
Explaining a Reinforcement Learning Agent via
Prototyping - Supplementary Material

Ronilo J. Ragodos
Department of Business Analytics

University of Iowa
Iowa City, IA 52242

ronilo-ragodos@uiowa.edu

Tong Wang ∗

Department of Business Analytics
University of Iowa

Iowa City, IA 52242
tong-wang@uiowa.edu

Qihang Lin
Department of Business Analytics

University of Iowa
Iowa City, IA 52242

qihang-lin@uiowa.edu

Xun Zhou
Department of Business Analytics

University of Iowa
Iowa City, IA 52242

xun-zhou@uiowa.edu

A Appendix

A.1 Encoder Pre-training

To begin the pre-training routine, we construct a VAE whose encoder-decoder structures are based on
the ResNet-18 architecture[1]. We do not use ResNet-18 models that were pre-trained themselves
on ImageNet[2]. The variational encoder fθ and decoder gϕ are both based on the ResNet-18 ar-
chitecture. The implementation of our VAE comes from https://github.com/julianstastny/
VAE-ResNet18-PyTorch. In order to facilitate encoding stacks of 4 greyscale images (instead of
RGB images), we change the encoder’s first convolutional unit to accept 4 input channels and remove
the last fully connected layer. Likewise, the decoder outputs 4 channel states. Having created a
VAE in this manner, we proceed with Algorithm 1. We perform N = 100 epochs of training for
each experiment. The VAE is always trained on the same training data as is used in the downstream
training task. See Section A.2 for details.

ProtoX Pre-Training Hyperparameters All experiments use a learning rate of η = 1e− 4 and
the Adam optimizer[3]. All experiments set δ = 15, | B |= 128, and m1 = 2, m2 = 2.5.

Recall the training objective of a β-VAE:

LV AE(θ, ϕ, β;x, z) = Egϕ(z|x)[logfθ(x | z)]− βDkl(gϕ(z | x)∥p(z)) (1)

and the quadruplet loss:

Lquadruplet(st, s
+
t , s

−
t , s

−−
t) = max(

∥∥fθ(st)− fθ(s
+
t)

∥∥2
2
−

∥∥fθ(st)− fθ(s
−
t)

∥∥2
2
+m1, 0) (2)

+max(
∥∥fθ(st)− fθ(s

+
t)

∥∥2
2
−

∥∥fθ(s−t)− fθ(s
−−
t)

∥∥2
2
+m2, 0)

In the siamese VAE objective, the coefficient of the quadruplet loss term is set to 1000 and the
coefficient of the KL-Divergence term is 1.5 (technically making the model a β-VAE).

∗corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/julianstastny/VAE-ResNet18-PyTorch
https://github.com/julianstastny/VAE-ResNet18-PyTorch

Algorithm 1 Pre-training phase

Require: Training data Dtr, validation data Dval, VAE with CNN encoder fθ and decoder gϕ,
window size δ > 0, batch size | B |, margins m1 and m2, learning rate ηe > 0, and number of
training epochs N .

1: for Epoch e = 0, 1, ..., N do
2: Sample batch B from Dtr

3: Let
T = {(a, p, n1, n2) ∈ B4|(a, p, n1, n2) is a valid quadruplet.}

4: Compute gradients of Eq. 1 w.r.t θ and ϕ over T
5: Compute gradients of Eq. 2 w.r.t θ over B
6: Update θ and ϕ according to their gradients
7: end for

A.2 Behavior Cloning Training

A.2.1 ProtoX/ResNet-BC

All experiments use 30,000 samples from the expert for training. These 30,000 samples come
from one set of trajectories. 80% of this is used for training and the remaining 20% is used for
validation/early stopping. Another separate set of trajectories is used to gather 10,000 more samples
for fidelity evaluation. The data used to evaluate sensitivity are generated the same way. In the
Pong and Super Mario games, the states are cropped to remove the score information. In particular,
rectangles of height 15 are removed from the states.

To begin our downstream behavior cloning training routine, we construct a ProtoX model whose
encoder fθ is pre-trained using Algorithm 1. The isometry layer A is initialized to the identity matrix.
Although the identity is a trivial minimizer of the isometry penalty, we have noticed empirically that
trained ProtoX models do not have A set to be the identity.

ProtoX Downstream Hyperparameters We allow a maximum of 1000 training epochs of training
and set an early stopping threshold of 50. We use the Adam optimizer. The learning rate in each
experiment is set to 5e− 6. Recall the training objective of ProtoX:

L({pak}a∈A
k=1,...,K , A,W) =

1

n

n∑
i=1

LCE(yi, (e
a(xi,W))a∈A) + λ1Sep+ λ2Clst+ λ3Rep+ λ4Iso, (3)

In all experiments, we set λ1 = 1e− 4, λ2 = 4e− 4, λ3 = 1e− 5, and λ4 = 1e− 8. When training
ResNet-BC, everything is the same except 1) the prototype-projection step is removed and 2) only
Cross Entropy is minimized.

A.2.2 VIPER

VIPER uses the DAGGER algorithm [4] to train decision tree classifiers. Because decision trees
cannot process pixels as ProtoX can, we must manually extract meaningful features from the game
states supplied by the OpenAI Gym Atari emulator. By inspecting the emulator’s RAM at each time
step, we may extract meaningful features without using the pixel-based states. At each time step of
Pong games played by the PPO expert, we extract the positions of the player paddle, enemy paddle,
and ball. By aggregating 4 time steps, we obtain the velocity, acceleration, and jerk of the paddles and
ball. By supplying the VIPER agent with all of this information, we assume the Pong environment is
appropriately modeled as fully-observed MDP.

We perform a similar processing routine for Seaquest. From the RAM states, we supply VIPER with
1) the position, velocity, acceleration, and jerk of the player submarine, 2) player direction, 3) player
missile position and direction, 4) player oxygen level, 5) number of divers collected by the diver, and
finally 6) the positions and directions of divers and enemy missiles.

We were able to mine this information from the RAM states using RAM annotations given
here: https://github.com/mila-iqia/atari-representation-learning/blob/master/
atariari/benchmark/ram_annotations.py.

2

https://github.com/mila-iqia/atari-representation-learning/blob/master/atariari/benchmark/ram_annotations.py
https://github.com/mila-iqia/atari-representation-learning/blob/master/atariari/benchmark/ram_annotations.py

A.2.3 GAIfO

The actor and critic in our implementation are given as a twin-headed network. They share an
encoder given as a ResNet-18. The policy head and value head are both single linear layers. The
discriminator is a 3-layer MLP with ReLU activations. Each network uses the Adam Optimizer. We
substitute GAIfO’s TRPO update step with PPO. We use a PPO implementation from https://
raw.githubusercontent.com/vpj/rl_samples/master/ppo.py with minimal changes made
to suit GAIfO. In particular, the reward function was changed as per the pseudocode provided in [5].
The code was also changed to accommodate Pong, Seaquest, and Super Mario Bros. The original
implementation was meant to only handle structured data.

Our GAIfO implementation employs early stopping with a threshold of 20 epochs. The metric to
evaluate model improvement is fidelity. To obtain a fidelity measurement, we roll out the GAIfO
policy and check the percentage of time steps in which it agreed with the expert.

Algorithm 2 ProtoX Training Routine

Require: Expert dataset D = {(xi, ai)}ni=1, ProtoX P , number of epochs N
for Epoch e = 0, 1, ..., N do

Fit P on D minimizing L
if e mod 25 = 0 then

for k = 0, ...,K − 1 do
pak ← argmin(x,a′)∈D|a′=a ∥Afθ(x)− pak∥2

end for
Freeze prototypes and Isometry layer
for l = 0, ..., 19 do

Fit P on D minimizing L
end for
Unfreeze prototypes and Isometry layer

end if
end for
Return the best P on validation.

A.3 Similar States and Effect of Isometry Layer

In this section, we provide more examples of what states our model thinks are similar. To do
this, we first sample a set of training data states xt and show the top 10 states yt that maximize
sim(fθ(xt), fθ(yt)). To show how the isometry layer changes encodings, we also overlay the top 10
states y′t that maximize sim(Afθ(xt), Afθ(y

′
t)). See Figures 2 and 3 an example from Super Mario

Bros. 1-1. We note that both fθ and Afθ generally see states within a small temporal window as
similar. These results show that the isometry layer is effective in allowing some evolution of the
encoding space without throwing away what was learned by fθ.

We also visualize the effect of the isometry layer using t-SNE plots. For each game, we compare t-
SNE plots of the encodings of fθ versus those of Afθ. Generally speaking, we see that Afθ partitions
the encodings by their corresponding actions. There are large groups for each action that are further
partitioned into smaller groups. The pretrained encoders fθ seem to find many small groups sharing
the same action. However, these small groups are not part of larger groups with the same associated
action as with Afθ. Rather, they are mixed. This phenomenon presumably occurs because, after all,
the objective of ProtoX should encourage Afθ to separate encodings by their corresponding action.

A.3.1 Pong

3

https://raw.githubusercontent.com/vpj/rl_samples/master/ppo.py
https://raw.githubusercontent.com/vpj/rl_samples/master/ppo.py

(a) fθ (b) Afθ

Figure 1: t-SNE plots of encodings for Pong

Figure 2: The top 30 most similar states, as viewed by fθ, include those where the player score varies
and the ball and paddles vary within a small temporal window.

Figure 3: The top 30 most similar states, as viewed by Afθ, include those where the player score
varies, and the ball and paddle positions vary significantly (but along a trajectory in which the ball
bounces off the bottom of the screen and the player paddle moves to intercept it).

A.3.2 Seaquest

(a) fθ (b) Afθ

Figure 4: t-SNE plots of encodings for Seaquest

4

(a) fθ (b) Afθ

Figure 5: For Seaquest, fθ sees the top 30 most similar states just as those that lie in a small
temporal window around the input, while Afθ captures a few different circumstances where the
player submarine is shooting at an enemy to the right of the screen.

A.3.3 Super Mario 1-1

(a) fθ (b) Afθ

Figure 6: t-SNE plots of encodings for Super Mario 1-1

Figure 7: The top 30 most similar states, as viewed by fθ, capture variation in Mario’s vertical
position along with instances where he is jumping over pipes.

Figure 8: The top 30 most similar states, as viewed by Afθ, capture Mario jumping over a pipe, over
a barrier, over a Goomba, and up a stairway.

5

We also provide gridded versions of Figures 4 and 5 in the main paper, to more clearly show the
image contents.

Figure 9: The top 24 most similar states, as viewed by fθ, for the same input used in Figure 4 of the
main paper. The yellow bordered image is the input.

A.3.4 Super Mario 8-3

(a) fθ (b) Afθ

Figure 10: t-SNE plots of encodings for Super Mario 8-3

Figure 11: The top 30 most similar states, as viewed by fθ, just include Mario’s trajectory jumping
over the piranha plant in the pipe.

6

Figure 12: The top 30 most similar states, as viewed by Afθ, include game frames both before and
after Mario has completed his jump over the piranha plant in the pipe.

Figure 13: This is further justification of the claim in Figure 8 in the main paper that the good agent
was jumping to kill the Goomba. In this example, a different scenario where the agent tries to kill a
Goomba (left) is justified using the same prototype from Figure 8c (right) in the main paper. In the
prototype, the agent focuses on a region encompassing where Mario will kill the Goomba.

A.4 Sensitivity Analyses

In this section, we perform sensitivity analyses for Pong, Seaquest, and Super Mario 8-3 for each
baseline in order to compare with those of ProtoX. See Table 1 below for the results. We find that
ProtoX is competitive with its black-box analogue ResNet-BC and far superior to VIPER and GAiFO
in terms of sensitivity to flip-points.

Model Pong Seaquest Super Mario 1-1 Super Mario 8-3
ProtoX 84% 87% 94% 89%
ResNet-BC 80% 99% 97% 98%
VIPER 40% 21% – –
GAiFO 22% 6% 3% 3%

Table 1: Comparison of sensitivities across models and games

A.5 Importance Maps

The importance maps we generate are meant to show which areas of ProtoX’s learned prototypes
are important to the agent for a given input state s. The input state s is of size 84 × 84 × 4; s is
composed of 4 consecutive greyscale game frames of size 84× 84. The prototypes p are latent state
representations though, and so need to be mapped back into the game state space. Denote the game
state representative of p as x. We create the importance maps by repeatedly masking patches of x, and
checking how the similarity with s changes. More concretely, we construct a tensor x′ by masking
a contiguous 7× 7× 4 region of x. We then compute ∆ =| sim(Afθ(s), x)− sim(Afθ(s), x

′) |.
This process is similar to an ablation study that seeks to test if ProtoX still views prototypes as similar
to inputs after masking various patches of the prototypes. A large ∆ indicates that the masked region
is important. The intensity of the importance map at a given pixel is the average of all ∆ values
computed for patches containing the pixel. We iteratively mask patches over the entire image, moving
the mask horizontally and vertically with a step of 1 pixel each time. Then every pixel (except the

7

ones on the edges) will be evaluated in 49 such evaluations. We average the resulting 49 ∆s to obtain
the importance of that pixel. Then, to highlight the most important area, we keep only the top 95% of
pixels with the highest values. The rest are set to 0. See the algorithm block for a detailed description.
To generate the importance maps, we use H = W = 84, and m = 14. See Figure 13 for another
example of an importance map.

Algorithm 3 Importance Map Generation

Require: Input state s, prototype p, prototype state representative sp, state height H , state width W ,
heat map h initialized to 0H×W , mask size m

1: e← f(s)
2: s← sim(e, p)
3: r ← ⌊m/2⌋
4: for i = −r, , ..., H − r do
5: for j = −r, ...,W − r do
6: sp′ ← sp
7: xmin = max(0, i)
8: xmax ← min(i+m, 84)
9: ymin ← max(0, j)

10: ymax ← min(j +m, 84)
11: for c = 1, 2, 3, 4 do
12: sp′[c][xmin : xmax, ymin : ymax]← 0
13: end for
14: f ′ ← f
15: e′ ← f(sp′)
16: s′ ← sim(e′, p)
17: h[xmin : xmax, ymin : ymax] = h[xmin : xmax, ymin : ymax]+ | s− s′ |
18: end for
19: end for
20: h← h/m2k
21: return h

A.6 Links to Relevant Resources

The emulator for the Super Mario Bros. games can be found at:
https://github.com/Kautenja/gym-super-mario-bros

The (PyTorch) PPO experts for the Super Mario Bros. levels can be found at:
https://github.com/uvipen/Super-mario-bros-PPO-pytorch

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition,

2015.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[4] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings, 2011.

[5] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation, 2018.

8

https://github.com/Kautenja/gym-super-mario-bros
https://github.com/uvipen/Super-mario-bros-PPO-pytorch

	Appendix
	Encoder Pre-training
	Behavior Cloning Training
	ProtoX/ResNet-BC
	VIPER
	GAIfO

	Similar States and Effect of Isometry Layer
	Pong
	Seaquest
	Super Mario 1-1
	Super Mario 8-3

	Sensitivity Analyses
	Importance Maps
	Links to Relevant Resources

