMM∗Jc,Jc‖max

max
{
‖MMM∗Jc,Jc‖2, ‖MMM∗Jc,Jc‖2,∞

} .
We use µ0, µ1, µ2 and µ3 as shorthand for µ0(MMM∗J,J), µ1(MMM∗J,J), µ2(MMM∗Jc,J) and µ3(MMM∗Jc,Jc),
respectively.

Intuitively, when each coherence parameter is small, all the entries of the corresponding matrix have
comparable magnitudes. Note that 1

s ≤ µ0 ≤ 1, 1√
s
≤ µ1 ≤ 1, 1√

s(d−s)
≤ µ2 ≤ 1, 1

d−s ≤ µ3 ≤ 1.

Remark. We note that our setting is different from the case in which a data matrix YYY is observed
with missing entries and the covariance matrix MMM = YYY >YYY is analyzed for sparse PCA. Instead,
we directly observe a general symmetric incomplete matrix MMM , which is not necessarily positive
semidefinite. Our model can be therefore applied to various data types other than covariance matrices
(e.g., undirected random graphs with missing edges.) When a noisy and incomplete data matrix YYY is
given and its covariance matrix is considered, our current analysis cannot be directly applied and
one may need some bias correction technique in the algorithm, since E[MMM ] = E[YYY >YYY ] is not the
true matrix YYY ∗>YYY ∗ where YYY ∗ = E[YYY ]. Furthermore, the independent missingness mechanism over
YYY does not imply independent missingness overMMM . We leave this for future work.

3 Main Results

As mentioned in the introduction, we consider the following semidefinite programming (SDP) in
order to recover the true support J :

X̂XX = arg max
XXX�0 and tr(XXX)=1

〈MMM,XXX〉 − ρ‖XXX‖1,1, (1)

where we estimate J by Ĵ = supp(diag(X̂XX)). We recall that (1) is a convex relaxation of the
following nonconvex problem:

x̂xx = arg max
xxx>xxx=1

xxx>MMMxxx− ρ‖xxx‖21. (2)

In Theorem 1, we will show that under appropriate conditions, the solution of (1) attains Ĵ = J
with high probability. Our main technical tool used in the proof is the primal-dual witness argument
[Wainwright, 2009]. We start with deriving the sufficient conditions for the primal-dual solutions of
(1) to be uniquely determined and satisfy supp(diag(X̂XX)) = J . We then establish a proper candidate
solution which meets the derived sufficient conditions, where we make use of the Karush-Kuhn-
Tucker (KKT) conditions of (2) to set up a reasonable candidate. We finally develop the conditions
under which the established candidate solution satisfies the sufficient conditions from the primal-dual
witness argument of (1) with high probability. Detailed proof is given in Appendix B.
Theorem 1. Under the model defined in Section 2.2, assume that the following conditions hold:

2
√

2 · K1 + ρs

p(λ1(MMM∗J,J)− λ2(MMM∗J,J))
≤ min

i∈J
|u1,i|,

ρ > 2
√
psc ·

{
(1− p)‖MMM∗Jc,J‖2F + (d− s)sσ2

}
+ p · ‖MMM∗Jc,J‖max

(K2 + p · ‖MMM∗Jc,J‖2)2 · (1 +
√
s)2 ≤

{
p · (λ1(MMM∗J,J)− λ2(MMM∗J,J))− 2 ·K1 − 2ρs

}
×
{
p · (λ1(MMM∗J,J)− λ1(MMM∗Jc,Jc))−K1 −K3 − ρd

}
,

where c > 0, and K1, K2 and K3 are defined as follows:

K1 := (c+ 1) ·R1 log(2s) +
√

2(c+ 1) ·R2

√
log(2s)

K2 := (c+ 1) ·R3 log d+
√

2(c+ 1) ·R4

√
log d

K3 := (c+ 1) ·R5 log(2(d− s)) +
√

2(c+ 1) ·R6

√
log(2(d− s))
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and
R1 := max{(1− p)‖MMM∗J,J‖max +B, p‖MMM∗J,J‖max},

R2 :=
√
p(1− p)‖MMM∗J,J‖2,∞ +

√
psσ2,

R3 := max{(1− p)‖MMM∗Jc,J‖max +B, p‖MMM∗Jc,J‖max},

R4 := max{
√
p(1− p)‖MMM∗Jc,J‖2,∞ +

√
p(d− s)σ2,

√
p(1− p)‖MMM∗J,Jc‖2,∞ +

√
psσ2},

R5 := max{(1− p)‖MMM∗Jc,Jc‖max +B, p‖MMM∗Jc,Jc‖max},

R6 :=
√
p(1− p)‖MMM∗Jc,Jc‖2,∞ +

√
p(d− s)σ2.

Then the optimal solution X̂XX to the problem (1) is unique and satisfies supp(diag(X̂XX)) = J with
probability at least 1− s−c − d−c − (2s)−c − (2(d− s))−c.
Remark 1. Our proposed method actually guarantees more than support recovery. Under the

sufficient conditions, the optimal solution X̂XX can be expressed as X̂XX =

(
x̂xxx̂xx> 0

0 0

)
, where x̂xx satisfies∥∥uuu1,J − x̂xx

∥∥
2
≤ minj∈J |u1,j | which is shown in our proof. This implies consistency of our solution

in eigenvector estimation.
Remark 2. To deal with missingness, we utilized concentration inequalities such as matrix Bernstein
inequality and Chebychev’s inequality, which is one key technical difference from prior works on
sparse PCA with complete data [Lei and Vu, 2015]. Beyond this, under the primal-dual witness
framework, while Lei and Vu [2015] employed implicit constraints in the optimization problem,
we made all the constraints explicit and directly derived the sufficient conditions to avoid strong
conditions. We note that simply applying concentration inequalities to the approach of Lei and Vu
[2015] results in stricter requirements onMMM∗Jc,Jc and p.

We now consider the following two particular scenarios:

(s1) B = σ2 = 0, that is, the observationMMM is noiseless (but still incomplete).
(s2) The rank ofMMM∗ is 1.

to better interpret the conditions of MMM∗ and p listed in Theorem 1 and understand under what
circumstance these conditions hold. For both cases, we set p ≥ 0.5 for simplicity. Under the first
setting, we can re-express the conditions onMMM∗ for exact sparse recovery of J in a more interpretable
way (specifically, in terms of coherence parameters and spectral gap) as well as the conditions on
p. In the second setting, we aim to investigate that the maximum level of noise that is allowed by
Theorem 1. Corollaries 1 and 2 include the results of the two settings (s1) and (s2), respectively.
Corollary 1. Assume that B = σ2 = 0, p ≥ 0.5 and mini∈J |u1,i| = Ω( 1√

s
). Denote λ1(MMM∗J,J)−

λ2(MMM∗J,J) by λ̄(MMM∗J,J). If the following conditions hold:

µ0 = o

(
1√
s log s

)
, (3)

‖MMM∗Jc,J‖max = o

(
λ̄(MMM∗J,J)

s
·min

{
µ2,

1

s
,

√
s

log d

})
, (4)

‖MMM∗Jc,Jc‖max = o

(
λ̄(MMM∗J,J) ·min

{
µ3,

1

log(d− s)

})
, (5)√

1− p
p

= o

(
min

{
µ1

√
log s,

λ̄(MMM∗J,J)µ2

‖MMM∗Jc,J‖max
·min

{ 1

s2
√
s
,

1

s
√
s(d− s)

}
, (6)

λ̄(MMM∗J,J)µ3

‖MMM∗Jc,Jc‖max
· 1√

log(d− s)

})
, 1

ρ = Θ

(
pλ̄(MMM∗J,J)

s2

)
, (7)

5



then the conditions in Theorem 1 hold asymptotically, that is, when s and d are sufficiently large, the
optimal solution X̂XX to the problem (1) is unique and satisfies supp(diag(X̂XX)) = J with probability
at least 1− s−1 − d−1 − (2s)−1 − (2(d− s))−1.

Conditions on true matrixMMM∗ From the conditions in Corollary 1, we can find desirable properties
on the matrixMMM∗ as follows:

• Incoherence ofMMM∗J,J , and coherence ofMMM∗Jc,J andMMM∗Jc,Jc : From the coherence parameter
in (3) and those in (4), (5) and (6), we see that the sub-matrixMMM∗J,J and the sub-matrices
MMM∗Jc,J andMMM∗Jc,Jc are expected to be incoherent and coherent, respectively. This is different
from other problems involving incomplete matrices, such as matrix completion [Candès
and Recht, 2009] and standard PCA on incomplete data [Cai et al., 2021], where the entire
matrix, not a sub-matrix, is required to be incoherent.
We can easily check the need of incoherence ofMMM∗Jc,J with an example that the sub-matrix
has only one entry with a large magnitude while the other entries have relatively small
values. Even if the true leading eigenvector of the sub-matrix is not sparse, the sparse PCA
algorithm may produce a solution Ĵ which has a smaller size than that of the true support J .
However, forMMM∗Jc,J andMMM∗Jc,Jc , coherence is preferable: intuitively speaking, whenMMM∗Jc,J

and MMM∗Jc,Jc are the most coherent, that is, only one entry is nonzero in each sub-matrix,
and all other entries are zero, missing the entries inMMM∗Jc,J andMMM∗Jc,Jc does not change the
leading eigenvector of MMM∗. On the other hand, when MMM∗Jc,J and MMM∗Jc,Jc are incoherent,
that is, all the entries have comparable magnitudes, missing only a few entries changes the
leading eigenvector and its sparsitency, so that sparse PCA is likely to fail to recover J . A
simple illustration can be found in the Appendix A.

• Large spectral gap λ̄(MMM∗J,J) (= λ1(MMM∗J,J) − λ2(MMM∗J,J)): This can be found in (4), (5)
and (6). A sufficiently large spectral gap requirement has been also discussed in the work
on sparse PCA on the complete matrix [Lei and Vu, 2015]. It ensures the uniqueness and
identifiability of the orthogonal projection matrix with respect to the principal subspace. If the
spectral gap of eigenvalues is nearly zero, then the top two eigenvectors are indistinguishable
given the observational noise, leading to failure to recover the sparsity of the leading
eigenvector.
We also note that λ1(MMM∗J,J)−λ2(MMM∗J,J) ≥ λ1(MMM∗)−λ2(MMM∗) since λ1(MMM∗J,J) = λ1(MMM∗)

and λ2(MMM∗J,J) ≤ λ2(MMM∗). Hence, a large λ1(MMM∗)− λ2(MMM∗) implies a large λ̄(MMM∗J,J).

• Small magnitudes ofMMM∗Jc,J andMMM∗Jc,Jc : This can also be found in (4), (5) and (6). This
condition is also natural: if the magnitudes are relatively small, missing the entries will not
make a big impact to the result.

Conditions on p (ratio of missing data) For simplicity, suppose that λ̄(MMM∗J,J) = O(s) and
s = O(log d). We consider two extreme cases where the coherence parameters are maximized and
minimized. We discuss the bound of the sample complexity in each case.

• The best scenario where the bound of the sample complexity is the lowest: Suppose that
µ1 = o( 1

log s ) and µ2 = µ3 = 1 (note that when µ0 = o
(

1√
s log s

)
, µ1 is upper bounded by

o
(

1
log s

)
.) Then the condition (6) can be written as:

p =
1

1 + ε1
, ε1 = o

(
min

{ 1

log s
,

1

sd‖MMM∗Jc,J‖2max

})
.

Furthermore, if ‖MMM∗Jc,J‖max = O(
√

log s
sd ), then p = ω

(
1

(log s)−1+1

)
.

1This can be expressed equivalently as p = 1
1+ε2

where ε = o
(
min

{
µ1

√
log s,

λ̄(MMM∗J,J )µ2

‖MMM∗
Jc,J

‖max
·

min
{

1
s2
√
s
, 1

s
√
s(d−s)

}
,

λ̄(MMM∗J,J )µ3

‖MMM∗
Jc,Jc‖max

· 1√
log(d−s)

})
.
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• The worst scenario where the bound of the sample complexity is the highest: Suppose that
µ1 = 1√

s
, µ2 = 1√

s(d−s)
and µ3 = 1

d−s . In this case, the condition (6) can be written as:

p =
1

1 + ε2
, ε2 = o

(
min

{ log s

s
,

1

(sd‖MMM∗Jc,J‖max)2
,

1

(d‖MMM∗Jc,Jc‖max)2

})
.

Suppose that ‖MMM∗Jc,J‖max = Θ( 1
s
√
d
) and ‖MMM∗Jc,Jc‖max = Θ( 1√

d
) for instance, then

p = ω
(

1
d−1+1

)
.

Next, we consider the second setting (s2) where the rank ofMMM∗ is assumed to be 1, that is,MMM∗ =
λ1(MMM∗)uuu1uuu

>
1 (without loss of generality, we assume λ1(MMM∗) > 0). Trivially,MMM∗Jc,J = MMM∗J,Jc =

MMM∗Jc,Jc = 0 and Theorem 1 can be greatly simplified. Here, we focus on analyzing how much noise
(parameters B and σ2) is allowed.

Corollary 2. Assume that p ≥ 0.5 and the rank of MMM∗ is 1, that is, MMM∗ = λ1(MMM∗)uuu1uuu
>
1 . Let

λ1(MMM∗) > 0. Suppose that s and d satisfy 1√
s
≤ 12+ d−s

s +8
√

2a2−
√

(4− d−s
s −8

√
2a2)2+512a21(1+

√
s)2

4
√

2+
√

2· d−s
s +16a2−16

√
2a21(1+

√
s)2

where a1 = (2− 1
p ) · log d

8
√

2 log(2s)
+

√
max{d−s,s}·

√
log d

16s2
√
d−s and a2 = (2− 1

p ) · log(2(d−s))
8
√

2 log(2s)
+

√
log(2(d−s))

16s2 .
If the following conditions hold:

maxi,j∈J |u1,iu1,j |
mini∈J |u1,i|

≤ 1

16
√

2 log(2s)
,

maxi∈J |u1,i|
mini∈J |u1,i|

≤ 1

16
√

2
√

log(2s)
·
√

p

1− p
,

B ≤ (2p− 1)λ1(MMM∗) · max
i,j∈J

|u1,iu1,j |,

2
√

2 ·
√
pσ2s2(d− s) < ρ ≤ 1

8
√

2s
· pλ1(MMM∗) ·min

i∈J
|u1,i|,

then the optimal solution X̂XX to the problem (1) is unique and satisfies supp(diag(X̂XX)) = J with
probability at least 1− s−1 − d−1 − (2s)−1 − (2(d− s))−1.

Conditions on noise parameters B and σ2 For simplicity, let λ1(MMM∗) = O(s) and ∀|u1,i| =
Θ( 1√

s
). Then the above conditions in Corollary 2 imply that

B . p and σ2 .
p

s3(d− s)
.

The condition for B is relatively moderate while σ2 needs to be extremely small to satisfy the
condition in Corollary 2. We comment this is only a sufficient condition, and the experimental results
show that (1) can succeed even with σ2 larger than the aforementioned bound.

4 Numerical Results

We perform the SDP algorithm of (1) on synthetic and real data to validate our theoretic results and
show how well the true support of the sparse principal component is exactly recovered. We also
compare our SDP algorithm with other sparse PCA methods and show that our method performs
better. Our experiments were executed on MATLAB and standard CVX code was used, although very
efficient scalable SDP solvers exist in practice [Yurtsever et al., 2021].

4.1 Synthetic Data

We perform two lines of experiments:

1. With the spectral gap λ1(MMM∗) − λ2(MMM∗) and the noise parameters B and σ2 fixed, we
compare the results for different s and d.

7



Figure 1: Results of experiment 1 on synthetic data.

2. With s and d fixed, we compare the results for different spectral gaps and noise parameters.

In each experiment, we generate the true matrix MMM∗ as follows: the leading eigenvector uuu1 is set
to have s number of non-zero entries. λ2(MMM∗), . . . , λd(MMM

∗) are randomly selected from a normal
distribution with mean 0 and standard deviation 1, and λ1(MMM∗) is set to λ2(MMM∗) plus the spectral
gap. The orthogonal eigenvectors are randomly selected, while the non-zero entries of the leading
eigenvector uuu1 are made to have a value of at least 1

2
√
s
.

When generating the observation MMM , we first add to MMM∗ the entry-wise noise which is randomly
selected from a truncated normal distribution with support [−B,B]. The normal distribution to be
truncated is set to have mean 0 and standard deviation σnormal. After adding the entry-wise noise,
we generate an incomplete matrix MMM by selecting the observed entries uniformly at random with
probability p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
In each setting, we run the algorithm (1) and verify if the solution exactly recovers the true support.
We repeat each experiment 30 times with different random seeds, and calculate the rate of exact
recovery in each setting.

Experiment 1 In this experiment, we fix the spectral gap λ1(MMM∗)− λ2(MMM∗) as 20 and the noise
parameters B and σ2 as 5 and 0.01. We use the tuning parameter ρ = 0.1. We try three different
matrix dimensions d ∈ {20, 50, 100} and three different support sizes s ∈ {5, 10, 20}.
To check whether the bound of the sample complexity obtained in Corollary 1 is tight, we calculate
the coherence parameters and the maximum magnitudes of the sub-matrices at each setting, and
calculate the following rescaled parameter:√

p

1− p
·min

{
µ1

√
log s,

λ̄(MMM∗J,J)µ2

‖MMM∗Jc,J‖max
·min

{ 1

s2
√
s
,

1

s
√
s(d− s)

}
,
λ̄(MMM∗J,J)µ3

‖MMM∗Jc,Jc‖max
· 1√

log(d− s)

}
,

which is derived from (6). If the exact recovery rate versus this rescaled parameter is the same across
different settings, then we empirically justify that the bound of the sample complexity we derive is
"tight"2 in the sense that the exact recovery rate is solely determined by this rescaled parameter.

Figure 1 shows the experimental results. The two plots above are the experimental results for different
values of s when d = 100, and the two plots below are for different values of d when s = 10.

2We note that "tight" does not mean an agreement between necessary and sufficient conditions here.
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Figure 2: Results of experiment 2 on synthetic data.

The x-axis of the left graphs represents p, and the x-axis of the right graphs indicates the rescaled
parameter.

We can see from the two graphs on the right that the exact recovery rate versus the rescaled parameter
is the same in different settings of d and s. This means that our bound of the sample complexity is
tight.

Another observation we can make is that the exact recovery rate is not necessarily increasing or
decreasing as s or d increases or decreases. This is probably because coherences and maximum
magnitudes of sub-matrices are involved in the sample complexity as well.

Experiment 2 Here, we fix the matrix dimension d as 100 and the support size s as 50. We set
B = 5. We try three different spectral gaps λ1(MMM∗) − λ2(MMM∗) ∈ {10, 30, 50} and three different
standard deviations of the normal distribution, σnormal ∈ {0.1, 0.3, 0.5}. We try two different tuning
parameters ρ ∈ {0.1, 0.01} and report the best result.

Figure 2 demonstrates the experimental results. The three plots show the results when σnormal is
0.1, 0.3 and 0.5, respectively. The red, green and blue lines indicate the cases where the spectral
gap λ1(MMM∗)− λ2(MMM∗) is 50, 30 and 10, respectively. From the plots, we can observe that the exact
recovery rate increases as σ2 is small and λ1(MMM∗)− λ2(MMM∗) is large, which is consistent with the
conditions we have checked in Corollaries 1 and 2.

4.2 Gene Expression Data

We analyze a gene expression dataset (GSE21385) from the Gene Expression Omnibus website
(https://www.ncbi.nlm.nih.gov/geo/.) The dataset examines rheumatoid arthritis synovial
fibroblasts, which together with synovial macrophages, are the two leading cell types that invade and
degrade cartilage and bone.

The original data set contains 56 subjects and 112 genes. We compute its incomplete covariance
matrix, where 87% of the matrix entries are observed since some subject/gene pairs are unobserved.
With this incomplete covariance matrix, we solve the semidefinite program in (1) for sparse PCA
with ρ = 2.

By solving (1), we find that the support of the solution contains 3 genes: beta-1 catenin (CTNNB),
hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) and semaphorin III/F (SEMA3F). Our
result is consistent with prior studies on rheumatoid arthritis since CTNNB has been found to be
upregulated [Iwamoto et al., 2018], SEMA3F has been found to be downregulated [Tang et al., 2018],
and HPRT1 is known to be a housekeeping gene [Mesko et al., 2013]. Additional illustration of this
application can be found in Appendix G.

4.3 Comparison with Other Methods

We compare our SDP algorithm with three different methods. First, we consider two sparse PCA
algorithms where missing cells are treated as zero: the diagonal thresholding sparse PCA (DTSPCA)
by Johnstone and Lu [2009] and the iterative thresholding sparse PCA (ITSPCA) by Ma [2013].
Second, we consider the combination of imputation and our SDP method: we first estimate the

9

https://www.ncbi.nlm.nih.gov/geo/


Figure 3: Comparison with other methods.

missing elements ofMMM by using the matrix completion method based on the following Frobenius
norm miminization with nuclear norm penalty ‖YYY ‖∗:

M̃MM = arg min
YYY :symmetric

‖PΩ(YYY )−MMM‖2F + τ‖YYY ‖∗

and then implemented the SDP method with the completed matrix M̃MM . Details of the simulation
settings and algorithm implementations are provided in Appendix F.

Figure 3 demonstrates that the exact recovery rate of our SDP method is higher than those of the
three other methods. The comparison shows that the imputation-based strategy fails to work under
the small-p regime, and we conjecture the following rationale: it is known that the matrix completion
algorithm can be successful under the low-rank assumption. However, we do not assume that the
true matrix is low-rank, but just that its spectral gap λ1(MMM∗) − λ2(MMM∗) is large enough, which
probably leads to the failure of matrix completion. Over the 20 simulation replications, we found that
the average of maxi,j |M̃ij −M∗ij | was 1.0260 while the averages of maxi,j |M∗ij | and mini,j |M∗ij |
are 2.3200 and 0.0002, respectively. This shows that the matrix completion has not been done very
precisely. Given such an unsuccessful matrix completion, the imputed cells introduce more noise into
the inference and the result of sparse PCA can be even worse than that of simply using zero for the
missing entries.

5 Concluding Remarks

We have presented the sufficient conditions to exactly recover the true support of the sparse leading
eigenvector by solving a simple semidefinite programming on an incomplete and noisy observation.
We have shown that the conditions involve matrix coherence, spectral gap, matrix magnitudes, sample
complexity and variance of noise, and provided empirical evidence to justify our theoretical results.
To the best of our knowledge, we provide the first theoretical guarantee for exact support recovery
with sparse PCA on incomplete data. While we currently focus on a uniformly missing at random
setup, an interesting open question is whether it is possible to provide guarantees for a deterministic
pattern of missing entries.
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A Examples of coherent and incoherent sub-matrices MMM∗
Jc,J and MMM∗

Jc,Jc

For illustration, here we present a noiseless case (that is, we only focus on the change of eigen-
structure caused by missing values,) and set J = {1, . . . , s}, i.e., only the first s entries of the true
leading eigenvector are nonzero. We let d = 20 and s = 10 in the below examples.

In the following four examples, we show a complete or incomplete matrix, followed by its leading
eigenvector. We separate each matrix and its leading eigenvector by an arrow. The entries in Jc × J ,
J × Jc and Jc × Jc sub-matrices are marked in bold. The missing entries are marked in red.

1 ··· 1 1 1 000 000 ··· 000
...

...
...

...
...

...
...

...
...

1 ··· 1 1 1 000 000 ··· 000
1 ··· 1 2 0 111 000 ··· 000
1 ··· 1 0 2 −1−1−1 000 ··· 000
000 ··· 000 111 −1−1−1 111 000 ··· 000
000 ··· 000 000 000 000 000 ··· 000
...

...
...

...
...

...
...

...
...

000 ··· 000 000 000 000 000 ··· 000


⇒


0.3162

...
0.3162

0
...
0

,



1 ··· 1 1 1 000 000 ··· 000
...

...
...

...
...

...
...

...
...

1 ··· 1 1 1 000 000 ··· 000
1 ··· 1 2 0 111 000 ··· 000
1 ··· 1 0 2 −1−1−1 000 ··· 000
000 ··· 000 111 −1−1−1 000 000 ··· 000
000 ··· 000 000 000 000 000 ··· 000
...

...
...

...
...

...
...

...
...

000 ··· 000 000 000 000 000 ··· 000


⇒


0.3162

...
0.3162

0
...
0



The example on the left is a complete matrix having coherent sub-matricesMMM∗Jc,J andMMM∗Jc,Jc , and
the example on the right is its incomplete counterpart. We can observe that missing some entries does
not change the leading eigenvector in this case.

4 2 ··· 4 2 111 −1−1−1 ··· −1−1−1
2 4 ··· 2 4 −1−1−1 111 ··· 111

...
...

...
...

...
...

...
...

...
4 2 ··· 4 2 111 −1−1−1 ··· −1−1−1
2 4 ··· 2 4 −1−1−1 111 ··· 111
111 −1−1−1 ··· 111 −1−1−1 111 −1−1−1 ··· −1−1−1
−1−1−1 111 ··· −1−1−1 111 −1−1−1 111 ··· 111

...
...

...
...

...
...

...
...

...
−1−1−1 111 ··· −1−1−1 111 −1−1−1 111 ··· 111


⇒


0.3162

...
0.3162

0
...
0

,



4 2 ··· 4 2 111 −1−1−1 ··· −1−1−1
2 4 ··· 2 4 −1−1−1 111 ··· 111

...
...

...
...

...
...

...
...

...
4 2 ··· 4 2 111 −1−1−1 ··· −1−1−1
2 4 ··· 2 4 000 111 ··· 111
111 −1−1−1 ··· 111 000 111 −1−1−1 ··· −1−1−1
−1−1−1 111 ··· −1−1−1 111 −1−1−1 111 ··· 111

...
...

...
...

...
...

...
...

...
−1−1−1 111 ··· −1−1−1 111 −1−1−1 111 ··· 111


⇒


0.3172

...
0.3155
0.0115
−0.001

...
−0.001


However, as shown above, if the sub-matricesMMM∗Jc,J andMMM∗Jc,Jc are highly incoherent, then missing
only one entry in the sub-matrixMMM∗Jc,J changes the leading eigenvector significantly. In this case, the
support of the leading eigenvector of the incomplete matrix is {1, . . . , d}, so that it is more difficult
to exactly recover the true support J .

B Proof of Theorem 1

We use the primal-dual witness construction [Wainwright, 2009] to obtain the sufficient conditions
for support recovery. The following proposition indicates the sufficient conditions to recover the
support without false positives by using the optimization problem (1).

Proposition 1. If X̂XX ∈ Rd×d, ẐZZ ∈ Rd×d and µ̂ ∈ R satisfy the following:

X̂XXJ,J � 0, tr(X̂XXJ,J) = 1

MMMJ,J − ρẐZZJ,J � µ̂III
MMM − ρẐZZ � µ̂III
Ẑij ∈ ∂|X̂ij | for each (i, j) ∈ J × J
Ẑij ∈ (−1, 1) for each (i, j) /∈ J × J
(MMMJ,J − ρẐZZJ,J)X̂XXJ,J = µ̂ · X̂XXJ,J

(MMMJc,J − ρẐZZJc,J)X̂XXJ,J = 0,

then X̂XX is an optimal solution to the problem (1), and it satisfies supp(diag(X̂XX)) ⊆ J .

The proof is provided in E.1. Recall that our goal is to exactly recover the support J where s = |J |, and
the conditions in Proposition 1 do not guarantee supp(diag(X̂XX)) = J yet. We now want to construct
a solution X̂XX satisfying not only the above optimality conditions but also supp(diag(X̂XX)) = J . To
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find a reasonable candidate, we look at the KKT conditions of the nonconvex problem (2) and apply
the primal-dual witness argument. We note that the problem (2) is only used for getting some initial
intuition in order to later construct a desirable solution to the problem (1), and solving the problem
(2) is not our interest. Proposition 2 represents the sufficient conditions for the desirable solution to
be uniquely obtained. The proof is deferred to E.2.
Proposition 2. Consider a 3-tuple of (x̂xx, ẑzz, ŵww) ∈ Rs × Rs × Rd−s such that

ẑi = sign(u1,i) for all i ∈ J,
x̂xx is the leading eigenvector ofMMMJ,J − ρẑzzẑzz>,

ŵww =
1

ρ‖x̂xx‖1
MMMJc,Jx̂xx.

If the 3-tuple (x̂xx, ẑzz, ŵww) ∈ Rs × Rs × Rd−s satisfies the following conditions:

sign(x̂i) = sign(u1,i) for all i ∈ J (8)
‖ŵww‖∞ < 1 (9)

λ1(MMMJ,J − ρẑzzẑzz>) = λ1(MMM − ρ(ẑzz>, ŵww>)>(ẑzz>, ŵww>)) (10)

λ1(MMMJ,J − ρẑzzẑzz>) > λ2(MMMJ,J − ρẑzzẑzz>) (11)

then for X̂XX :=

(
x̂xxx̂xx> 0

0 0

)
, X̂XX is a unique optimal solution to the problem (1) and satisfies

supp(diag(X̂XX)) = J .

For clarity of exposition, our abuse of notation seemingly assumes J = [s] when we join vectors and
matrices, for instance when we join (ẑzz>, ŵww>) and

(
x̂xxx̂xx> 0

0 0

)
. It should be clear that for J 6= [s], one

will need to properly interleave vector entries or matrix rows/columns.

What remains is to derive the sufficient conditions for (8) - (11). Lemmas 1 to 4 below presents the
sufficient conditions for (8) - (11), respectively. We provide the proofs of the lemmas in E.4 to E.7.
Lemma 1 (Sufficient Conditions for (8)). If the following inequality holds:

2
√

2 · K1 + ρs

p(λ1(MMM∗J,J)− λ2(MMM∗J,J))
≤ min

i∈J
|u1,i|,

then the condition (8) holds with probability at least 1 − (2s)−c for any c > 0. Note that K1 is
defined in Lemma 6.
Lemma 2 (Sufficient Conditions for (9)). If the following inequality holds:

ρ > 2
√
psc ·

{
(1− p)‖MMM∗Jc,J‖2F + (d− s)sσ2

}
+ p · ‖MMM∗Jc,J‖max,

then the condition (9) holds with probability at least 1− s−c for any c > 0.
Lemma 3 (Sufficient Conditions for (10)). In addition to the conditions in Lemma 2, if the following
inequality holds:

(K2 + p · ‖MMM∗Jc,J‖2)2 · (1 +
√
s)2 ≤

{
p · (λ1(MMM∗J,J)− λ2(MMM∗J,J))− 2 ·K1 − 2ρs

}
×
{
p · (λ1(MMM∗J,J)− λ1(MMM∗Jc,Jc))−K1 −K3 − ρd

}
,

then the condition (10) holds with probability at least 1− s−c − d−c − (2s)−c − (2(d− s))−c for
any c > 0. Note that K1, K2 and K3 are defined in Lemma 6.
Lemma 4 (Sufficient Conditions for (11)). In addition to the conditions in Lemma 2, if the following
inequality holds:

p · (λ1(MMM∗J,J)− λ2(MMM∗J,J)) ≥ 2 ·K1 + 2ρs,

then the condition (11) holds with probability at least 1 − (2s)−c for any c > 0. Note that K1 is
defined in Lemma 6.

Since mini∈J |u1,i| <
√

2 always holds, the sufficient condition in Lemma 1 implies the sufficient
condition in Lemma 4. Hence, we do not need the condition in Lemma 4. Combining the sufficient
condtions in Lemma 1 to Lemma 3 gives the result of Theorem 1.
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C Proof of Corollary 1

When B = σ2 = 0 and p ≥ 0.5, we can write

K1 . p‖MMM∗J,J‖max log s+
√
p(1− p)‖MMM∗J,J‖2,∞

√
log s

= p log s‖MMM∗J,J‖max

(
1 +

√
1− p
p

(µ1

√
log s)−1

)
.

Under the conditions (3), (6) and (7),

K1 + ρs . p log s‖MMM∗J,J‖max +
pλ̄(MMM∗J,J)

s
= p log s · λ̄(MMM∗J,J)µ0 +

pλ̄(MMM∗J,J)

s

� pλ̄(MMM∗J,J) log s
1√
s log s

+
pλ̄(MMM∗J,J)
√
s

=
2pλ̄(MMM∗J,J)
√
s

.
pλ̄(MMM∗J,J) ·mini∈J |u1,i|

2
√

2
.

Hence, 2
√

2 · K1+ρs
pλ̄(MMM∗J,J )

≤ mini∈J |u1,i| holds asymptotically.

Next, under the conditions (4), (6) and (7),

2
√
sp(1− p)‖MMM∗Jc,J‖F + p‖MMM∗Jc,J‖max ≤ p‖MMM∗Jc,J‖max

(
1 + 2

√
s

√
1− p
p

µ−1
2

)
� p‖MMM∗Jc,J‖max

(
λ̄(MMM∗J,J)

s2‖MMM∗Jc,J‖max
+

λ̄(MMM∗J,J)

s2‖MMM∗Jc,J‖max

)
.
pλ̄(MMM∗J,J)

s2
. ρ.

Therefore, ρ > 2
√
sp(1− p)‖MMM∗Jc,J‖F + p‖MMM∗Jc,J‖max holds asymptotically.

Lastly, we will show that under the conditions (4), (5), (6) and (7),

(K2 + p · ‖MMM∗Jc,J‖2)2 · (1 +
√
s)2 ≤

{
p · λ̄(MMM∗J,J)− 2 ·K1 − 2ρs

}
×
{
p · λ1(MMM∗J,J)−K1 − ρs−K3 −

1

ρ
· (p‖MMM∗J,Jc‖∞,2 + c0

√
d− s)2

}
,

where c0 =
√
sp(1− p)‖MMM∗Jc,J‖F . Here, the bound (27) is used instead of (26). Under the condi-

tions (4) and (6),

(K2 + p · ‖MMM∗Jc,J‖2) · (1 +
√
s)

.
(
p‖MMM∗Jc,J‖max log d+

√
p(1− p) max

{
‖MMM∗Jc,J‖2,∞, ‖MMM∗

>
Jc,J‖2,∞

}√
log d+ p‖MMM∗Jc,J‖2

)
·
√
s

≤ p‖MMM∗Jc,J‖max ·
(

log d+
√

log d

√
1− p
p

µ−1
2 + µ−1

2

)
·
√
s

� p‖MMM∗Jc,J‖max ·
(
λ̄(MMM∗J,J)

√
s

s‖MMM∗Jc,J‖max
+

λ̄(MMM∗J,J)
√

log d

s
√
s(d− s)‖MMM∗Jc,J‖max

+
λ̄(MMM∗J,J)

s‖MMM∗Jc,J‖max

)
·
√
s

. p‖MMM∗Jc,J‖max ·
λ̄(MMM∗J,J)

√
s‖MMM∗Jc,J‖max

·
√
s = pλ̄(MMM∗J,J).

Also, since 2
√

2 · K1+ρs
pλ̄(MMM∗J,J )

≤ mini∈J |u1,i| ≤ 1√
s
,

pλ̄(MMM∗J,J)− 2K1 − 2ρs ≥ pλ̄(MMM∗J,J)−
pλ̄(MMM∗J,J)
√

2s
' pλ̄(MMM∗J,J).

Moreover, under the conditions (5) and (6),

K3 . p‖MMM∗Jc,Jc‖max log(d− s) +
√
p(1− p)‖MMM∗Jc,Jc‖2,∞

√
log(d− s)

= p‖MMM∗Jc,Jc‖max log(d− s) ·
{

1 +

√
1− p
p

µ−1
3

1√
log(d− s)

}
� p‖MMM∗Jc,Jc‖max log(d− s) ·

{
λ̄(MMM∗J,J)

‖MMM∗Jc,Jc‖max log(d− s)
+

λ̄(MMM∗J,J)

‖MMM∗Jc,Jc‖max log(d− s)

}
' pλ̄(MMM∗J,J),
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and under the conditions (4), (6) and (7),

1

ρ
· (p‖MMM∗J,Jc‖∞,2 +

√
s(d− s)p(1− p)‖MMM∗J,Jc‖F )2

≤ 1

ρ
·
{
p‖MMM∗J,Jc‖max

(
µ−1

2 +
√
s(d− s)

√
1− p
p

µ−1
2

)}2

� 1

ρ
·
{
p‖MMM∗J,Jc‖max

( λ̄(MMM∗J,J)

s‖MMM∗J,Jc‖max
+

λ̄(MMM∗J,J)

s‖MMM∗J,Jc‖max

)}2

' 1

ρ
·

(pλ̄(MMM∗J,J))2

s2

' s2

pλ̄(MMM∗J,J)
·

(pλ̄(MMM∗J,J))2

s2
= pλ̄(MMM∗J,J).

Hence,

p · λ1(MMM∗J,J)−K1 − ρs−K3 −
1

ρ
· (p‖MMM∗J,Jc‖∞,2 + c0

√
d− s)2

≥ pλ̄(MMM∗J,J) · (1− o(1))−
pλ̄(MMM∗J,J)

2
√

2s
' pλ̄(MMM∗J,J).

Therefore,

(K2 + p · ‖MMM∗Jc,J‖2)2 · (1 +
√
s)2 �

(
pλ̄(MMM∗J,J)

)2
.
{
p · λ̄(MMM∗J,J)− 2 ·K1 − 2ρs

}
×
{
p · λ1(MMM∗J,J)−K1 − ρs−K3 −

1

ρ
· (p‖MMM∗J,Jc‖∞,2 + c0

√
d− s)2

}
,

that is, the desired result holds asymptotically.

D Proof of Corollary 2

Since MMM∗Jc,J = MMM∗J,Jc = MMM∗Jc,Jc = 0 and MMM∗J,J = λ1(MMM∗)uuu1,Juuu
>
1,J for λ1(MMM∗) > 0, the

conditions in Theorem 1 can be written as follows:

2
√

2 · K1 + ρs

pλ1(MMM∗)
≤ min

i∈J
|u1,i|, (12)

ρ > 2
√

2 ·
√
pσ2s2(d− s), (13)

K2
2 · (1 +

√
s)2 ≤

{
pλ1(MMM∗)− 2 ·K1 − 2ρs

}
×
{
pλ1(MMM∗)−K1 −K3 − ρd

}
, (14)

where c = 1.

First, when B ≤ (2p− 1)λ1(MMM∗) ·maxi,j∈J |u1,iu1,j | = (2p− 1)‖MMM∗J,J‖max and p ≥ 0.5, K1 is
expressed as

K1 = 2p‖MMM∗J,J‖max log(2s) + 2
{√

p(1− p)‖MMM∗J,J‖2,∞ +
√
psσ2

}√
log(2s).

Hence, if the following inequalities hold:

2p‖MMM∗J,J‖max log(2s) ≤ 1

8
√

2
· pλ1(MMM∗) ·min

i∈J
|u1,i|,

2
√
p(1− p)‖MMM∗J,J‖2,∞ ·

√
log(2s) ≤ 1

8
√

2
· pλ1(MMM∗) ·min

i∈J
|u1,i|,

2
√
psσ2 ·

√
log(2s) ≤ 1

8
√

2
· pλ1(MMM∗) ·min

i∈J
|u1,i|,

ρs ≤ 1

8
√

2
· pλ1(MMM∗) ·min

i∈J
|u1,i|,

16



that is, if the following inequalities hold:

‖MMM∗J,J‖max ≤
1

16
√

2 log(2s)
· λ1(MMM∗) ·min

i∈J
|u1,i|, (15)

‖MMM∗J,J‖2,∞ ≤
1

16
√

2
√

log(2s)
·
√

p

1− p
· λ1(MMM∗) ·min

i∈J
|u1,i|, (16)

2
√
pσ2s log(2s) ≤ 1

8
√

2
· pλ1(MMM∗) ·min

i∈J
|u1,i|, (17)

ρ ≤ 1

8
√

2s
· pλ1(MMM∗) ·min

i∈J
|u1,i|, (18)

then (12) holds. Note that (13) and (18) imply that

2
√

2 ·
√
pσ2s2(d− s) < 1

8
√

2s
· pλ1(MMM∗) ·min

i∈J
|u1,i|.

Since 2s3(d− s) ≥ log(2s) for any s ≥ 1 and d > s, (13) and (18) are sufficient for (17).

Now, we will derive the sufficient conditions for (14). First, by the conditions (12) and (18), we have
that

2K1 + 2ρs ≤ 1√
2
· pλ1(MMM∗) min

i∈J
|u1,i|,

K1 + ρd = K1 + ρs+ ρ(d− s) ≤ 1

2
√

2
· pλ1(MMM∗) min

i∈J
|u1,i|+

d− s
8
√

2s
· pλ1(MMM∗) ·min

i∈J
|u1,i|.

Also, since

2B ≤ 2(2p− 1)‖MMM∗J,J‖max ≤ (2p− 1)
1

8
√

2 log(2s)
· λ1(MMM∗) ·min

i∈J
|u1,i| = (2− 1

p
) · pλ1(MMM∗) ·mini∈J |u1,i|

8
√

2 log(2s)

2
√
pσ2 <

1

16s2
√
d− s

· pλ1(MMM∗) ·min
i∈J
|u1,i|,

we can state

K2 = 2B log d+ 2
√
pσ2 max{d− s, s} ·

√
log d

≤ pλ1(MMM∗) ·min
i∈J
|u1,i| ·

{
(2− 1

p
) · log d

8
√

2 log(2s)
+

√
max{d− s, s} ·

√
log d

16s2
√
d− s︸ ︷︷ ︸

=:a1

}

and

K3 = 2B log(2(d− s)) + 2
√
pσ2(d− s)

√
log(2(d− s))

≤ pλ1(MMM∗) ·min
i∈J
|u1,i| ·

{
(2− 1

p
) · log(2(d− s))

8
√

2 log(2s)
+

√
log(2(d− s))

16s2︸ ︷︷ ︸
=:a2

}
.

Therefore, the following inequality is sufficient for (14):(
pλ1(MMM∗) ·min

i∈J
|u1,i| · a1 · (1 +

√
s)

)2

≤
{
pλ1(MMM∗)− 1√

2
· pλ1(MMM∗) ·min

i∈J
|u1,i|

}
×
{
pλ1(MMM∗)− 1

2
√

2
·pλ1(MMM∗) min

i∈J
|u1,i|−

d− s
8
√

2s
·pλ1(MMM∗)·min

i∈J
|u1,i|−a2·pλ1(MMM∗)·min

i∈J
|u1,i|

}

⇔
(
a1 · (1 +

√
s) ·min

i∈J
|u1,i|

)2

≤
{

1− 1√
2
·min
i∈J
|u1,i|

}
×
{

1−
(

1

2
√

2
+
d− s
8
√

2s
+ a2

)
·min
i∈J
|u1,i|

}
.
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Note that the quadratic inequality (ax)2 ≤ (1 − bx)(1 − cx) holds if a2 6= bc and 0 ≤ x ≤
b+c−
√

(b−c)2+4a2

2(bc−a2) . By using this fact, we have that if the following inequality holds:

min
i∈J
|u1,i| ≤

12 + d−s
s + 8

√
2a2 −

√
(4− d−s

s − 8
√

2a2)2 + 512a2
1(1 +

√
s)2

4
√

2 +
√

2 · d−ss + 16a2 − 16
√

2a2
1(1 +

√
s)2

,

then (14) holds. Since mini∈J |u1,i| ≤ 1√
s
, the following inequality is sufficient for (14):

1√
s
≤

12 + d−s
s + 8

√
2a2 −

√
(4− d−s

s − 8
√

2a2)2 + 512a2
1(1 +

√
s)2

4
√

2 +
√

2 · d−ss + 16a2 − 16
√

2a2
1(1 +

√
s)2

.

In sum, if the following inequalities hold:

‖MMM∗J,J‖max ≤
1

16
√

2 log(2s)
· λ1(MMM∗) ·min

i∈J
|u1,i|,

‖MMM∗J,J‖2,∞ ≤
1

16
√

2
√

log(2s)
·
√

p

1− p
· λ1(MMM∗) ·min

i∈J
|u1,i|,

B ≤ (2p− 1)λ1(MMM∗) · max
i,j∈J

|u1,iu1,j |,

ρ ≤ 1

8
√

2s
· pλ1(MMM∗) ·min

i∈J
|u1,i|,

ρ > 2
√

2 ·
√
pσ2s2(d− s),

1√
s
≤

12 + d−s
s + 8

√
2a2 −

√
(4− d−s

s − 8
√

2a2)2 + 512a2
1(1 +

√
s)2

4
√

2 +
√

2 · d−ss + 16a2 − 16
√

2a2
1(1 +

√
s)2

,

then the desired result holds, where a1 = (2 − 1
p ) · log d

8
√

2 log(2s)
+

√
max{d−s,s}·

√
log d

16s2
√
d−s and a2 =

(2− 1
p )· log(2(d−s))

8
√

2 log(2s)
+

√
log(2(d−s))

16s2 . Since ‖MMM∗‖max = λ1(MMM∗) maxi,j∈J |u1,iu1,j | and ‖MMM∗‖2,∞ =

λ1(MMM∗) maxi∈J
√∑

j∈J u
2
1,iu

2
1,j = λ1(MMM∗) maxi∈J |u1,i|, the first two conditions can be written

as maxi,j∈J |u1,iu1,j |
mini∈J |u1,i| ≤ 1

16
√

2 log(2s)
and maxi∈J |u1,i|

mini∈J |u1,i| ≤
1

16
√

2
√

log(2s)
·
√

p
1−p .

E Other Proofs

E.1 Proof of Proposition 1

With the primal variable XXX ∈ Rd×d and the dual variables ZZZ ∈ Rd×d, ΛΛΛ ∈ Rd×d and µ ∈ R, the
Lagrangian of the problem (1) is written as

L(XXX,ZZZ,ΛΛΛ, µ) = −〈MMM,XXX〉+ ρ〈XXX,ZZZ〉 − 〈ΛΛΛ,XXX〉+ µ · (tr(XXX)− 1)

where Zij ∈ ∂|Xij | for each i, j ∈ [d]. According to the standard KKT condition, we can derive that
(X̂XX,ẐZZ, Λ̂ΛΛ, µ̂) is optimal if and only if the followings hold:

• Primal feasibility: X̂XX � 0, tr(X̂XX) = 1

• Dual feasibility: Λ̂ΛΛ � 0, Ẑij ∈ ∂|X̂ij | for each i, j ∈ [d]

• Complementary slackness: 〈Λ̂ΛΛ, X̂XX〉 = 0 (⇔ Λ̂ΛΛX̂XX = 0 if X̂XX � 0 and Λ̂ΛΛ � 0)

• Stationarity: Λ̂ΛΛ = −MMM + ρẐZZ + µ̂ · III .
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By substituting Λ̂ΛΛ with −MMM + ρẐZZ + µ̂ · III , it can be shown that the above conditions are equivalent to

X̂XX � 0, tr(X̂XX) = 1

MMM − ρẐZZ � µ̂III
Ẑij ∈ ∂|X̂ij | for each i, j ∈ [d]

(MMM − ρẐZZ)X̂XX = µ̂ · X̂XX.

To use the primal-dual witness construction, we now consider the following restricted problem:

max
XXX�0,tr(XXX)=1 and supp(XXX)⊆J×J

〈MMM,XXX〉 − ρ‖XXX‖1,1. (19)

Similarly to the above, we can derive that X̂XX =

(
X̂XXJ,J 0

0 0

)
is optimal to the problem (19) if and

only if

X̂XXJ,J � 0, tr(X̂XXJ,J) = 1

MMMJ,J − ρẐZZJ,J � µ̂III
Ẑij ∈ ∂|X̂ij | for each i, j ∈ J
(MMMJ,J − ρẐZZJ,J)X̂XXJ,J = µ̂ · X̂XXJ,J .

Now, we want for the above solution X̂XX =

(
X̂XXJ,J 0

0 0

)
to satisfy the optimality conditions of the

original problem (1). Furthermore, by assuming the strict dual feasibility, we want to guarantee
supp(diag(X̂XX)) ⊆ J . We can easily derive their sufficient conditions listed below:

X̂XXJ,J � 0, tr(X̂XXJ,J) = 1

MMMJ,J − ρẐZZJ,J � µ̂III
MMM − ρẐZZ � µ̂III
Ẑij ∈ ∂|X̂ij | for each (i, j) ∈ J × J
Ẑij ∈ (−1, 1) for each (i, j) /∈ J × J
(MMMJ,J − ρẐZZJ,J)X̂XXJ,J = µ̂ · X̂XXJ,J

(MMMJc,J − ρẐZZJc,J)X̂XXJ,J = 0.

If the above conditions hold, then X̂XX =

(
X̂XXJ,J 0

0 0

)
is optimal to the problem (1) and satisfies

supp(diag(X̂XX)) ⊆ J .

E.2 Proof of Proposition 2

With the primal variable xxx ∈ Rd and the dual variables zzz ∈ Rd and λ ∈ R, the Lagrangian of the
problem (2) is written as

L(xxx,zzz, λ) = −xxx>MMMxxx+ ρ〈xxx,zzz〉2 + λ(xxx>xxx− 1) = xxx>(−MMM + ρzzzzzz> + λIII)xxx− λ

where zi ∈ ∂|xi| for i ∈ [d]. By denoting the primal solution by x̃xx = (x̃xx>1 , x̃xx
>
2 )> ∈ Rs × Rd−s and

the dual solutions by (z̃zz>, w̃ww>)> ∈ Rs × Rd−s and λ̃ ∈ R, the KKT conditions of (2) are given as
follows:

• Primal feasibility: x̃xx>1 x̃xx1 + x̃xx>2 x̃xx2 = 1

• Dual feasibility:
{
z̃i = sign(x̃1,i) if x̃1,i 6= 0

z̃i ∈ [−1, 1] if x̃1,i = 0,

{
w̃i = sign(x̃2,i) if x̃2,i 6= 0

w̃i ∈ [−1, 1] if x̃2,i = 0
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• Stationarity:
[
MMM − ρ(z̃zz>, w̃ww>)>(z̃zz>, w̃ww>)

](
x̃xx1

x̃xx2

)
= λ̃

(
x̃xx1

x̃xx2

)
λ̃III �MMM − ρ(z̃zz>, w̃ww>)>(z̃zz>, w̃ww>).

Here, it can be easily checked that the primal feasibility and the stationarity conditions are equivalent
to the following: (

x̃xx1

x̃xx2

)
is the leading eigenvector ofMMM − ρ(z̃zz>, w̃ww>)>(z̃zz>, w̃ww>).

To proceed with primal-dual witness argument, we now consider the KKT conditions for the problem
(2) with an additional constraint supp((xxx>, yyy>)>) ⊆ J , that is, yyy = 000. With the primal solution
x̂xx ∈ Rs and the dual solution ẑzz ∈ Rs, the KKT conditions are given by

x̂xx is the leading eigenvector ofMMMJ,J − ρẑzzẑzz>

ẑi = sign(x̂i) if x̂i 6= 0, ẑi ∈ [−1, 1] if x̂i = 0

Now we will show that if the following conditions hold, the solution (x̂xx>,000>)> satisfies the KKT
conditions of the original problem (2) and the strict dual feasibility:

x̂xx is the leading eigenvector ofMMMJ,J − ρẑzzẑzz> (20)
ẑi = sign(x̂i) if x̂i 6= 0, ẑi ∈ [−1, 1] if x̂i = 0

ŵww =
1

ρ‖x̂xx‖1
MMMJc,Jx̂xx (21)

‖ŵww‖∞ < 1.

λ1(MMMJ,J − ρẑzzẑzz>) = λ1(MMM − ρ(ẑzz>, ŵww>)>(ẑzz>, ŵww>)).

Let λ̂ = λ1

(
MMMJ,J − ρẑzzẑzz>

)
= λ1

(
MMM − ρ(ẑzz>, ŵww>)>(ẑzz>, ŵww>)

)
. For (x̂xx>,000>)> to be the leading

eigenvector ofMMM − ρ(ẑzz>, ŵww>)>(ẑzz>, ŵww>),[
MMM − ρ(ẑzz>, ŵww>)>(ẑzz>, ŵww>)

](
x̂xx
000

)
= λ̂

(
x̂xx
000

)
(22)

needs to be satisfied. It can be easily checked that (22) is equivalent to (20) and (21).

Now, let X̂XX =

(
x̂xxx̂xx> 0

0 0

)
, ẐZZ = (ẑzz>, ŵww>)>(ẑzz>, ŵww>) and µ̂ = λ1

(
MMMJ,J − ρẑzzẑzz>

)
= λ1

(
MMM −

ρ(ẑzz>, ŵww>)>(ẑzz>, ŵww>)
)
. Then it can be easily shown that (X̂XX,ẐZZ, µ̂) satisfies the sufficient conditions

in Proposition 1. That is, X̂XX constructed above is an optimal solution to the problem (1) and satisfies
supp(diag(X̂XX)) ⊆ J . To ensure that there is no false positive, we consider the additional condition
that sign(x̂i) = sign(u1,i) for all i ∈ J .

Lastly, for the uniqueness, we need an additional condition presented in the following lemma.

Lemma 5. For X̂XX =

(
x̂xxx̂xx> 0

0 0

)
and ẐZZ = (ẑzz>, ŵww>)>(ẑzz>, ŵww>) constructed above, if the following

condition holds:
λ1(MMMJ,J − ρẑzzẑzz>) > λ2(MMMJ,J − ρẑzzẑzz>)

then the solution X̂XX is a unique optimal solution to the problem (1).

Proof. According to the standard primal-dual witness construction, we only need to show that under
the condition, X̂XXJ,J = x̂xxx̂xx> is a unique optimal solution to the restricted problem (19).

Assume that there exists another optimal solution to the problem (19), say X̃XXJ,J . Also, denote its dual
optimal solution by Z̃ZZJ,J . Then, we can write

〈MMMJ,J , X̂XXJ,J〉 − ρ‖X̂XXJ,J‖1,1 = 〈MMMJ,J − ρẑzzẑzz>, x̂xxx̂xx>〉 = x̂xx>(MMMJ,J − ρẑzzẑzz>)x̂xx

= 〈MMMJ,J , X̃XXJ,J〉 − ρ‖X̃XXJ,J‖1,1 = 〈MMMJ,J − ρZ̃ZZJ,J , X̃XXJ,J〉.
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Recall that x̂xx is the leading eigenvector ofMMMJ,J − ρẑzzẑzz>, that is, x̂xx>(MMMJ,J − ρẑzzẑzz>)x̂xx = λ1(MMMJ,J −
ρẑzzẑzz>). Now, we will show that 〈MMMJ,J − ρẑzzẑzz>, X̃XXJ,J〉 < λ1(MMMJ,J − ρẑzzẑzz>) for any matrix X̃XXJ,J 6=
x̂xxx̂xx> such that X̃XXJ,J � 0 and tr(X̃XXJ,J) = 1. Let X̃XXJ,J =

∑
i∈J θivvvivvv

>
i , which is the spectral

decomposition of X̃XXJ,J . We can derive that

〈MMMJ,J − ρẑzzẑzz>, X̃XXJ,J〉 = 〈MMMJ,J − ρẑzzẑzz>,
∑
i∈J

θivvvivvv
>
i 〉 =

∑
i∈J

θivvv
>
i (MMMJ,J − ρẑzzẑzz>)vvvi ≤ λ1(MMMJ,J − ρẑzzẑzz>)

where the last inequality holds since
∑
i∈J θi = tr(X̃XXJ,J) = 1 and vvv>i (MMMJ,J − ρẑzzẑzz>)vvvi ≤

λ1(MMMJ,J − ρẑzzẑzz>). Here, the equality holds only if θ1 = 1, θi = 0 for i 6= 1 and vvv1 = x̂xx, that is,
X̃XXJ,J = x̂xxx̂xx>. Therefore, 〈MMMJ,J − ρẑzzẑzz>, X̃XXJ,J〉 < λ1(MMMJ,J − ρẑzzẑzz>) for any matrix X̃XXJ,J 6= x̂xxx̂xx>

such that X̃XXJ,J � 0 and tr(X̃XXJ,J) = 1.

With this fact, we can derive that

〈MMMJ,J , X̂XXJ,J〉 − ρ‖X̂XXJ,J‖1,1 = x̂xx>(MMMJ,J − ρẑzzẑzz>)x̂xx = λ1(MMMJ,J − ρẑzzẑzz>)

> 〈MMMJ,J − ρẑzzẑzz>, X̃XXJ,J〉 = 〈MMMJ,J − ρZ̃ZZJ,J , X̃XXJ,J〉+ ρ〈Z̃ZZJ,J − ẑzzẑzz>, X̃XXJ,J〉
= 〈MMMJ,J , X̃XXJ,J〉 − ρ‖X̃XXJ,J‖1,1 + ρ〈Z̃ZZJ,J − ẑzzẑzz>, X̃XXJ,J〉.

Since 〈MMMJ,J , X̂XXJ,J〉 − ρ‖X̂XXJ,J‖1,1 = 〈MMMJ,J , X̃XXJ,J〉 − ρ‖X̃XXJ,J‖1,1 by assumption, the above in-
equality implies 〈Z̃ZZJ,J − ẑzzẑzz>, X̃XXJ,J〉 < 0, that is, 〈Z̃ZZJ,J , X̃XXJ,J〉 < 〈ẑzzẑzz>, X̃XXJ,J〉. This contradicts the
fact that 〈Z̃ZZJ,J , X̃XXJ,J〉 = sup‖ZZZJ,J‖max≤1〈ZZZJ,J , X̃XXJ,J〉, and thus the desired result holds.

E.3 Lemma 6

The following lemma is frequently used in the proofs.

Lemma 6. For any c > 0,

‖E[MMMJ,J ]−MMMJ,J‖2 ≤ (c+ 1) ·R1 log(2s) +
√

2(c+ 1) ·R2

√
log(2s) =: K1

with probability at least 1− (2s)−c,

‖E[MMMJc,J ]−MMMJc,J‖2 ≤ (c+ 1) ·R3 log d+
√

2(c+ 1) ·R4

√
log d =: K2

with probability at least 1− d−c,

‖E[MMMJc,Jc ]−MMMJc,Jc‖2 ≤ (c+ 1) ·R5 log(2(d− s)) +
√

2(c+ 1) ·R6

√
log(2(d− s)) =: K3

with probability at least 1− (2(d− s))−c

where

R1 := max{(1− p)‖MMM∗J,J‖max +B, p‖MMM∗J,J‖max},

R2 :=
√
p(1− p)‖MMM∗J,J‖2,∞ +

√
psσ2,

R3 := max{(1− p)‖MMM∗Jc,J‖max +B, p‖MMM∗Jc,J‖max},

R4 := max{
√
p(1− p)‖MMM∗Jc,J‖2,∞ +

√
p(d− s)σ2,

√
p(1− p)‖MMM∗J,Jc‖2,∞ +

√
psσ2},

R5 := max{(1− p)‖MMM∗Jc,Jc‖max +B, p‖MMM∗Jc,Jc‖max},

R6 :=
√
p(1− p)‖MMM∗Jc,Jc‖2,∞ +

√
p(d− s)σ2.
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Proof. We use the matrix Bernstein inequality presented in Theorem 2. Here, we only show the upper
bound of ‖E[MMMJ,J ]−MMMJ,J‖2, since the others can be derived similarly. Note that

E[MMMJ,J ]−MMMJ,J =
∑
i,j∈J

(E[Mi,j ]−Mi,j)eeeieee
>
j =

∑
i,j∈J

(p ·M∗i,j − δi,j(M∗i,j + εi,j))eeeieee
>
j

=
∑
i,j∈J

((p− δi,j) ·M∗i,j − δi,jεi,j︸ ︷︷ ︸
=:ai,j

)eeeieee
>
j

=
∑

i,j∈J,i<j
ai,j(eeeieee

>
j + eeejeee

>
i ) +

∑
i∈J

ai,ieeeieee
>
i ,

which can be viewed as a sum of independent zero-mean matrices. It is straightforward to conclude
that

max{‖ai,j(eeeieee>j + eeejeee
>
i )‖2, ‖ai,ieeeieee>i ‖2 : i, j ∈ J, i < j}

≤ max{(1− p)‖MMM∗J,J‖max +B, p‖MMM∗J,J‖max} = R1 a.s.,∥∥∥∥∥ ∑
i,j∈J,i<j

E[ai,j(eeeieee
>
j + eeejeee

>
i )]2 +

∑
i∈J

E[ai,ieeeieee
>
i ]2

∥∥∥∥∥
2

≤ p(1− p)‖MMM∗J,J‖22,∞ + psσ2 ≤ R2
2.

By the matrix Bernstein inequality, one has that with probability at least 1− (2s)−c,

‖E[MMMJ,J ]−MMMJ,J‖2 ≤ (c+ 1) ·R1 log(2s) +
√

2(c+ 1) ·R2

√
log(2s).

Theorem 2 (Matrix Bernstein inequality (e.g., Theorem 1.6 in Tropp [2012])). Consider a finite
sequence {ZZZk} of independent, random matrices with dimensions d1 × d2. Assume that each random
matrix satisfies

E[ZZZk] = 000 and ‖ZZZk‖2 ≤ R1 almost surely.
Also, suppose that

max

{∥∥∥∑
k

E[ZZZkZZZ
>
k ]
∥∥∥

2
,
∥∥∥∑

k

E[ZZZ>k ZZZk]
∥∥∥

2

}
≤ R2

2.

Then, for all t ≥ 0,

P
{∥∥∥∑

k

ZZZk

∥∥∥
2
≥ t
}
≤ (d1 + d2) · exp

(
−t2/2

R1t/3 +R2
2

)
.

The above inequality implies that∥∥∥∑
k

ZZZk

∥∥∥
2
≤ (c+ 1)R1

3
log(d1 + d2) +

√{
(c+ 1)R1

3
log(d1 + d2)

}2

+ 2(c+ 1)R2
2 log(d1 + d2)

≤ (c+ 1)R1 log(d1 + d2) +
√

2(c+ 1)R2

√
log(d1 + d2)

with probability at least 1− (d1 + d2)−c for any c > 0.

E.4 Proof of Lemma 1

First, the following lemma can be easily shown.
Lemma 7. For any unit vectors xxx ∈ Rd and yyy ∈ Rd such that yi 6= 0 for ∀i ∈ [d], if ‖xxx − yyy‖2 ≤
mini∈[d] |yi|, then sign(xi) = sign(yi) for ∀i ∈ [d].

Proof. If xxx = yyy, then it is trivial that sign(xi) = sign(yi) for ∀i ∈ [d]. If xxx 6= yyy, then for any
i ∈ [d],

|xi − yi| < ‖xxx− yyy‖2 ≤ min
i∈[d]
|yi| ≤ |yi|,

where the first inequality is strict since both xxx and yyy are unit vectors. The above inequality implies
that

yi − |yi| < xi < yi + |yi|,
that is, 0 < xi < 2yi if yi > 0, and 2yi < xi < 0 if yi < 0. Therefore, sign(xi) = sign(yi) holds
for any i ∈ [d].
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Now, let ẑi = sign(u1,i) for all i ∈ J and x̂xx be the leading eigenvector of MMMJ,J − ρẑzzẑzz>. We will
derive the upper bound of ‖uuu1 − x̂xx‖2. By applying the Davis-Kahan sinΘ theorem, we obtain

‖uuu1 − x̂xx‖2 ≤
2
√

2

p(λ1(MMM∗J,J)− λ2(MMM∗J,J))
‖E[MMMJ,J ]−MMMJ,J + ρẑzzẑzz>‖2

where E[MMMJ,J ] = p ·MMM∗J,J . By the triangle inequality, we can upper bound

‖E[MMMJ,J ]−MMMJ,J + ρẑzzẑzz>‖2 ≤ ‖E[MMMJ,J ]−MMMJ,J‖2 + ‖ρẑzzẑzz>‖2 = ‖E[MMMJ,J ]−MMMJ,J‖2 + ρs.

From Lemma 6, one has that with probability at least 1− (2s)−c,

‖uuu1 − x̂xx‖2 ≤ 2
√

2 · K1 + ρs

p(λ1(MMM∗J,J)− λ2(MMM∗J,J))
.

By Lemma 7, if

2
√

2 · K1 + ρs

p(λ1(MMM∗J,J)− λ2(MMM∗J,J))
≤ min

i∈J
|u1,i|,

then sign(x̂i) = sign(u1,i) for all i ∈ J with probability at least 1− (2s)−c.

E.5 Proof of Lemma 2

First, we can derive the upper bound of ‖ŵww‖∞ as follows:

‖ŵww‖∞ =
1

ρ‖x̂xx‖1
‖MMMJc,Jx̂xx‖∞ =

1

ρ‖x̂xx‖1
·max
i∈Jc

∣∣∣∣∑
j∈J

Mi,j x̂j

∣∣∣∣
≤ 1

ρ‖x̂xx‖1
·
(

max
i∈Jc

max
j∈J
|Mi,j |

)
·
∑
j∈J
|x̂j | =

1

ρ
· ‖MMMJc,J‖max.

For each Mi,j , i ∈ Jc and j ∈ J , we now apply Chebyshev’s inequality as follows:

P
(
|Mi,j | ≥ |E[Mi,j ]|+ c

)
≤ P

(
|Mi,j − E[Mi,j ]| ≥ c

)
≤ Var[Mi,j ]

c2
(23)

for any c > 0. Note that for each i ∈ Jc and j ∈ J ,

E[Mi,j ] = p ·M∗i,j and Var[Mi,j ] = p(1− p)(M∗i,j)2 + pσ2.

With the assumption that p·‖MMM∗Jc,J‖max < ρ, letting γ := p
ρ‖MMM

∗
Jc,J‖max and c := 1+γ

2 ·ρ−p·|M
∗
i,j |

yields that γ < 1 and c > 0. By plugging c into (23), we have that

P
(
|Mi,j | ≥

1 + γ

2
· ρ
)
≤
p(1− p)(M∗i,j)2 + pσ2(

1+γ
2 · ρ− p · |M

∗
i,j |
)2 ≤ p(1− p)(M∗i,j)2 + pσ2(

1+γ
2 · ρ− p · ‖MMM

∗
Jc,J‖max

)2
=
p(1− p)(M∗i,j)2 + pσ2(

1+γ
2 · ρ− γρ

)2 =
p(1− p)(M∗i,j)2 + pσ2(

1−γ
2 · ρ

)2
for each i ∈ Jc and j ∈ J . Hence,

P
(
‖MMMJc,J‖max ≥

1 + γ

2
· ρ
)
≤
∑
i∈Jc

∑
j∈J

p(1− p)(M∗i,j)2 + pσ2(
1−γ

2 · ρ
)2

=
4

(1− γ)2ρ2
·
{
p(1− p)‖MMM∗Jc,J‖2F + p(d− s)sσ2

}
=

4(
ρ− p · ‖MMM∗Jc,J‖max

)2 · {p(1− p)‖MMM∗Jc,J‖2F + p(d− s)sσ2
}
.

Since γ < 1, we have that

P
(
‖MMMJc,J‖max < ρ

)
≥ 1− 4(

ρ− p · ‖MMM∗Jc,J‖max

)2 · {p(1− p)‖MMM∗Jc,J‖2F + p(d− s)sσ2
}
.
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If the following inequality holds:√
4psc ·

{
(1− p)‖MMM∗Jc,J‖2F + (d− s)sσ2

}
< ρ− p · ‖MMM∗Jc,J‖max,

then 4(
ρ−p·‖MMM∗

Jc,J
‖max

)2 · {p(1 − p)‖MMM∗Jc,J‖2F + p(d − s)sσ2
}
≤ s−c, that is, ‖MMMJc,J‖max < ρ

holds with probability at least 1− s−c. ‖ŵww‖∞ ≤ 1
ρ‖MMMJc,J‖max, and thus the desired result holds.

E.6 Proof of Lemma 3

Lemma 8 shows that if the following inequality holds:

‖MMMJc,J−ρŵwwẑzz>‖22 ≤
{
λ1(MMMJ,J−ρẑzzẑzz>)−λ2(MMMJ,J−ρẑzzẑzz>)

}
·
{
λ1(MMMJ,J−ρẑzzẑzz>)−λ1(MMMJc,Jc−ρŵwwŵww>)

}
,

then λ1(MMMJ,J − ρẑzzẑzz>) = λ1(MMM − ρ(ẑzz>, ŵww>)>(ẑzz>, ŵww>)).

Now, we derive the upper or lower bounds of ‖MMMJc,J − ρŵwwẑzz>‖2, λ1(MMMJ,J − ρẑzzẑzz>)− λ2(MMMJ,J −
ρẑzzẑzz>) and λ1(MMMJ,J − ρẑzzẑzz>)− λ1(MMMJc,Jc − ρŵwwŵww>). First,

‖MMMJc,J − ρŵwwẑzz>‖2 =

∥∥∥∥MMMJc,J − ρ ·
1

ρ‖x̂xx‖1
MMMJc,Jx̂xxẑzz

>
∥∥∥∥

2

=

∥∥∥∥MMMJc,J ·
(
I − x̂xxẑzz>

‖x̂xx‖1

)∥∥∥∥
2

≤ ‖MMMJc,J‖2 ·
∥∥∥∥I − x̂xxẑzz>

‖x̂xx‖1

∥∥∥∥
2

≤ ‖MMMJc,J‖2 ·
(

1 +
‖x̂xx‖2‖ẑzz‖2
‖x̂xx‖1

)
≤ ‖MMMJc,J‖2 · (1 +

√
s).

Since ‖MMMJc,J‖2 ≤ ‖E[MMMJc,J ]−MMMJc,J‖2 + ‖E[MMMJc,J ]‖2 ≤ K2 + p · ‖MMM∗Jc,J‖2 with probability
at least 1− d−c by Lemma 6, we have that for any c > 0,

‖MMMJc,J − ρŵwwẑzz>‖2 ≤ (K2 + p · ‖MMM∗Jc,J‖2) · (1 +
√
s) (24)

with probability at least 1− d−c.
Next, by Weyl’s inequality,

λ1(MMMJ,J − ρẑzzẑzz>)− λ2(MMMJ,J − ρẑzzẑzz>) ≥ λ1(E[MMMJ,J ])− λ2(E[MMMJ,J ])− 2 · ‖E[MMMJ,J ]−MMMJ,J + ρẑzzẑzz>‖2
≥ p · (λ1(MMM∗J,J)− λ2(MMM∗J,J))− 2 · ‖E[MMMJ,J ]−MMMJ,J‖2 − 2ρs.

By Lemma 6, we have that for any c > 0,

λ1(MMMJ,J − ρẑzzẑzz>)− λ2(MMMJ,J − ρẑzzẑzz>) ≥ p · (λ1(MMM∗J,J)− λ2(MMM∗J,J))− 2 ·K1 − 2ρs (25)

with probability at least 1− (2s)−c.

Finally, by applying Weyl’s inequality and the triangle inequality, we have that

λ1(MMMJ,J − ρẑzzẑzz>)− λ1(MMMJc,Jc − ρŵwwŵww>) ≥ p · λ1(MMM∗J,J)− ‖E[MMMJ,J ]−MMMJ,J‖2 − ρs
− ‖E[MMMJc,Jc ]−MMMJc,Jc‖2 − p · λ1(MMM∗Jc,Jc)− ρ · ‖ŵww‖22.

Note that under the conditions in Lemma 2, ‖ŵww‖∞ < 1, that is, ‖ŵww‖2 <
√
d− s holds with

probability at least 1 − s−c. We can also use the upper bound of ‖ŵww‖2 derived in Lemma 9. By
applying Lemma 6, we have that for any c > 0,

λ1(MMMJ,J − ρẑzzẑzz>)− ‖MMMJc,Jc − ρŵwwŵww>‖2 ≥ p · (λ1(MMM∗J,J)− λ1(MMM∗Jc,Jc))−K1 −K3 − ρd
(26)

or

λ1(MMMJ,J − ρẑzzẑzz>)− ‖MMMJc,Jc − ρŵwwŵww>‖2 ≥ p · (λ1(MMM∗J,J)− λ1(MMM∗Jc,Jc))−K1 − ρs

−K3 −
1

ρ
· (p‖MMM∗J,Jc‖∞,2 + c0

√
d− s)2 (27)
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with probability at least 1 − s−c − (2s)−c − (2(d − s))−c, where c0 =√
sc · {p(1− p)‖MMM∗Jc,J‖2F + ps(d− s)σ2}.

From (24)-(26), we can derive that if the following inequality holds:

(K2 + p · ‖MMM∗Jc,J‖2)2 · (1 +
√
s)2 ≤

{
p · (λ1(MMM∗J,J)− λ2(MMM∗J,J))− 2 ·K1 − 2ρs

}
×
{
p · (λ1(MMM∗J,J)− ‖MMM∗Jc,Jc‖2)−K1 −K3 − ρd

}
,

then for any c > 0, the desired result holds with probability at least 1− s−c−d−c− (2s)−c− (2(d−
s))−c.
Lemma 8. If the following inequality holds:

‖MMMJc,J−ρŵwwẑzz>‖22 ≤
{
λ1(MMMJ,J−ρẑzzẑzz>)−λ2(MMMJ,J−ρẑzzẑzz>)

}
·
{
λ1(MMMJ,J−ρẑzzẑzz>)−‖MMMJc,Jc−ρŵwwŵww>‖2

}
,

then λ1(MMMJ,J − ρẑzzẑzz>) = λ1(MMM − ρ(ẑzz>, ŵww>)>(ẑzz>, ŵww>)).

Proof. Let ẐZZ =

(
ẑzzẑzz> ẑzzŵww>

ŵwwẑzz> ŵwwŵww>

)
. First, we can show that λ1(MMMJ,J − ρẑzzẑzz>) is an eigenvalue of

MMM − ρẐZZ where its corresponding eigenvector is (x̂xx>, 0>)> ∈ Rd. This is because

(MMM − ρẐZZ)

(
x̂xx
0

)
=

(
(MMMJ,J − ρẑzzẑzz>)x̂xx

(MMMJc,J − ρŵwwẑzz>)x̂xx

)
= λ1(MMMJ,J − ρẑzzẑzz>) ·

(
x̂xx
0

)
where the last equality holds since x̂xx is the leading eigenvector ofMMMJ,J − ρẑzzẑzz> and

(MMMJc,J − ρŵwwẑzz>)x̂xx = MMMJc,Jx̂xx− ρ ·
1

ρ‖x̂xx‖1
MMMJc,Jx̂xx · ‖x̂xx‖1 = 0.

Now, it is sufficient to show that for all yyy = (yyy>1 , yyy
>
2 )> such that yyy1 ∈ Rs, yyy2 ∈ Rd−s, ‖yyy1‖22 +

‖yyy2‖22 = 1 and x̂xx>y1y1y1 = 0,

yyy>(MMM − ρẐZZ)yyy ≤ λ1(MMMJ,J − ρẑzzẑzz>),

which implies that λ1(MMMJ,J − ρẑzzẑzz>) is the largest eigenvalue ofMMM − ρẐZZ. Note that

yyy>(MMM − ρẐZZ)yyy = yyy>1 (MMMJ,J − ρẑzzẑzz>)yyy1 + 2yyy>2 (MMMJc,J − ρŵwwẑzz>)yyy1 + yyy>2 (MMMJc,Jc − ρŵwwŵww>)yyy2

≤ λ2(MMMJ,J − ρẑzzẑzz>) · ‖yyy1‖22 + 2‖MMMJc,J − ρŵwwẑzz>‖2 · ‖yyy1‖2 · ‖yyy2‖2 + λ1(MMMJc,Jc − ρŵwwŵww>) · ‖yyy2‖22

= λ2(MMMJ,J − ρẑzzẑzz>) · (1− ‖yyy2‖22) + 2‖MMMJc,J − ρŵwwẑzz>‖2 ·
√

1− ‖yyy2‖22 · ‖yyy2‖2 + λ1(MMMJc,Jc − ρŵwwŵww>) · ‖yyy2‖22
= λ2(MMMJ,J − ρẑzzẑzz>) + (λ1(MMMJc,Jc − ρŵwwŵww>)− λ2(MMMJ,J − ρẑzzẑzz>)) · ‖yyy2‖22

+ 2‖MMMJc,J − ρŵwwẑzz>‖2 ·
√
‖yyy2‖22 · (1− ‖yyy2‖22)

= λ2(MMMJ,J − ρẑzzẑzz>) + (λ1(MMMJc,Jc − ρŵwwŵww>)− λ2(MMMJ,J − ρẑzzẑzz>)) · t+ 2‖MMMJc,J − ρŵwwẑzz>‖2 ·
√
t · (1− t)

where 0 ≤ t := ‖yyy2‖22 ≤ 1. The first inequality holds since yyy1/‖yyy1‖2 is orthogonal to x̂xx, the leading
eigenvector ofMMMJ,J − ρẑzzẑzz>. The above upper bound of yyy>(MMM − ρẐZZ)yyy implies that if the following
inequality holds for any t ∈ [0, 1]:

λ2(MMMJ,J−ρẑzzẑzz>)+(λ1(MMMJc,Jc−ρŵwwŵww>)−λ2(MMMJ,J−ρẑzzẑzz>))·t+2‖MMMJc,J−ρŵwwẑzz>‖2·
√
t · (1− t)

≤ λ1(MMMJ,J − ρẑzzẑzz>),

then λ1(MMMJ,J − ρẑzzẑzz>) is the largest eigenvalue ofMMM − ρẐZZ. From Lemma 10, we have that if the
following inequality holds:

‖MMMJc,J−ρŵwwẑzz>‖22 ≤
{
λ1(MMMJ,J−ρẑzzẑzz>)−λ2(MMMJ,J−ρẑzzẑzz>)

}
·
{
λ1(MMMJ,J−ρẑzzẑzz>)−λ1(MMMJc,Jc−ρŵwwŵww>)

}
,

then λ1(MMMJ,J − ρẑzzẑzz>) = λ1(MMM − ρẐZZ).
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Lemma 9. Let c0 =
√
sc · {p(1− p)‖MMM∗Jc,J‖2F + ps(d− s)σ2} for any c > 0. Then,

‖ŵww‖2 ≤
p

ρ
· ‖MMM∗J,Jc‖∞,2 +

c0
√
d− s
ρ

with probability at least 1− s−c.

Proof. First, we can derive the upper bound of ‖ŵww‖2 as follows:

‖ŵww‖2 =
1

ρ‖x̂xx‖1
‖MMMJc,Jx̂xx‖2 =

1

ρ‖x̂xx‖1
·

√√√√∑
i∈Jc

(∑
j∈J

Mi,j x̂j

)2

≤ 1

ρ‖x̂xx‖1
·
√∑
i∈Jc

(
max
j∈J
|Mi,j | · ‖x̂xx‖1

)2

=
1

ρ
·
√∑
i∈Jc

(
max
j∈J
|Mi,j |

)2

.

By Chebyshev’s inequality, for each i ∈ Jc and j ∈ J ,

P
(
|Mi,j | ≥ |E[Mi,j ]|+ c0

)
≤ Var[Mi,j ]

c20
(28)

for any c0 > 0, where E[Mi,j ] = p ·M∗i,j and Var[Mi,j ] = p(1− p)(M∗i,j)2 + pσ2. That is,

P
(
|Mi,j | ≤ pM∗i,j + c0 for ∀i ∈ Jc and j ∈ J

)
≥ 1−

∑
i∈Jc,j∈J

P
(
|Mi,j | ≥ |E[Mi,j ]|+ c0

)
≥ 1−

p(1− p)‖MMM∗Jc,J‖2F + ps(d− s)σ2

c20
.

Let c0 =
√
sc · {p(1− p)‖MMM∗Jc,J‖2F + ps(d− s)σ2} for any c > 0. Then |Mi,j | ≤ pM∗i,j + c0 for

any i ∈ Jc and j ∈ J with probability at least 1 − s−c. This also means that maxj∈J |Mi,j | ≤
pmaxj∈J |M∗i,j |+ c0 and√∑

i∈Jc

(
max
j∈J
|Mi,j |

)2

≤
√∑
i∈Jc

(
pmax
j∈J
|M∗i,j |

)2

+

√∑
i∈Jc

c20

with probability at least 1− s−c. Therefore, for c0 =
√
sc · {p(1− p)‖MMM∗Jc,J‖2F + ps(d− s)σ2},

‖ŵww‖2 ≤
p

ρ
· ‖MMM∗J,Jc‖∞,2 +

c0
√
d− s
ρ

with probability at least 1− s−c for any c > 0, where ‖MMM∗J,Jc‖∞,2 =

√∑
i∈Jc

(
maxj∈J |M∗i,j |

)2

.

Lemma 10. Assume a 6= 0. If a2 ≤ c(b+ c) holds, then 2a
√
t(1− t) ≤ bt+ c for all t ∈ [0, 1].

Proof.

2a
√
t(1− t) ≤ bt+ c for all t ∈ [0, 1]

⇐ 4a2t(1− t) ≤ (bt+ c)2, bt+ c ≥ 0 for all t ∈ [0, 1]

⇔ (4a2 + b2)

(
t− 2a2 − bc

4a2 + b2

)2

+ c2 − (2a2 − bc)2

4a2 + b2
≥ 0, bt+ c ≥ 0 for all t ∈ [0, 1]

⇐ c2 − (2a2 − bc)2

4a2 + b2
≥ 0, c ≥ 0, b+ c ≥ 0

⇔ a2 ≤ c(b+ c).
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Figure 4: Heatmap of the Incomplete Covariance Matrix of the Gene Expression Data. We permuted
all the genes, so that that the 3 genes in the support (selected by SDP optimization) appear in the
top/left corner of this visualization.

E.7 Proof of Lemma 4

By Weyl’s inequality and the triangle inequality,

λ1(MMMJ,J − ρẑzzẑzz>)− λ2(MMMJ,J − ρẑzzẑzz>)

≥ λ1(E[MMMJ,J ])− λ2(E[MMMJ,J ])− 2 · ‖E[MMMJ,J ]−MMMJ,J‖2 − 2ρ · ‖ẑzzẑzz>‖2
= p · (λ1(MMM∗J,J)− λ2(MMM∗J,J))− 2 · ‖E[MMMJ,J ]−MMMJ,J‖2 − 2ρ · ‖ẑzz‖22.

Note that ‖ẑzz‖2 =
√
s and under the conditions in Lemma 2. Also, by applying Lemma 6, we have

that

λ1(MMMJ,J − ρẑzzẑzz>)− λ2(MMMJ,J − ρẑzzẑzz>) > p · (λ1(MMM∗J,J)− λ2(MMM∗J,J))− 2 ·K1 − 2ρs

with probability at least 1− (2s)−c for any c > 0. Therefore, the desired result holds.

F Comparison with Other Methods for Sparse PCA

For the simulation in Section 4.3, we set d = 50, s = 10, λ1(MMM∗) − λ2(MMM∗) = 10, B = 5 and
σnormal = 0.1. We repeat each experiment 20 times with different random seeds, and calculate the
rate of exact recovery.

We first consider two different algorithms where missing cells are treated as zero: the diagonal
thresholding sparse PCA (DTSPCA) by Johnstone and Lu [2009] and the iterative thresholding sparse
PCA (ITSPCA) by Ma [2013]. We use the tuning parameters ρ = 0.1, α = 5 and γ = 0.01 for our
SDP algorithm, DTSPCA and ITSPCA, respectively.

Next, we consider the combination of imputation and our SDP method. We first estimate the missing
elements of MMM by using the matrix completion method based on the following Frobenius norm
miminization with nuclear norm penalty ‖YYY ‖∗:

M̃MM = arg min
YYY :symmetric

‖PΩ(YYY )−MMM‖2F + τ‖YYY ‖∗

and then implemented the SDP method with the completed matrix M̃MM . We use the tuning parameters
ρ = 0.1 and τ = 0.1.
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G Additional Illustration: Heatmap of the Incomplete Covariance Matrix of
Gene Expression Data in Section 4.2

A sparse eigenvector with a large eigenvalue should lead to a block in the covariance matrix with
large values. To check this, we illustrate the heatmap of the incomplete covariance matrix of the gene
expression data in Section 4.2. In Figure 4, the red box at the top left corner indicates the submatrix
whose rows and columns correspond to the 3 genes (beta-1 catenin (CTNNB), hypoxanthine-guanine
phosphoribosyltransferase 1 (HPRT1) and semaphorin III/F (SEMA3F)) selected from the sparse
PCA method. We can observe that two of the three off-diagonals of this submatrix have significantly
larger values than the other elements of the covariance matrix.
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