
NOTE: Robust Continual Test-time Adaptation
Against Temporal Correlation

Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee
KAIST

Daejeon, South Korea
{taesik.gong,jongheonj,maxkim139,yewon.e.kim,jinwoos,profsj}@kaist.ac.kr

Abstract

Test-time adaptation (TTA) is an emerging paradigm that addresses distributional
shifts between training and testing phases without additional data acquisition or
labeling cost; only unlabeled test data streams are used for continual model adap-
tation. Previous TTA schemes assume that the test samples are independent and
identically distributed (i.i.d.), even though they are often temporally correlated
(non-i.i.d.) in application scenarios, e.g., autonomous driving. We discover that
most existing TTA methods fail dramatically under such scenarios. Motivated by
this, we present a new test-time adaptation scheme that is robust against non-i.i.d.
test data streams. Our novelty is mainly two-fold: (a) Instance-Aware Batch Normal-
ization (IABN) that corrects normalization for out-of-distribution samples, and (b)
Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream
from non-i.i.d. stream in a class-balanced manner. Our evaluation with various
datasets, including real-world non-i.i.d. streams, demonstrates that the proposed ro-
bust TTA not only outperforms state-of-the-art TTA algorithms in the non-i.i.d. set-
ting, but also achieves comparable performance to those algorithms under the i.i.d.
assumption. Code is available at https://github.com/TaesikGong/NOTE.

1 Introduction

While deep neural networks (DNNs) have been successful in several applications, their performance
degrades under distributional shifts between the training data and test data [32]. This distributional
shift hinders DNNs from being widely deployed in many risk-sensitive applications, such as au-
tonomous driving, medical imaging, and mobile health care, where new types of test data unseen
during training could result in undesirable disasters. For instance, Tesla Autopilot has caused 12
“deaths” until recently [2]. To address this problem, test-time adaptation (TTA) aims to adapt DNNs
to the target/unseen domain with only unlabeled test data streams, without any additional data acqui-
sition or labeling cost. Recent studies reported that TTA is a promising, practical direction to mitigate
distributional shifts [29, 33, 41, 4, 44].

Prior TTA studies typically assume (implicitly or explicitly) that a target test sample xt at time t and
the corresponding ground-truth label yt (unknown to the learner) are independent and identically
distributed (i.i.d.) following a target domain, i.e., (xt, yt) is drawn independently from a time-invariant
distribution PT (x, y). However, the distribution of online test samples often changes across the time
axis, i.e., (xt, yt) ⇠ PT (x, y | t) in many applications; for instance, AI-powered self-driving car’s
object encounter will be dominated by cars while driving on the highway, but less dominated by
them on downtown where other classes such as pedestrians and bikes are visible. In human activity
recognition, some activities last for a short term (e.g., a fall down), whereas certain activities last longer
(e.g., a sleep). Figure 1 illustrates that some data distributions in the real world, such as autonomous
driving and human activity recognition, are often temporally correlated. Considering that most

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/TaesikGong/NOTE

………

𝑡𝑖𝑚𝑒

……
Car Cyclist Pedestrian Van Misc Person (sitting)

(a) KITTI dataset.

𝑡𝑖𝑚𝑒

……
Running Walking Standing

(b) HARTH dataset.

Figure 1: Illustration of test sample distributions
along the time axis from real-world datasets: (a)
autonomous driving (KITTI [9]) and (b) human
activity recognition (HARTH [25]). They are
temporally correlated.

Figure 2: Average classification error (%) of ex-
isting TTA methods and our method (NOTE) on
CIFAR10-C [13]. The error rates significantly
increase under the non-i.i.d. setting compared
with the i.i.d. setting. Lower is better.

existing TTA algorithms simply use an incoming batch of test samples for adaptation [29, 33, 41, 44],
the model might be biased towards these imbalanced samples under the temporally correlated test
streams. Figure 2 compares the performance of the state-of-the-art TTA algorithms under the i.i.d. and
non-i.i.d.1 conditions. While the TTA methods perform well under the i.i.d. assumption, their errors
increase under the non-i.i.d. case. Adapting to temporally correlated test data results in overfitting to
temporal distributions, which in turn harms the generalization of the model.

Motivated by this, we present a NOn-i.i.d. TEst-time adaptation scheme, NOTE, that consists of
two components: (a) Instance-Aware Batch Normalization (IABN) and (b) Prediction-Balanced
Reservoir Sampling (PBRS). First, we propose a novel normalization layer, IABN, that eliminates
the dependence on temporally correlated data for adaptation while being robust to distribution
shifts. IABN detects out-of-distribution instances sample by sample and corrects via instance-aware
normalization. The key idea of IABN is synthesizing Batch Normalization (BN) [16] with Instance
Normalization (IN) [37] in a unique way; it calculates how different the learned knowledge (BN) is
from the current observation (IN) and corrects the normalization by the deviation between IN and BN.
Second, we present PBRS that resolves the problem of overfitting to non-i.i.d. samples by mimicking
i.i.d. samples from non-i.i.d. streams. By utilizing predicted labels of the model, PBRS aims for
both time-uniform sampling and class-uniform sampling from the non-i.i.d. streams and stores the
‘simulated’ i.i.d. samples in memory. With the i.i.d.-like batch in the memory, PBRS enables the
model to adapt to the target domain without being biased to temporal distributions.

We evaluate NOTE with state-of-the-art TTA baselines [29, 33, 22, 27, 4, 44] on multiple datasets,
including common TTA benchmarks (CIFAR10-C, CIFAR100-C, and ImageNet-C [13]) and real-
world non-i.i.d. datasets (KITTI [9], HARTH [25], and ExtraSensory [38]). Our results suggest that
NOTE not only significantly outperforms the baselines under non-i.i.d. test data, e.g., it achieves a
21.1% error rate on CIFAR10-C which is on average 15.1% lower than the state-of-the-art method [4],
but also shows comparable performance even under the i.i.d. assumption, e.g., 17.6% error on
CIFAR10-C where the best baseline [44] achieves 17.8% error. Our ablative study demonstrates the
individual effectiveness of IABN and PBRS and further highlights their synergy when jointly used.

Finally, we summarize the key characteristics of NOTE. First, NOTE is a batch-free inference
algorithm (requiring a single instance for inference), different from the state-of-the-art TTA algo-
rithms [29, 33, 41, 4, 44] where a batch of test data is necessary for inference to estimate normalization
statistics (mean and variance). Second, while some recent TTA methods leverage augmentations
to improve performance at the cost of additional forwarding passes [35, 44], NOTE requires only
a single forwarding pass. NOTE updates only the normalization statistics and affine parameters in
IABN, which is, e.g., approximately 0.02% of the total trainable parameters in ResNet18 [12]. Third,
NOTE’s additional memory overhead is negligible. It merely stores predicted labels of test data to run
PBRS. These characteristics make NOTE easy to apply to any existing AI system and particularly,
are beneficial in latency-sensitive tasks such as autonomous driving and human health monitoring.

1We use the terms temporally correlated and non-i.i.d. interchangeably in the context of test-time adaptation.

2

2 Background

2.1 Problem setting: test-time adaptation with non-i.i.d. streams

Test-time adaptation. Let DS = {XS ,Y} be the data from the source domain and DT = {X T ,Y}
be the data from the target domain to adapt to. Each data instance and the corresponding ground-truth
label pair (xi, yi) 2 XS ⇥ Y in the source domain follows a probability distribution PS(x, y).
Similarly, each target test sample and the corresponding label at test time t, (xt, yt) 2 X T ⇥ Y ,
follows a probability distribution PT (x, y) where yt is unknown for the learner. The standard covariate
shift assumption in domain adaptation is defined as PS(x) 6= PT (x) and PS(y|x) = PT (y|x) [32].
Unlike traditional domain adaptation that uses DS and X T collected beforehand for adaptation,
test-time adaptation (TTA) continually adapts a pre-trained model f✓(·) from DS , by utilizing only
xt obtained at test time t.

TTA on non-i.i.d. streams. Note that previous TTA mechanisms typically assume that each target
sample (xt, yt) 2 X T ⇥Y is independent and identically distributed (i.i.d.) following a time-invariant
distribution PT (x, y). However, the data obtained at test time is non-i.i.d. in many scenarios. By
non-i.i.d., we refer to distribution changes over time, i.e., (xt, yt) ⇠ PT (x, y | t), which is a practical
setting in many real world applications [46].

2.2 Batch normalization in TTA

Batch Normalization (BN) [16] is a widely-used training technique in deep neural networks as it
reduces the internal covariant shift problem. Let f 2 RB⇥C⇥L denote a batch of feature maps in
general, where B, C, and L denote the batch size, the number of channels, and the size of each
feature map, respectively. Given the statistics of the feature maps for normalization, say mean µ and
variance �2, BN is channel-wise, i.e., µ,�2 2 RC and computes:

BN(f:,c,:;µc,�
2
c) := � · f:,c,: � µcp

�2
c + ✏

+ �, (1)

where � and � are the affine parameters followed by the normalization, and ✏ > 0 is a small constant
for numerical stability.

Although a conventional way of computing BN in test-time is to set µ and �2 as those estimated
from training (or source) data, say µ̄ and �̄2, the state-of-the-art TTA methods based on adapting
BN layers [29, 33, 41, 44] instead use the statistics computed directly from the recent test batch to
de-bias distributional shifts at test-time, i.e.:

µ̂c :=
1

BL

X

b,l

fb,c,l, and �̂2
c :=

1

BL

X

b,l

(fb,c,l � µ̂c)
2. (2)

This practice is simple yet effective under distributional shifts and is thus adopted in many recent
TTA studies [29, 33, 41, 44]. Based on the test batch statistics, they often further adapt the affine
parameters via entropy minimization of the model outputs [41] or update the entire parameters with
self-training [44].

3 Method

In the same vein as previous work [29, 33, 41], we focus on adapting BN layers in the given model to
perform TTA, and this includes essentially two approaches: (a) re-calibrating (or adapting) channel-
wise statistics for normalization (instead of using those learned from training), and (b) adapting the
affine parameters (namely, � and �) after the normalization with respect to a certain objective based
on test samples, e.g., the entropy minimization of model outputs [41].

Under scenarios where test data are temporally correlated, however, naïvely adapting to the incoming
batch of test samples [29, 33, 41, 44] could be problematic for both approaches: the batch is now more
likely to (a) remove instance-wise variations that are actually useful to predict y, i.e., the “contents”
rather than “styles” through normalization, and (b) include a bias in p(y) rather than uniform, which
can negatively affect the test-time adaptation objective such as entropy minimization.

3

Case1: Out of distribution

Case2: In distribution

𝐈𝐈𝐈𝐈

𝐈𝐈𝐈𝐈

�𝝁𝝁c, �𝝈𝝈c �𝝁𝝁b,c, �𝝈𝝈b,c

𝐈𝐈𝐈𝐈: learned stats

𝐈𝐈𝐈𝐈: instance stats

�𝝁𝝁b,c, �𝝈𝝈b,c�𝝁𝝁c, �𝝈𝝈c

Non-i.i.d.
(temporally
correlated)

𝒙𝒙𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

…

(1) Normalize & Predict via 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (2) Manage Memory & Adapt IABN via 𝐏𝐏𝐈𝐈𝐏𝐏𝐏𝐏

𝐈𝐈𝐈𝐈

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈

�𝝁𝝁c, �𝝈𝝈c �𝝁𝝁b,c, �𝝈𝝈b,c

𝐈𝐈𝐈𝐈 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈

𝐈𝐈𝐈𝐈

�𝝁𝝁b,c, �𝝈𝝈b,c�𝝁𝝁c, �𝝈𝝈c

=

Correct BN stats

Use BN stats

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 = 𝐈𝐈𝐈𝐈+𝝍𝝍(𝐈𝐈𝐈𝐈 − 𝐈𝐈𝐈𝐈)

𝝍𝝍∗: soft-shrinkage

𝝁𝝁𝑡𝑡 ← 𝝁𝝁𝑡𝑡−1, �𝝁𝝁𝑡𝑡
𝝈𝝈𝑡𝑡 ← 𝝈𝝈𝑡𝑡−1, �𝝈𝝈𝑡𝑡

�𝝁𝝁𝑡𝑡, �𝝈𝝈𝑡𝑡

Time-uniform

(𝒙𝒙𝑖𝑖 , �𝑦𝑦𝑖𝑖)

Pr
ed

ic
tio

n-
un

ifo
rm Old New

Class 𝒃𝒃

Class 𝒂𝒂

Class 𝒄𝒄

(𝒙𝒙𝑡𝑡 , �𝑦𝑦𝑡𝑡)

Adapt learned stats

𝒙𝒙𝑡𝑡′ = 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈(𝒙𝒙𝑡𝑡) (𝝁𝝁𝑡𝑡 ,𝝈𝝈𝒕𝒕)(𝝁𝝁𝑡𝑡−1,𝝈𝝈𝑡𝑡−1)

Normalized
output

Figure 3: An overview of the proposed methodology: Instance-Aware Batch Normalization (IABN)
and Prediction-Balanced Reservoir Sampling (PBRS). IABN aims to detect non-i.i.d. streams and in
turn corrects the normalization for inference. PBRS manages data in a time- and prediction-uniform
manner from non-i.i.d. data streams and gradually adapts IABNs with the balanced data afterward.

We propose two approaches to tackle each of the failure modes of adapting BN under temporal
correlation. Our method consists of two components: (a) Instance-Aware Batch Normalization
(IABN) (Section §3.1) to overcome the limitation of BN under distribution shift and (b) Prediction-
Balanced Reservoir Sampling (PBRS) (Section §3.2) to combat with the temporal correlation of test
batches. Figure 3 illustrates the overall workflow of NOTE with IABN and PBRS.

3.1 Instance-Aware Batch Normalization

As described in Section §2.2, recent TTA algorithms rely solely on the test batch to re-calculate BN
statistics. We argue that this common practice does not successfully capture the feature statistics to
normalize the feature map f 2 RB⇥C⇥L under temporal correlation in the test batch B. In principle,
standardizing a given feature map f:,c,: by the statistics µ̂c, �̂

2
c computed across B and L is posited

on premise that averaging information across B can marginalize out uninformative instance-wise
variations for predicting y. Under temporal correlation in B, however, this assumption is no longer
valid, and averaging across B may not fully de-correlate useful information in f:,c,: from µc and �2

c .

In an attempt to bypass such an “over-whitening” effect of using µ̂c and �̂2
c in test-time under temporal

correlation, we propose correcting normalization statistics on a per-sample basis: specifically, instead
of completely switching from the original statistics of (µ̄, �̄2) into (µ̂c, �̂

2
c), our proposed Instance-

Aware Batch Normalization (IABN) considers the instance-wise statistics µ̃, �̃2 2 RB,C of f similarly
to Instance Normalization (IN) [37], namely:

µ̃b,c :=
1

L

X

l

fb,c,l and �̃2
b,c :=

1

L

X

l

(fb,c,l � µ̃b,c)
2. (3)

We assume that µ̃b,c and �̃2
b,c follow the sampling distribution of a sample size L in N (µ̄, �̄2) as the

population. Then the corresponding variances for the sample mean µ̃b,c and the sample variance �̃2
b,c

can be calculated as:

s2µ̃,c :=
�̄2

c

L
and s2�̃2,c :=

2�̄4
c

L� 1
. (4)

IABN corrects (µ̄, �̄2) only in cases when µ̃b,c (and �̃2
b,c) significantly differ from µ̄c (and �̄2

c).
Specifically, we propose to use the following statistics for TTA:

µIABN
b,c := µ̄c + (µ̃b,c � µ̄c;↵sµ̃,c), and (�IABN

b,c)2 := �̄2
c + (�̃2

b,c � �̄2
c ;↵s�̃2,c),

where (x;�) =

8
><

>:

x� �, if x > �
x+ �, if x < ��
0, otherwise

is the soft-shrinkage function. (5)

↵ � 0 is the hyperparameter of IABN that determines the confidence level of the BN statistics. A
high value of ↵ relies more on the learned statistics (BN), while a low value of ↵ is in favor of the
current statistics measured from the instance. Finally, the output of IABN can be described as:

4

Algorithm 1 Prediction-Balanced Reservoir Sampling

Input: target stream xt ⇠ PT (x|t), memory bank M of capacity N
1: M [i] � for i = 1, · · ·N ; and n[c] 0 for c 2 Y
2: for t 2 {1, · · · , T} do
3: n[ŷt] n[ŷt] + 1 // increase the number of samples encountered for the class
4: m[c] |{(x, y) 2M |y = c}| for c 2 Y // count instances per class in memory
5: if |M | < N then // if memory is not full
6: Add (xt, ŷt) to M
7: else
8: C⇤ argmaxc2Y m[c] // get majority class(es)
9: if ŷt /2 C⇤ then // if the new sample is not majority . Prediction-Balanced

10: Randomly pick M [i] := (xi, ŷi) where ŷi 2 C⇤

11: M [i] (xt, ŷt) // replace it with a new sample
12: else . Reservoir Sampling
13: Sample p ⇠ Uniform(0, 1)
14: if p < m[ŷt]/n[ŷt] then
15: Randomly pick M [i] := (xi, ŷi) where ŷi = ŷt
16: M [i] (xt, ŷt) // replace it with a new sample

IABN(fb,c,:; µ̄c, �̄
2
c ; µ̃b,c, �̃

2
b,c) := � ·

fb,c,: � µIABN
b,cq

(�IABN
b,c)2 + ✏

+ �. (6)

Observe that IABN becomes IN and BN when ↵ = 0 and ↵ = 1, respectively. If one chooses
too small ↵ � 0, IABN may remove useful features, e.g., styles, of input (as with IN), which can
degrade the overall classification (or regression) performance [30]. Hence, it is important to choose
an appropriate ↵. Nevertheless, we found that a good choice of ↵ is not too sensitive across tested
scenarios, where we chose ↵ = 4 for all experiments. This way, IABN can be robust to distributional
shifts without the risk of eliminating crucial information to predict y.

3.2 Adaptation via Prediction-Balanced Reservoir Sampling

Temporally correlated distributions lead to an undesirable bias in p(y), and thus adaptation with
a batch of consecutive test samples negatively impacts the adaptation objective, such as entropy
minimization [41]. To combat this imbalance, we propose Prediction-Balanced Reservoir Sampling
(PBRS) that mimics i.i.d. samples from temporally correlated streams with the assistance of a small
(e.g., a mini-batch size) memory. PBRS combines time-uniform sampling and prediction-uniform

sampling to simulate i.i.d. samples from the non-i.i.d. streams. For time-uniform sampling, we adopt
reservoir sampling (RS) [40], a proven random sampling algorithm to collect time-uniform data in a
single pass on a stream without prior knowledge of the total length of data. For prediction-uniform
sampling, we first use the predicted labels to compute the majority class(es) in the memory. We then
replace a random instance of the majority class(es) with a new sample. We detail the algorithm of
PBRS as a pseudo-code in Algorithm 1. We found that these two heuristics can effectively balance
samples among both time and class axes, which mitigates the bias in temporally correlated data.

With the stored samples in the memory, we update the normalization statistics and affine parameters
in the IABN layers. Note that IABN assumes µ̃b,c and �̃2

b,c follow the sampling distribution of
N (µ̄, �̄2) and corrects the normalization if µ̃b,c and �̃2

b,c are out of distribution. While IABN is
resilient to distributional shifts to a certain extent, the assumption might not hold under severe
distributional shifts. Therefore, we aim to find better estimates of µ̄, �̄2 in IABN under distributional
shifts via PBRS. Specifically, we update the normalization statistics, namely the means µ and
variances �2, via exponential moving average: (a) µt = (1 �m)µt�1 +m N

N�1 µ̂t and (b) �2
t =

(1 �m)�2
t�1 +m N

N�1 �̂
2
t where m is a momentum and N is the size of the memory. We further

optimize the affine parameters, scaling factor � and bias term �, via a single backward pass with
entropy minimization, similar to a previous study [41]. These parameters account for only around
0.02% of the total trainable parameters in ResNet18 [12]. The IABN layers are adapted with the

5

N samples in the memory every N test samples. We set the memory size N as 64 following the
common batch size of existing TTA methods [33, 4, 41] to ensure a fair memory constraint.

3.3 Inference

NOTE infers each sample via a single forward pass with IABN layers. Note that NOTE requires only
a single instance for inference, different from the state-of-the-art TTA methods [29, 33, 41, 4, 44] that
require batches for every inference. Moreover, NOTE requires only one forwarding pass for inference,
while multiple forward passes are required in other TTA methods that utilize augmentations [35, 44].
The batch-free single-forward inference of NOTE is beneficial in latency-sensitive tasks such as
autonomous driving and human health monitoring. After inference, NOTE determines whether to
store the sample and predicted label in the memory via PBRS.

4 Experiments

We implemented NOTE and the baselines via the PyTorch framework [31].2 We ran all experiments
with three random seeds and report the means and standard deviations. Additional experimental
details, e.g., hyperparameters of the baselines and datasets, are specified in Appendix A.

Baselines. We consider the following baselines including the state-of-the-art test-time adaptation
algorithms: Source evaluates the model trained from the source data directly on the target data without
adaptation. Test-time normalization (BN stats) [29, 33] updates the BN statistics from a batch of test
data. Online Domain Adaptation (ONDA) [27] adapts batch normalization statistics to target domains
via a batch of target data with an exponential moving average. Pseudo-Label (PL) [22] optimizes the
trainable parameters in BN layers via hard pseudo labels. We update the BN layers only in PL, as
done in previous studies [41, 44]. Test entropy minimization (TENT) [41] updates the BN parameters
via entropy minimization. Laplacian Adjusted Maximum-likelihood Estimation (LAME) [4] takes
a more conservative approach; it modifies the classifier’s output probability and not the internal
parameters of the model itself. By doing so, it prevents the model parameters from over-adapting
to the test batch. Continual test-time adaptation (CoTTA) [44] reduces the error accumulation by
using weight-averaged and augmentation-averaged predictions. It avoids catastrophic forgetting by
stochastically restoring a part of the neurons to the source pre-trained weights.

Adaptation and hyperparameters. We assume the model pre-trained with source data is available
for TTA. In NOTE, we replaced BN with IABN during training. We set the test batch size as
64 and the adaptation epoch as one for adaptation, which is the most common setting among the
baselines [33, 4, 41]. Similarly, we set the memory size N as 64 and adapt the model every 64 samples
in NOTE to ensure a fair memory constraint. We conduct online adaptation and evaluation, where the
model is continually updated. For the baselines, we adopt the best values for the hyperparameters
reported in their papers or the official codes. We followed the guideline to tune the hyperparameters
when such a guideline was available [44]. We use fixed values for the hyperparameters of NOTE,
soft-shrinkage width ↵ = 4 and exponential moving average momentum m = 0.01, and update the
affine parameters via the Adam optimizer [18] with a learning rate of l = 0.0001 unless specified.
We detailed hyperparameter information of the baselines in Appendix A.1.

Datasets. We use CIFAR10-C, CIFAR100-C, and ImageNet-C [13] datasets that are common
TTA benchmarks for evaluating the robustness to corruptions [29, 33, 41, 44, 4]. Both CI-
FAR10/CIFAR100 [19] have 50,000/10,000 training/test data. ImageNet [7] has 1,281,167/50,000
training/test data. CIFAR10/CIFAR100/ImageNet have 10/100/1,000 classes, respectively. CIFAR10-
C/CIFAR100-C/ImageNet-C apply 15 types of corruption to CIFAR10/CIFAR100/ImageNet test
data. Similar to previous studies [29, 33, 41, 44], we use the most severe corruption level of 5. We use
ResNet18 [12] as the backbone network and pre-trained it on the clean training data. Following prior
studies [23, 15, 43, 42], we adopt Dirichlet distribution to generate synthetic non-i.i.d. test streams
from the originally i.i.d. CIFAR10/100 data. The details are provided in Appendix A.2. We vary the
Dirichlet concentration parameter � to simulate diverse streams and visualize the resulting data in
Figure 4. We use � = 0.1 as the default value unless specified. For ImageNet, we sort the test stream

2
https://github.com/TaesikGong/NOTE

6

https://github.com/TaesikGong/NOTE

Table 1: Average classification error (%) and their corresponding standard deviations on CIFAR10-
C/100-C and ImageNet-C under temporally correlated (non-i.i.d.) and uniformly distributed (i.i.d.) test
data stream. Bold fonts indicate the lowest classification errors, while Red fonts show performance
degradation after adaptation. Values encompassed by parentheses refer to NOTE used directly with
test batches (without using PBRS). Averaged over three runs.

Temporally correlated test stream Uniformly distributed test stream
Method CIFAR10-C CIFAR100-C ImageNet-C Avg CIFAR10-C CIFAR100-C ImageNet-C Avg
Source 42.3 ± 1.1 66.6 ± 0.1 86.1 ± 0.0 65.0 42.3 ± 1.1 66.6 ± 0.1 86.1 ± 0.0 65.0
BN Stats [29] 73.4 ± 1.3 65.0 ± 0.3 96.9 ± 0.0 78.5 21.6 ± 0.4 46.6 ± 0.2 76.0 ± 0.0 48.1
ONDA [27] 63.6 ± 1.0 49.6 ± 0.3 89.0 ± 0.0 67.4 21.7 ± 0.4 46.5 ± 0.1 75.9 ± 0.0 48.0
PL [22] 75.4 ± 1.8 66.4 ± 0.4 98.9 ± 0.0 80.2 21.6 ± 0.2 43.1 ± 0.3 74.4 ± 0.2 46.4
TENT [41] 76.4 ± 2.7 66.9 ± 0.6 96.9 ± 0.0 80.1 18.8 ± 0.2 40.3 ± 0.2 76.0 ± 0.0 45.0
LAME [4] 36.2 ± 1.3 63.3 ± 0.3 82.7 ± 0.0 60.7 44.1 ± 0.5 68.8 ± 0.1 86.3 ± 0.0 66.4
CoTTA [44] 75.5 ± 0.7 64.2 ± 0.2 97.0 ± 0.0 78.9 17.8 ± 0.3 44.3 ± 0.2 71.5 ± 0.0 44.6

NOTE 21.1 ± 0.6 47.0 ± 0.1 80.6 ± 0.1 49.6 20.1 ± 0.5
(17.6 ± 0.3)

46.4 ± 0.0
(41.0 ± 0.2)

70.3 ± 0.0
(71.7 ± 0.0)

45.6
(43.4)

timeClass distribution

D
iri

ch
le

t p
ar

am
et

er
 𝛿

0.001

0.01

0.1

1.0

10.0

uniform

Figure 4: Illustration of syn-
thetic non-i.i.d. streams sampled
from Dirichlet distribution vary-
ing � on CIFAR10-C. uniform

denotes an i.i.d. condition. The
lower the �, the more temporally
correlated the distribution.

(a) Effect of Dirichlet concen-
tration parameter �.

(b) Effect of batch size.

Figure 5: Average classification error (%) under the non-i.i.d.
setting with CIFAR10-C dataset. We vary (a) the Dirichlet con-
centration parameter � to investigate the impact of the degree
of temporal correlation and (b) batch size to understand the be-
haviors of the TTA methods. Averaged over three runs. Lower is
better.

as the number of test samples per class is not enough for generating temporally correlated streams via
Dirichlet distribution. We additionally provide an experiment with MNIST-C data [28] in the appendix,
which shows similar takeaways to our experiments with CIFAR10-C/CIFAR100-C/ImageNet-C.

Overall result. Tables 1 shows the result under the temporally correlated (non-i.i.d.) data and the
uniform (i.i.d.) data, respectively. We observe significant performance degradation in the baselines
under the temporally correlated setting. For BN Stats, PL, TENT, and CoTTA, this degradation
is particularly due to the dependence on the test batch for the re-calculation of the BN statistics.
Updating the batch statistics from test data via exponential moving average (ONDA) also suffers
from the temporally correlated data. This indicates relying on the test batch for re-calculating the
BN statistics indeed cancels out meaningful instance-wise variations under temporal correlation.
Interestingly, LAME works better in the non-i.i.d. setting than in the i.i.d. setting, which is consistent
with previous reports [4]. The primary reason is, as stated by the authors, it “discourages deviations
from the predictions of the pre-trained model,” and thus it “does not noticeably help in i.i.d and
class-balanced scenarios.”

NOTE achieves on average 11.1% improvement over the best baseline (LAME) under the non-i.i.d.
setting. With the i.i.d. assumption, NOTE still achieves comparable performance to the baselines.
When we know the target samples are i.i.d., we can simply use the test batch without using PBRS. For
this variant version of NOTE, we update IABN with incoming test batches directly using a ten times
higher learning rate of 0.001 following previous work [41, 44]. We report the result of the variant

7

Table 2: Average classification error (%) and their corresponding standard deviations on three real
test data streams: KITTI, HARTH, and ExtraSensory. Bold fonts indicate the lowest classification
errors, while Red fonts show performance degradation after adaptation. Averaged over three runs.

Real test stream
Method KITTI HARTH ExtraSensory Avg
Source 12.3 ± 2.3 62.6 ± 8.5 50.2 ± 2.2 41.7
BN Stats [29] 35.4 ± 0.5 68.6 ± 1.1 56.0 ± 0.9 53.4
ONDA [27] 26.3 ± 0.5 69.3 ± 1.1 48.2 ± 1.5 47.9
PL [22] 39.0 ± 0.3 64.8 ± 0.6 56.0 ± 0.9 53.3
TENT [41] 39.6 ± 0.2 64.1 ± 0.7 56.0 ± 0.8 53.2
LAME [4] 11.3 ± 2.9 61.0 ± 10.0 50.7 ± 2.7 41.0
CoTTA [44] 35.4 ± 0.6 68.7 ± 1.1 56.0 ± 0.9 53.4
NOTE 10.9 ± 3.6 51.0 ± 5.6 45.4 ± 2.6 35.8

version of NOTE in the parentheses, which achieves on average 2.2% improvement further when the
i.i.d. assumption is known.

Effect of the degree of temporal correlation. We also investigate the effect of the degree of
temporal correlation for TTA algorithms. Figure 5a shows the result. The lower � is, the severer the
temporal correlation becomes. The error rates of most of the baselines deteriorate as � decreases,
which shows that the existing TTA baselines are susceptible to temporally correlated data. NOTE
shows consistent performance among all � values, indicating its robustness under temporal correlation.

Effect of batch size. While we experiment with a widely-used value of 64 as the batch size (or
memory size in NOTE), one might be curious about the impact of batch size under temporally
correlated streams. Figure 5b shows the result with six different batch sizes. As shown, NOTE is not
much affected by the batch size, while most of the baselines recover performance degradation as
the batch size increases. This is because a higher batch size has a better chance of adaptation with
balanced samples under temporally correlated streams. Increasing the batch size, however, mitigates
temporal correlation at the expense of inference latency and adaptation speed.

4.1 Real-distributions with domain shift

Datasets. We evaluate NOTE under three real-world distribution datasets: object detection in
autonomous driving (KITTI [9]), human activity recognition (HARTH [25]), and user behavioral
context recognition (ExtraSensory [38]). Additional dataset-specific details are in Appendix A.2.

KITTI is a well-known autonomous driving dataset that provides consecutive frames that contains
natural temporal correlation in driving contexts. We adapted from KITTI to KITTI-Rain [11] - a
dataset that converted KITTI images to rainy images. This contains 7,481/7,800 train/test samples
with nine classes. We use ResNet50 [12] pre-trained on ImageNet [8] as the backbone network.

HARTH was collected from 22 users in free-living environments for seven days. Each user was
equipped with two three-axial Axivity AX3 accelerometers for recording human activities. We use 15
users collectively as the source domain and the remaining seven users as each target domain, which
entails natural domain shifts from source users to target users as different physical conditions make
domain shifts across users. HARTH contains 82,544/39,377 train/test samples with 12 classes. We
report the average error over all target domains. We use four one-dimensional convolutional layers
followed by one fully-connected layer as the backbone network for HARTH.

The Extrasensory dataset collected users’ own smartphone sensory data (motion sensors, audio,
etc.) in the wild for seven days, aiming to capture people’s authentic behaviors in their regular
activities. We use 16 users as the source domain and seven users as target domains. ExtraSensory
includes 17,777/4,862 train/test data with five classes. For ExtraSensory, we use two one-dimensional
convolutional layers followed by one fully-connected layer as the backbone network. For both
HARTH and ExtraSensory models, a single BN layer follows each convolutional layer.

8

Table 3: Average classification error (%) and corresponding standard deviations of varying ablation
settings on CIFAR10-C/100-C under temporally correlated (non-i.i.d.) and uniformly distributed
(i.i.d.) test data stream. Bold fonts indicate the lowest classification errors. Averaged over three runs.

Temporally correlated test stream Uniformly distributed test stream
Method CIFAR10-C CIFAR100-C Avg CIFAR10-C CIFAR100-C Avg
Source 42.3 ± 1.1 66.6 ± 0.1 54.4 42.3 ± 1.1 66.6 ± 0.1 54.4
IABN 24.6 ± 0.6 54.5 ± 0.1 39.5 24.6 ± 0.6 54.5 ± 0.1 39.5
PBRS 27.5 ± 1.0 51.7 ± 0.2 39.6 25.8 ± 0.2 51.3 ± 0.1 38.5
IABN+RS 20.5 ± 1.5 48.2 ± 0.2 34.3 20.7 ± 0.6 48.3 ± 0.3 34.5
IABN+PBRS 21.1 ± 0.6 47.0 ± 0.1 34.0 20.1 ± 0.5 46.4 ± 0.0 33.2

Result. Table 2 shows the result for the real-world datasets. The overall trend is similar to the tem-
poral correlation experiments with CIFAR10-C/CIFAR100-C/ImageNet-C datasets, which indicates
that the real-world datasets are indeed temporally correlated. NOTE consistently reduces errors after
adaptation under real-world distributions. We believe this demonstrates NOTE is a promising method
to be utilized in various real-world ML applications with distributional shifts. We illustrate real-time
classification error changes for real-world datasets in the appendix.

4.2 Ablation study

We conduct an ablative study to further investigate the individual components’ effectiveness. Table 3
shows the result under both i.i.d. and non-i.i.d. settings. Using IABN alone significantly reduces error
rates over Source, demonstrating the effectiveness of correcting normalization for out-of-distribution
samples. Using PBRS with BN shows comparable improvement with the IABN-only result. Note
that there is only a marginal gap (around 1%) between the non-i.i.d. and i.i.d. results in PBRS. This
indicates that PBRS could effectively simulate i.i.d. samples from non-i.i.d. streams. The joint use of
IABN and PBRS outperforms using either of them, meaning that PBRS provides IABN with better
estimates for the normalizing operation. In addition, PBRS is better than Reservoir Sampling (RS)
that has been a strong baseline in continual learning [17, 5]. This shows storing prediction-balanced
sampling in addition to time-uniform sampling leads to better adaptation in TTA. We also investigated
the joint use of IN and PBRS with the combination of IABN and PBRS on CIFAR100-C, and the
result shows that IABN+PBRS (47.0%) achieves a lower error rate than IN+PBRS (52.5%) on
CIFAR100-C under temporal correlation.

5 Related work

Test-time adaptation. Test-time adaptation (TTA) attempts to overcome distributional shifts with
test data without the cost of data acquisition or labeling. TTA adapts to the target domain with only test
data on the fly. Most existing TTA algorithms rely on a batch of test samples to adapt [29, 33, 41, 44]
to re-calibrate BN layers on the test data. Simply using the statistics of a test batch in BN layers
improves the robustness under distributional shifts [29, 33]. ONDA [27] updates the BN statistics with
test data via exponential moving average. TENT [41] further updates the scaling and bias parameters
in BN layers via entropy minimization.

Latest TTA studies consider distribution changes of test data [4, 44]. LAME [4] corrects the output
probabilities of a classifier rather than tweaking the model’s inner parameters. By restraining the
model from over-adapting to the test batch, LAME allows the model to be more robust under non-
i.i.d. scenarios. However, LAME does not have noticeable performance gains in class-balanced,
standard i.i.d. scenarios. The primary reason is, as stated by the authors, it “discourages deviations
from the predictions of the pre-trained model,” and thus it “does not noticeably help in i.i.d and
class-balanced scenarios.” CoTTA [44] aims to adapt to continually changing target environments via
a weight-averaged teacher model, weight-averaged augmentations, and stochastic restoring. However,
CoTTA assumes i.i.d. test data within each domain and updates the entire model which increases
computational costs.

There also exist works [35, 24] utilizing domain-specific self-supervision to resolve the distribution
shift with test data, but are complementary to ours, i.e., we can also optimize the self-supervised loss

9

instead of the entropy loss, and not applicable to our setups of real test data streams as designing
good self-supervision for these domains is highly non-trivial.

Replay memory. Replay memory is one of the major approaches in continual learning; it manages
a buffer to replay previous data for future learning to prevent catastrophic forgetting. Reservoir
sampling [40] is a random sampling algorithm that collects time-uniform samples from unknown
sample streams with a single pass, and it has been proven to be a strong baseline in continual
learning [17, 5]. GSS [1] stores samples to a memory in a way that maximizes the gradient direction
among those samples. A recent study modifies reservoir sampling to balance classes under imbalanced
data when the labels are given [6]. Our memory management scheme (PBRS) is inspired by these
studies to prevent catastrophic forgetting in test-time adaptations.

6 Discussion and conclusion

This paper highlights that real-world distributions often change across the time axis, and existing test-
time adaptation algorithms mostly suffer from the non-i.i.d. test data streams. To address this problem,
we present a NOn-i.i.d. TEst-time adaptation algorithm, NOTE. Our experiments evaluated robustness
under corruptions and domain adaptation on real-world distributions. The results demonstrate that
NOTE not only outperforms the baselines under the non-i.i.d./real distribution settings, but it also
shows comparable performance under the i.i.d. assumption. We believe that the insights and findings
from this study are a meaningful step toward the practical impact of the test-time adaptation paradigm.

Limitations. NOTE and most state-of-the-art TTA algorithms [29, 22, 27, 33, 41, 44] assume
that the backbone networks are equipped with BN (or IABN) layers. While BN is a widely-used
component in deep learning, several architectures, such as LSTMs [14] and Transformers [39], do
not embed BN layers. A recent study uncovered that BN is advantageous in Vision Transformers [45],
showing potential room to apply our idea to architectures without BN layers. However, more in-depth
studies are necessary to identify the actual applicability of BN (or IABN) to those architectures.
While LAME [4] is applicable to models without BN, its limitation is the performance drop in i.i.d.
scenarios, as shown in both its paper and our evaluation. While NOTE shows its effectiveness in both
non-i.i.d and i.i.d. scenarios, a remaining challenge is to design an algorithm that generalizes to any
architecture. We believe the findings and contributions of our work could give valuable insights to
future endeavors on this end.

Potential negative societal impacts. As TTA relies on unlabeled test samples and changes the
model accordingly, the model is exposed to potential data-driven biases after adaptation, such as
fairness issues [3] and adversarial attacks [36]. In some sense, the utility of TTA comes at the
expense of exposure to threats. This vulnerability is another crucial problem that both ML researchers
and practitioners need to take into consideration. In addition, TTA entails additional computations
for adaptation with test data, which may have negative impacts on environments, e.g., increasing
electricity consumption and carbon emissions [34]. Nevertheless, we believe NOTE would not
exacerbate this issue as it is computationally efficient as mentioned in Section §1.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their constructive feedback and suggestions to improve
this paper. This work was supported in part by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIP) (No.NRF-2020R1A2C1004062) and Center for
Applied Research in Artificial Intelligence (CARAI) grant funded by Defense Acquisition Program
Administration (DAPA) and Agency for Defense Development (ADD) (UD190031RD).

References
[1] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection

for online continual learning. Advances in neural information processing systems, 32, 2019.

[2] Elon Bachman and I Capulet. Digital record of tesla crashes resulting in death, May 2022.

10

[3] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness in machine learning. Nips

tutorial, 1:2, 2017.

[4] Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online
test-time adaptation. In Proceedings of Conference on Computer Vision and Pattern Recognition,
2022.

[5] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic
memories. ICML Workshop: Multi-Task and Lifelong Reinforcement Learning, 2019.

[6] Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced
data. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Confer-

ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
1952–1961. PMLR, 13–18 Jul 2020.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 248–255, 2009.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern

recognition, pages 248–255. Ieee, 2009.

[9] A Geiger, P Lenz, C Stiller, and R Urtasun. Vision meets robotics: The kitti dataset. The

International Journal of Robotics Research, 32(11):1231–1237, 2013.

[10] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised monocular depth
estimation with left-right consistency, 2016.

[11] Shirsendu Sukanta Halder, Jean-François Lalonde, and Raoul de Charette. Physics-based
rendering for improving robustness to rain, 2019.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, Los
Alamitos, CA, USA, jun 2016. IEEE Computer Society.

[13] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. Proceedings of the International Conference on Learning

Representations, 2019.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[15] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the

32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine

Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

[17] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceed-

ings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative

Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational

Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[18] Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-

tional Conference on Learning Representations (ICLR), 2015.

[19] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s

thesis, Department of Computer Science, University of Toronto, 2009.

11

[20] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and
Andrew T. Campbell. A survey of mobile phone sensing. IEEE Communications Magazine,
48(9):140–150, 2010.

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[22] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on challenges in representation learning, ICML, page
896, 2013.

[23] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data
silos: An experimental study. arXiv preprint arXiv:2102.02079, 2021.

[24] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and
Alexandre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? Advances

in Neural Information Processing Systems, 34, 2021.

[25] Aleksej Logacjov, Kerstin Bach, Atle Kongsvold, Hilde Bremseth Bårdstu, and Paul Jarle Mork.
Harth: A human activity recognition dataset for machine learning. Sensors, 21(23), 2021.

[26] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. 2017.

[27] Massimiliano Mancini, Hakan Karaoguz, Elisa Ricci, Patric Jensfelt, and Barbara Caputo. Kit-
ting in the wild through online domain adaptation. In 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 1103–1109. IEEE, 2018.

[28] Norman Mu and Justin Gilmer. Mnist-c: A robustness benchmark for computer vision. arXiv

preprint arXiv:1906.02337, 2019.

[29] Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and
Jasper Snoek. Evaluating prediction-time batch normalization for robustness under covariate
shift. arXiv preprint arXiv:2006.10963, 2020.

[30] Hyeonseob Nam and Hyo-Eun Kim. Batch-instance normalization for adaptively style-invariant
neural networks. Advances in Neural Information Processing Systems, 31, 2018.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[32] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence.
Dataset shift in machine learning. Mit Press, 2008.

[33] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural

Information Processing Systems, volume 33, pages 11539–11551. Curran Associates, Inc., 2020.

[34] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai. Commun. ACM,
63(12):54–63, nov 2020.

[35] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts. In International

Conference on Machine Learning, pages 9229–9248. PMLR, 2020.

[36] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

12

[37] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[38] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. Recognizing detailed human context in
the wild from smartphones and smartwatches. IEEE Pervasive Computing, 16(4):62–74, 2017.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information

processing systems, 30, 2017.

[40] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57,
mar 1985.

[41] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In International Conference on Learning

Representations, 2021.

[42] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

[43] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information

processing systems, 33:7611–7623, 2020.

[44] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of Conference on Computer Vision and Pattern Recognition, 2022.

[45] Zhuliang Yao, Yue Cao, Yutong Lin, Ze Liu, Zheng Zhang, and Han Hu. Leveraging batch nor-
malization for vision transformers. In 2021 IEEE/CVF International Conference on Computer

Vision Workshops (ICCVW), pages 413–422, 2021.

[46] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on non-iid data: A
survey. Neurocomputing, 465:371–390, 2021.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section §6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section §6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] Code is
available at https://github.com/TaesikGong/NOTE.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section §4 and Appendix A.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We ran the entire experiments with three different random
seems (0,1,2) and reported the standard deviations.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

https://github.com/TaesikGong/NOTE

	Introduction
	Background
	Problem setting: test-time adaptation with non-i.i.d. streams
	Batch normalization in TTA

	Method
	Instance-Aware Batch Normalization
	Adaptation via Prediction-Balanced Reservoir Sampling
	Inference

	Experiments
	Real-distributions with domain shift
	Ablation study

	Related work
	Discussion and conclusion
	Experimental details
	Baseline details
	Dataset details
	Robustness to corruptions
	Real-distributions with domain shift

	Domain-wise results
	Robustness to corruptions
	Real distributions with domain shift
	Ablation study

	Replacing BN with IABN during test time
	License of assets

