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Abstract

Visual information arriving at the retina is transmitted to the brain by signals in
the optic nerve, and the brain must rely solely on these signals to make inferences
about the visual world. Previous work has probed the content of these signals
by directly reconstructing images from retinal activity using linear regression
or nonlinear regression with neural networks. Maximum a posteriori (MAP)
reconstruction using retinal encoding models and separately-trained natural image
priors offers a more general and principled approach. We develop a novel method
for approximate MAP reconstruction that combines a generalized linear model
for retinal responses to light, including their dependence on spike history and
spikes of neighboring cells, with the image prior implicitly embedded in a deep
convolutional neural network trained for image denoising. We use this method to
reconstruct natural images from ex vivo simultaneously-recorded spikes of hundreds
of retinal ganglion cells uniformly sampling a region of the retina. The method
produces reconstructions that match or exceed the state-of-the-art in perceptual
similarity and exhibit additional fine detail, while using substantially fewer model
parameters than previous approaches. The use of more rudimentary encoding
models (a linear-nonlinear-Poisson cascade) or image priors (a 1/f spectral model)
significantly reduces reconstruction performance, indicating the essential role of
both components in achieving high-quality reconstructed images from the retinal
signal.

1 Introduction

A torrent of visual information arrives at each of our eyes where it is transduced by a large population
of photoreceptors and transformed by retinal circuitry. The resulting signals are transmitted to the
brain in the spikes of a relatively small number of retinal ganglion cells (RGCs), suggesting that
a large fraction of this visual information is lost. Elucidating the nature of these encoded signals,
and the inference processes the brain could use to interpret them, is fundamental to understanding
biological vision. Image reconstruction provides a method of visualizing the content encoded by
RGC signals, evaluating it using standard image quality metrics, and reasoning about how the brain
might use it [1, 2, 3, 4]. The fidelity and quality of reconstructed images also provides a useful
objective function for optimizing the design of electrical stimulation patterns delivered by devices
implanted to restore vision to people blinded by retinal degeneration [5, 6].
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The simplest and most well-studied image reconstruction method is linear regression [1, 3, 7]. Optimal
reconstruction kernels are learned for each RGC using least-squares regression of recorded responses
to many visual images, and the reconstruction of a new incident image is computed with the sum
of the filters weighted by the measured response of each cell. The quality of linearly reconstructed
images can be enhanced by applying an autoencoder neural network to impose natural image priors
[8], or by using deep neural networks to non-linearly recover additional high spatial frequency image
components [4]. Neural networks can also be directly trained (supervised) for reconstruction from raw
data, but this is data-intensive, and has limited their use to simulated data, or low-dimensional stimuli
and small numbers of cells [9]. These direct approaches leave substantial room for improvement and
interpretation. A Bayesian formulation, in which encoding model and image priors are made explicit
and are separately designed and optimized, offers a more flexible and interpretable solution.

Here, we present a method for approximate maximum a posteriori (MAP) image reconstruction
from recorded RGC spikes, combining a retinal encoding model that accurately captures retinal
responses [10] with state-of-the-art image priors that are implicitly embedded in deep denoising
networks [11, 12, 13, 14, 15, 16]. Separating the contributions of image prior and RGC spiking
response likelihood allows independent training of both elements, and offers flexible exploration and
interpretation. Specifically, (1) any pre-trained or closed-form natural image prior can be used, and
the effects of different priors can be compared; and (2) any model of RGC encoding that provides an
explicit likelihood can be used, allowing examination of the relative importance of different model
components in representing the visual signal, such as spike train history, cell-to-cell correlations and
output nonlinearities. We apply our method to reconstruct flashed natural images from responses of
several hundred macaque RGCs of identified types recorded with large-scale electrode arrays. We
compare these results to published state-of-the-art linear and neural network regression methods.
The new method matches or outperforms previous methods, producing sharper, more naturalistic
reconstructions, and similar or greater perceptual similarity to ground truth. However, our method
also produces some reconstructions with distinctive hallucinated image structure, as would be
expected when RGC signals are noisy and image priors dominate the reconstruction process. Finally,
comparisons to reconstructions using more conventional encoding models and image priors reveal
that both aspects of the approach are important for the most accurate reconstructions. Source code,
fitted models, and a subset of the test dataset used to produce example reconstructions are available at
https://github.com/wueric/RGC_MAP_reconstruction.

2 Retinal data and stimuli

Extracellular recordings from RGCs in the peripheral macaque retina were performed ex vivo using a
512-electrode system [17] (see [3] for details). Retinas were obtained from terminally anesthetized
macaque monkeys used by other laboratories, in accordance with Institutional Animal Care and
Use Committee requirements. Spikes from individual RGCs were identified with the YASS [18]
spike-sorter. A 30-minute spatio-temporal white noise stimulus [19] was used to compute spatio-
temporal receptive fields, and to identify cells of distinct types. Analysis focused on the four major
RGC types of the primate retina (ON parasol, OFF parasol, ON midget, and OFF midget) [20, 21],
totaling roughly 700 cells per recording. The receptive fields [22] of all four cell types formed regular
mosaics, with each providing nearly-complete coverage of a region of visual space (Figure 1B).

Natural images were presented to the retina as described previously [3]. Images from the ImageNet
database [23] were converted to grayscale and cropped to 256x160. Each pixel measured approxi-
mately 11⇥ 11µm at the retina. Each stimulus image was displayed statically for 100 ms, followed
by a 400 ms uniform gray display, allowing each image presentation to be treated as an independent
trial (Figure 1A). Recordings were gathered from retinas of two animals, in response to 19,000 and
10,000 images, respectively. Details are summarized in Tables 4 and 5 in the Appendix.

3 MAP image reconstruction from RGC spikes

The MAP estimate of the stimulus image x (a vector of pixel luminances) from observed RGC spike
trains s corresponds to the minimum of the negative log of the posterior distribution, � log p(x | s),
which can be expressed using Bayes’ Rule as:
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Figure 1: (A) Trial structure for a single stimulus image presentation. Static stimulus images are
displayed for 100 ms, separated by 400 ms uniform gray display. Spikes occurring within 150 ms
of the onset of the stimulus image, corresponding to the shaded blue region, were used to compute
encoding negative log-likelihoods. (B) Receptive field mosaics from one retina for the four major
RGC types (ON parasol, OFF parasol, ON midget, OFF midget) used in the image reconstructions.
Image quality metrics were computed over the shaded blue region, to exclude areas of the image that
were insufficiently covered by receptive fields of recorded RGCs.

x̂(s) = argmin
x

�
� log p(s | x)� log p(x)

 
. (1)

The first term is the negative log likelihood of the stimulus, as obtained from an encoding model
describing the probabilistic spiking of RGCs given a stimulus. In principle, any model can be used,
and its parameters learned from experimentally measured RGC responses. The second term is the
negative log prior of the stimulus which can be learned from natural images, independent of retinal
responses. Because encoding models with varying levels of fidelity and detail can be mixed with
priors of varying sophistication, the MAP approach allows us to probe the distinct roles of these two
components in image reconstruction [24, 25].

3.1 RGC encoding models

Encoding models for each RGC must be fitted to the experimental data before performing MAP
reconstruction. Two types of encoding models were used: (1) a linear-nonlinear-Poisson (LNP)
cascade model with an exponential nonlinearity, the most commonly used model of RGC responses
to visual stimuli [7]; and (2) a generalized linear model (GLM) that augments the LNP model with a
feedback loop and cross-connections between neighboring cells, and which can accurately capture
fine spike timing structure and cell-to-cell correlations [10]. Encoding models were fitted to a training
partition of the data by minimizing the negative log-likelihood, and regularization hyperparameters
were tuned by evaluating the negative log-likelihood on a test partition for a small subset of RGCs of
each type.

Linear-nonlinear-Poisson (LNP) encoding model The LNP model is the de facto standard model
for describing the probabilistic spiking of RGCs in response to visual stimuli [7]. The model
parameters for each RGC consist of a linear spatial filter m, and a scalar bias b. In the model, a scalar
generator signal mTx+ b is passed through an exponential nonlinearity to yield a spike rate �(x).
Responses, s, are defined as the RGC spike count in a 150 ms interval, which are assumed to be
Poisson-distributed with rate �(x). The resulting negative log-likelihood for each RGC is

� log p(s | x) = exp{mTx+ b}� s(mTx+ b), (2)
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which is convex in m and b. In practice, to ensure that the spatial filters were spatially compact and
corresponded approximately with receptive fields obtained using reverse correlation with white noise,
the negative log-likelihood objective was augmented with two regularization terms: an L1 penalty to
induce sparsity in the filter weights, and an L2 penalty to minimize the difference between the filter
and the receptive field. The complete LNP-fitting objective function with both regularization terms is
described in A.4. The parameters of each cell were optimized separately using FISTA [26].

MAP reconstruction requires the joint negative log-likelihood of the image based on the observed
spikes from every RGC. Since the LNP model assumes that the responses for each cell are statistically
independent, this is simply the sum of the single-cell negative log-likelihoods, which is convex in the
image x:

� log p(s | x) =
X

i2Cells

exp{mi
Tx+ bi}� (mi

Tx+ bi). (3)

Generalized linear encoding models The generalized linear model (GLM) is an augmentation
of the LNP model that incorporates the effects of spiking history and cell-to-cell correlations on
neural response [10]. In the GLM, the ith RGC is parameterized by a spatio-temporal stimulus
filter ki[x, y, t], a feedback (spike history) filter fi[t], a set of neighboring cell coupling filters c(j)i [t],
and a bias bi. The GLM was fitted to spike counts measured within 1 ms time bins, a duration
approximately matched to the spike refractory period [27, 28], yielding binary spike counts. To limit
the number of parameters and improve computational efficiency, the stimulus filter was assumed to
be space-time separable ki[x, y, t] = mi[x, y]hi[t]. Letting ⇤ denote time-domain convolution, w[t]
denote the time course of the stimulus (boxcar), and {i}C denote the set of coupled neighboring cells,
the generator signal g[t] is

gi[t] = (mT
i x)(hi ⇤ w)[t� 1] + (si ⇤ fi)[t� 1] +

X

j2{i}C

(sj ⇤ c(j)i )[t� 1] + bi. (4)

Assuming a sigmoidal nonlinearity �(x) = ex/(1 + ex) and a Bernoulli spiking distribution, the
negative log-likelihood used to fit a single cell (see A.5.2 for complete derivation) is

� log p(si[N, ..., T ] | x, si[0, ..., N � 1], s{i}C [0, ..., T ]) =
TX

t=N

�
log(1+ exp{gi[t]})� si[t]gi[t]

 
.

(5)

To simplify the GLM, the filters hi, fi, and c(j)i were parameterized as weighted sums over a set
of cosine-shaped “bump” functions [10] (discussed further in A.5.4). As with the LNP model, L1
and L2 regularization terms were added to constrain the spatial filters, and an additional L1,2 group
sparsity penalty was imposed on the coupling filters to eliminate spurious cell-to-cell correlations.
The complete objective function is described in detail in A.5.3. Model parameters were found by
alternating between convex minimization steps for the spatial and temporal filters of each RGC, using
FISTA [26, 29] for each step.

For MAP image reconstruction, we compute the joint negative log-likelihood of the image based on
responses of all cells over time bins N,N + 1, . . . , T . This can be constructed from the single cell
negative log-likelihoods using the chain rule (see A.5.5 for derivation), and is again convex in the
image x:

� log p(s[N, ..., T ] | x, s[0, ..., N�1]) = �
TX

t=N

X

i2cells

log p(si[t] | x, si[0, ..., t�1], s{i}C [0, ..., t�1]).

(6)

3.2 MAP with Gaussian 1/f priors

A stationary Gaussian prior with 1/f spectral energy is the simplest and most commonly used
image prior [30], and is the basis for most classical image processing algorithms. The 1/f prior
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Figure 2: Selected stimulus images and reconstructions for the retina of Figure 1B. Images are masked
to only include regions covered by recorded RGCs. Colors on the left correspond to the colored
markers in the scatter plots in Figure 3. Column contents: (1) Ground truth stimulus image; (2) Linear
reconstruction; (3) Linear reconstruction followed by CNN autoencoder (L-CAE, [8]); (4) Linear
reconstruction followed by neural network regression [4]; (5) Our method, approximate MAP with
GLM and denoiser prior (MAP-GLM-dCNN); (6) Approximate MAP with LNP encoder and denoiser
prior (MAP-LNP-dCNN); (7) Exact MAP with GLM encoder and 1/f prior (MAP-GLM-1F).
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assumes that pixels of the image are drawn from a stationary jointly Gaussian distribution (and
thus that the spatial covariance matrix is diagonalized by the 2D Fourier basis) and that spectral
power (variance of each spatial frequency component) falls off in inverse proportion to the square
of the frequency f2. Discarding terms that do not depend on the image x, the negative log prior
can be written as � log p(x) =

P
k |ak(x)|2/f2

k where ak(x) is the amplitude of the kth Fourier
coefficient at frequency fk. MAP image reconstruction using this prior can be performed using
standard unconstrained convex minimization methods because both the negative log prior and the
RGC encoding negative log-likelihoods described in (3) and (6) are convex.

3.3 Approximate MAP with denoising convolutional neural network (dCNN) priors

Modern denoising convolutional neural networks can represent powerful image priors, but these priors
are implicit [12, 31]: they are not expressed in closed form, and their values cannot be computed
directly, making exact MAP inference difficult. The “plug-and-play” methodology provides an
approximate iterative procedure for using such denoisers in MAP estimation problems [11], by
incorporating them into variable-splitting optimization methods such as half-quadratic splitting
(HQS) [32] or alternating direction method of multipliers (ADMM) [33, 34, 35]. Here, we use a
method based on the HQS method presented in [15] to perform MAP reconstruction from RGC
spikes. Following [15], we introduce an auxiliary variable z, split the original problem in equation
(1) into two complementary sub-problems, incorporate a regularization parameter �p to control the
strength of the prior term, and iteratively alternate between solving the two sub-problems:

x(k+1) = argmin
x

�
� log p(s | x) + ⇢(k)

2
|x� z(k)|22

 
(7)

z(k+1) = argmin
z

�
� �p log p(z) +

⇢(k)

2
|z� x(k+1)|22

 
. (8)

Since the sub-problem in equation (8) has the same objective function as MAP Gaussian denoising
with known noise variance �p/⇢(k), we compute its solution using a single forward pass of a pre-
trained DRUNet denoiser network [15]. This is an approximation, because the denoiser was trained
with an MSE objective and hence targets the mean of the posterior rather than its maximum. The
approximation is correct in the limit of small noise, and thus can be used within an iterative procedure
that gradually decreases the objective function [11]. The overall iterative MAP reconstruction
procedure is given in Algorithm 1.

Algorithm 1 Approximate MAP reconstruction from RGC spikes (MAP-encoder-dCNN)
1: Hyperparameters: �p, schedule ⇢(1), ⇢(2), ..., ⇢(N)

2: Inputs: observed spike count vector s 2 RC

3: Initialize z(1) to linear solution
4: for k 2 1, 2, ...K do

5: x(k+1)  argminx
�
� log p(s | x) + ⇢(k)

2 |x� z(k)|22
 

6: z(k+1)  Unblind-DRUNet-Denoiser(x(k+1);�2 = �p

⇢(k) )
7: end for

Unlike most applications of HQS, the encoding term in equation (7) is non-quadratic in x and hence
(7) was solved iteratively (gradient descent with momentum and backtracking line search) rather than
in closed form. z(1) was initialized as the linear solution; using random Gaussian initialization does
not significantly affect the results (see Appendix A.6). Because convergence in the mathematical
sense is not necessary for most imaging applications [36], K = 25 iterations were used in Algorithm
1. As in [15], ⇢(k) was increased per-iteration on a log-spaced schedule. The hyperparameters �p

and [⇢(1), ⇢(25)] were determined by performing a grid search and evaluating reconstruction quality
on an 80-image subset of the test partition. Variations in hyperparameters over a reasonable range
(⇢(1) 2 [10�2, 10�1], ⇢(25) 2 [30, 500], �p ⇡ 0.1) produced similar reconstruction quality, and
optimal hyperparameters were similar across the two retinas and across LNP and GLM encoding
models. Approximate MAP reconstructions using this algorithm are termed MAP-GLM-dCNN and
MAP-LNP-dCNN for the GLM and LNP encoding models, respectively.
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Figure 3: Comparisons of reconstruction quality of test data from spikes of the retina shown in Figure
1B. Each panel shows values of two metrics – multi-scale structural similarity (MS-SSIM) [37], and
PSNR – for all test images (individual points). Colored markers correspond to the example images in
Figure 2. Vertical axis of all graphs corresponds to our method (MAP-GLM-dCNN), and horizontal
axis corresponds to other methods: (A) MAP-GLM-dCNN vs. Kim et al. linear with neural network
regression [4]. MAP-GLM-dCNN achieves comparable perceptual similarity but worse PSNR (B)
MAP-GLM-dCNN vs. L-CAE [8]. MAP-GLM-dCNN achieves improved perceptual similarity with
slightly worse PSNR. (C) MAP-GLM-dCNN vs. MAP-GLM-1F. Reconstructions using the weaker
1/f prior have worse perceptual similarity and PSNR. (D) MAP-GLM-dCNN vs. MAP-LNP-dCNN.
Reconstructions using the simpler LNP encoding model have worse perceptual similarity and PSNR.

3.4 Benchmark: nonlinear regression with artificial neural networks

Current state-of-the-art methods for reconstruction of natural images from RGC spikes rely on an
initial linear reconstruction step [1, 3], followed by application of nonlinear neural networks to further
improve the image. In one approach, Parthasarathy et al. [8] use a deep convolutional autoencoder
(L-CAE) trained with MSE loss to incorporate image priors in the reconstruction. The authors
trained and tested the model on simulated RGC spikes. For our comparisons, we used the published
architecture and hyperparameters, but trained the model using backpropagation on experimentally
measured retinal spike counts. Further details and characterization of the L-CAE on experimental
data are provided in Appendix A.7. Another method was developed by Kim et al. [4], who partition
the target image into high and low spatial frequency components. Linear regression from RGC spike
counts is used to recover the low-frequency component, and a fully-connected neural network is used
to non-linearly reconstruct the high-frequency component. The two components are summed and then
passed through a final deblurring CNN. Both the high-frequency network and the deblurring CNN
are trained with backpropagation on RGC responses to natural images. This method has achieved the
most accurate reconstructions in the literature to date. Details of our implementation of the Kim et al.
method are provided in Appendix A.8.

4 Results

4.1 Approximate MAP with GLM/dCNN matches or exceeds state-of-the-art results

To compare our MAP-GLM-dCNN method to current state-of-the-art approaches, image reconstruc-
tions were generated from the test partitions of the datasets. Example reconstructions are shown in
columns 3-5 of Figure 2 for the L-CAE [8], for Kim et al. [4], and for our method, respectively.
Qualitatively, the MAP-GLM-dCNN reconstructions are seen to be sharper than those of L-CAE, and
contain additional image details (especially extended contours, as in rows C, E, G, H, I, L). When
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Table 1: Average test and heldout MS-SSIM for each reconstruction method and retina.

L-CAE Kim et al. MAP-GLM-dCNN MAP-LNP-dCNN MAP-GLM-1F

test held test held test held test held test held
Retina 1 0.665 0.661 0.687 0.681 0.689 0.688 0.635 0.636 0.557 0.552
Retina 2 0.643 0.645 0.675 0.675 0.668 0.673 0.601 0.609 0.584 0.577

Table 2: Average test and heldout PSNR for each reconstruction method and retina.

L-CAE Kim et al. MAP-GLM-dCNN MAP-LNP-dCNN MAP-GLM-1F

test held test held test held test held test held
Retina 1 19.9 20.1 20.2 20.5 19.5 19.5 18.3 18.4 16.8 16.8
Retina 2 19.3 19.6 19.8 20.1 18.5 18.5 17.0 17.1 17.3 17.2

compared to Kim et al., MAP-GLM-dCNN tended to recover more content, particularly straight
edges (rows E, G, H, I, L), but sometimes exaggerated contrast (rows H, I, N). MAP-GLM-dCNN
produced qualitatively different artifacts than the other methods. In particular, it sometimes hallu-
cinated naturalistic structure not present in the stimulus images (rows J, K, N), including striking
irregularities in contours (rows D, K, L, M).

Reconstruction quality for each method was quantified over the test and heldout partitions using
MS-SSIM and PSNR. Scatter plots comparing MS-SSIM and PSNR on the test partition of one retina
are shown in Figure 3A and 3B for Kim et al. and the L-CAE, respectively, and summary statistics
over the test and held out partitions for both retinas are presented in Tables 1 and 2. On a per-image
basis, the perceptual similarity (measured with MS-SSIM) of MAP-GLM-dCNN reconstructions to
ground truth is higher than L-CAE (3B). The perceptual similarity of MAP-GLM-dCNN results is
comparable to that of the much more complicated Kim et al. method (3A). But note that the PSNR
of MAP-GLM-dCNN reconstructions was systematically lower than either benchmark. This is not
surprising, as the MAP optimization procedure does not necessarily minimize MSE. These results
held for both retinas (Tables 1 and 2).

4.2 Deep denoiser prior substantially improves image quality over 1/f prior

To test the importance of the image prior, MAP-GLM-dCNN results were compared against recon-
struction using the GLM encoding model with the classical 1/f Gaussian prior (MAP-GLM-1F).
Example reconstructed images using the denoiser prior and 1/f prior are shown in columns 5 and 7,
respectively, of Figure 2. Images reconstructed with the denoiser prior are less “grainy”, and tend to
have both crisper edges and smoother surfaces. The artifacts seen in the 1/f examples are expected,
since this simple prior does not constrain phase, whose alignment is essential for generating sharp
spatially-localized features. Scatter plots of image quality on the test partition using MS-SSIM and
PSNR are shown for one retina in Figure 3C, and mean values for both retinas are summarized in
Tables 1 and 2. Consistent with the visual appearance, PSNR and MS-SSIM were systematically
higher when using the denoiser prior, in both retinas. Thus, using the more sophisticated denoiser
image prior substantially increased the perceptual similarity of the reconstructions to ground truth.

4.3 GLM encoding model recovers additional image structure over LNP encoding model

To test the importance of the encoding model, we compared images reconstructed using the GLM and
LNP encoding models, both in combination with the the denoiser prior. Example images are shown in
columns 5 and 6 of Figure 2. Images reconstructed using both models exhibit natural image structure,
including smooth surfaces and well-defined edges, but the GLM-reconstructed images tended to have
more realistic-looking textures, whereas the LNP-reconstructed images tended to be overly simplified.
Moreover, the GLM method recovered more fine details (e.g., the legs of the insect in row C, the
horizontal stripes on the tape cassette in row D, and the details on the hammock in row E, and the
structure on the file cabinets in row G). The quality of image reconstructions for each image-response
pair in the test partition for one retina were compared using MS-SSIM and PSNR in Figure 3D, and
their mean values over the test and held out partitions for both retinas are summarized in Tables 1 and
2. In both retinas, images reconstructed using the GLM encoding model had systematically higher
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MS-SSIM scores, indicating greater perceptual similarity to ground truth, than those reconstructed
using the LNP encoding model. This demonstrates that the choice of encoding model significantly
affects reconstruction quality, and that the inclusion of temporal spike dependencies and cell-to-cell
correlations in the more sophisticated GLM encoding model provides important constraints on the
visual signal encoded by the RGC spikes. This finding is consistent with previous work showing
that decoding using the GLM (without priors) can access more information than simplified models
lacking the cell-to-cell correlations or spiking history [10].

Table 3: Number of parameters trained on retinal data for each method (for retina 1). MAP-GLM-
dCNN and L-CAE have comparable numbers of parameters. Because of sparsity regularization in
the GLM spatial encoding filters, more than half (55%) of the parameters in the GLM model are
zero. The Kim et al. model contains nearly an order-of-magnitude more parameters than either
MAP-GLM-dCNN or L-CAE.

L-CAE Kim et al. MAP-GLM-dCNN MAP-LNP-dCNN MAP-GLM-1F

Trained params. 3.07 · 107 2.44 · 108 2.88 · 107 2.85 · 107 2.88 · 107

5 Discussion

We have presented a novel approximate MAP method for reconstructing natural images from the si-
multaneously recorded spikes of several hundred retinal ganglion cells, using an accurate probabilistic
model of retinal encoding and a natural image prior implicit in a pre-trained denoising neural network.
The method matches or outperforms the current state-of-the-art in terms of recovering naturalistic
image structure and/or the perceptual similarity of reconstructions to ground truth, while also being
more principled and interpretable due to the explicit Bayesian separation of the encoding model and
prior. The new approach uses substantially fewer parameters than previous state-of-the-art methods
based on neural networks, and does not require training neural networks on retinal data (the prior is
obtained from a network trained exclusively on image denoising). We showed that both encoding
model and image prior contributed to the high-quality image reconstructions: simplification of either
substantially degraded performance. Thus, we expect that cell-to-cell correlations and temporal
structure of spike trains, as well as sophisticated image priors, will prove important in understanding
how the retinal signal is used by the brain.

Several previous studies have used GLM encoding models for stimulus reconstruction from
experimentally-recorded retinal signals, revealing the significance of cell-to-cell correlations for
decoding temporal structure in white noise stimuli [10, 38], and the significance of the temporal
structure of spike trains in tracking moving features [2]. By including a complex natural image prior
into a Bayesian reconstruction method, the present work more efficiently leverages both the GLM
model and the experimental data to produce state-of-the-art natural image reconstructions.

The enhanced reconstructions and interpretability obtained with our method could lead to improved
function of retinal implants for restoring vision. Previous work [5] has suggested that electrical
stimulation with a retinal implant can be guided by minimizing the expected MSE of linearly
reconstructed images. This method ignored fine temporal structure in RGC spike trains, and assumed
that image priors captured by linear regression are sufficient for high performance. The method
presented here offers an alternative approach to choosing simulation patterns to produce higher-
fidelity artificial vision, while potentially being more robust than neural network methods. However,
achieving this in real time with minimal latency presents a substantial technical challenge.

Our Bayesian reconstruction methodology relied on the convexity of the GLM encoding model,
which allows for robust convergence. It is worthwhile to consider generalizations that might be used
to evaluate more complex encoding models that are non-convex in the stimulus, such as subunit
models [39, 40, 41] or artificial neural network retinal models[42, 43]. We are currently working on
methods based on score-based sampling methods [44, 14] to answer this question.

Though the present work is limited to reconstruction of flashed static natural images from RGC spikes,
extensions of the method could be used to probe how neurons encode visual information under more
natural conditions. For example, a central problem is understanding how the visual system achieves
high-acuity perception in the presence of “jitter” in eye position, even during fixation [45]. Previous
computational efforts have probed this question, but have been largely limited to simulated data with
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simple encoding models and stimuli [46, 47, 48]. Combining the methods put forth here with modern
algorithms for image deblurring and motion-correction [49, 15] could yield more powerful methods
to decode images from jittered retinal inputs. A related problem is understanding how the retina
encodes the information contained in complex naturalistic movies [2], including movement of objects
within a scene and other non-rigid transformations over time. The dimensionality of such stimuli
and the consequent data requirements are high, so the use of machine learning methods to capture
spatio-temporal priors [50, 51] separately from the retinal data will be important for understanding
reconstruction in these contexts.
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