
Appendix

Table of Contents
A Proof of Theorems 15

A.1 Backward Pass: Proofs of Lemma 3.1 and Theorem 3.2 16
A.2 Gradient Analysis of Section 3.3 . 22
A.3 Forward Pass: Proofs of Lemma 3.2 and 3.3 25
A.4 Proof of Theorem 3.3: Correlations are Preserved under Residual Scaling 28
A.5 Motivation for Assumption 3.1 . 28

B Additional Results 30
B.1 On the Roles of the 1/

√
L-Scaling of the Residuals and Layer Normalization . . 30

B.2 Further Empirical Assessment of Assumption 3.1 31
B.3 Empirical Verification of the Gradient Analysis of Section 3.3 32

C Experimental Setup 33
C.1 Toy Example . 34
C.2 Tempering the softmax . 34
C.3 Translation Task . 36

A Proof of Theorems

Recall the defining equations of a Transformer:

Zℓ = α1S
ℓ +Xℓ

Yℓ = σ(ZℓWF,1)WF,2

Xℓ+1 = α2Y
ℓ + Zℓ,

where the self attention layers are defined as follows:

Sℓ := AℓXℓWV , where Aℓ = softmax
(

1√
dk

XℓWQ
(
XℓWK

)⊤)
.

We remark that when it is clear from the context, we suppress the ℓ index to improve readability.

Initialization: Recall that we initialize our weights with the so called “Xavier” [Glorot and Bengio,
2010] or “He” [He et al., 2015] initialization: each weight is sampled independently from a distribution
with zero-mean and variance σ2

v = 1
dv

for the values and feedforward weights and σ2
k = 1

dk
for the

queries and keys.

Kronecker Delta: we introduce the Kronecker Delta notation

δab =

{
1 a = b

0 a ̸= b

and, similarly: δa ̸=b = 1− δab.

Notation: in this section, we also adopt the following shorthand notation for the argument of the
softmax M := XWQWK⊤

X⊤
√
dk

. We will first compute the gradients with respect to values, queries and
input (note that the gradients of the keys have the form as the queries, hence we omit the derivation).
Recall that for a matrix X, we use Xk to indicate its k-th row. Finally, we indicate with 1n×n the
n× n matrix with all ones, with 1n the columns vector with all ones, and with In the n-dimensional
identity matrix.

15

A.1 Backward Pass: Proofs of Lemma 3.1 and Theorem 3.2

In this section, we now look at the proofs of Lemma 3.1 and Theorem 3.2. We will first introduce our
notation for the gradients, as well as some useful properties of the Kronecker product.

A.1.1 Preliminaries

For the gradients, we avoid directly working with tensors by vectorizing the matrices in a row-wise
fashion (vecr) and arranging the Jacobian in the numerator layout. More formally,

∂Y

∂X
:=

∂ vecr(Y)

∂ vecr(X)⊤
.

Alongside this, we use the following rule (⊗ is the Kronecker product):
∂AWB

∂W
= A⊗ B⊤ . (20)

For the proof of this rule, we refer to Singh et al. [2021], and to Magnus and Neudecker [2019] for a
complete introduction to matrix calculus. We will also use the following well-known properties of
the Kronecker product.

Lemma A.1. Given the matrices A ∈ Rn×m, B ∈ Rp×q, C ∈ Rm×r, D ∈ Rq×s, then the
following holds:

tr(A⊗B) = tr(A) tr(B), (21)
and

(A⊗B)(C⊗D) = (AC)⊗ (BD). (22)

A.1.2 Proof of Lemma 3.1

In Lemma A.2 and Lemma A.3 we compute the gradients with respect to the queries, values and X,
respectively. Then we use these results to prove Lemma 3.1 by computing the expectation of the
Frobenius norms.

Lemma A.2 (Gradients of Self Attention for parameter matrices). The gradients of the self attention
layer defined in Eq. (1) have the following form:

∂S

∂WV
= softmax

(
XWQWK⊤

X⊤
√
dk

)
X ⊗ Idv

∂S

∂WQ
=
(
In ⊗WV ⊤

X⊤
) ∂A

∂M

(
X⊗XWK

√
dk

)
,

where the gradients of the softmax with respect to its inputs are as follows:

∂A

∂M
= blockdiag

(
∂Ai

∂M⊤
i

)
(23)

and where
∂Ai

∂M⊤
i

= diag(Ai)−AiA
⊤
i with Ai being the i-th row of A in column vector format.

Finally, note that under the uniform-attention assumption, Eq. (23) simplifies to:

∂A

∂M
=

1

n
In ⊗

(
In − 1

n
1n×n

)
. (24)

Proof. Let’s start with the simple case of the values’ weights WV . Using the rule in Eq. (20), it is
immediate that:

∂S

∂WV
= softmax

(
XWQWK⊤

X⊤
√
dk

)
X ⊗ Idv

= AX ⊗ Idv
.

16

For the queries, a simple application of the chain rule and then again Eq. (20) gives:

∂S

∂WQ
=

∂S

∂A

∂A

∂WQ
=

∂S

∂A

∂A

∂M

∂M

∂WQ

=
(
In ⊗WV ⊤

X⊤
) ∂A

∂M

(
X⊗XWK

√
dk

)
,

which is the desired results. Finally, for the gradients of the softmax note that:

∂Apq

∂Mij
=

∂

∂Mij

exp(Mpq)∑
k exp(Mpk)

= δipδjqAij − δipAiqAij .

By writing the above expression in the matrix notation described above, we obtain the desired result.
More specifically, the block diagonal structure is given from the term δip which stems from the fact
that the softmax is applied row-wise.

Lemma A.3 (Gradients of Self Attention with respect to the Embedding matrix). The gradients of
the self attention layer with respect to the embedding matrix X defined in Eq. (1) have the following
form

∂S

∂X
=

1√
dk

(In ⊗WV⊤
X⊤)

∂A

∂M

(
In ⊗XWKWQ⊤

+Knn(In ⊗XWQWK⊤
)
)

+ A⊗WV ⊤
,

(25)

where the gradients of the softmax with respect to its inputs are denoted by ∂A
∂M as before.

Proof. Remember that we defined S = softmax(1√
dk
XWQWK⊤

X⊤)XWV . Alongside with our
previous shorthands A, M, let us define the remaining XWV as a matrix T, so that S = AT. Both
A and T are functions of X. So the matrix differential can be written as:

∂S

∂X
=

∂S

∂A

∂A

∂X
+

∂S

∂T

∂T

∂X
(26)

=
∂S

∂A

∂A

∂M

∂M

∂X
+

∂S

∂T

∂T

∂X
(27)

= (In ⊗WV⊤
X⊤)

∂A

∂M

∂M

∂X
+ (A⊗ Id)(In ⊗WV⊤

) (28)

= (In ⊗WV⊤
X⊤)

∂A

∂M

∂M

∂X
+ (A⊗WV⊤

) (29)

Next, we use the matrix differential and then the identification theorem of matrix derivatives to
compute the matrix gradient ∂A

∂X

dA =
1√
dk

d(X)WQWK⊤
X⊤ +

1√
dk

XWQWK⊤
d(X⊤).

Vectorizing both sides:

d vecr(A) =
1√
dk

(In ⊗XWKWQ⊤
)d(vecr(X)) +

1√
dk

(XWQWK⊤ ⊗ In) d(vecr(X
⊤))

=
1√
dk

(In ⊗XWKWQ⊤
)d(vecr(X)) +

1√
dk

(XWQWK⊤ ⊗ In)Kdn d(vecr(X)).

Recall, for an arbitrary matrix B ∈ Rm×n, the commutation matrix Kmn transforms columnwise
vectorization into rowwise vectorization. More precisely,

Kmn vecc(B) = vecc(B
⊤)

and vecc(B) = vecr(B
⊤). Therefore, for rowwise vectorization, we have a similar result:

Kmn vecr(B
⊤) = vecr(B)

vecr(B
⊤) = Knm vecr(B),

17

where in the last line we used the fact the commutation is a permutation matrix, so K−1
mn = K⊤

mn =
Knm. Thus, we get the required matrix derivative as follows:

∂A

∂X
=

1√
dk

In ⊗XWKWQ⊤
+

1√
dk

(XWQWK⊤ ⊗ In)Kdn .

Next, we will use a property of commutation matrix to make things simpler (Theorem 7.9, Magnus
and Neudecker [2019]):

∂A

∂X
=

1√
dk

In ⊗XWKWQ⊤
+

1√
dk

Knn(In ⊗XWQWK⊤
).

Plugging this into the above Eq. (29), we get:

∂S

∂X
=

1√
dk

(In ⊗WV⊤
X⊤)

∂A

∂M

(
In ⊗XWKWQ⊤

+Knn(In ⊗XWQWK⊤
)
)
+ A⊗WV ⊤

.

As a sanity check, we can calculate if the shapes of the matrices are consistent. LHS should be a
nd× nd matrix, while the constituent matrices of the first term on RHS: In ⊗WV ⊤

X⊤ ∈ Rnd×n2

,
∂A
∂M ∈ Rn2×n2

, the additive term next to it is a n2 × nd matrix, and the second term on RHS is a
Kronecker product of a n× n and a d× d matrix.

Lemma 3.1. Let Xℓ be the representations of the input sequence at the ℓ-th layer. Under the
uniform-attention assumption, we have

E
∥∥∥∥ ∂Sℓ

∂WV,ℓ

∥∥∥∥2
F

= dvnE∥x̄ℓ∥2 ; (6)

E
∥∥∥∥ ∂Sℓ

∂WQ,ℓ

∥∥∥∥2
F

=
σ2
vσ

2
kdv

n2
· E
[
∥Xℓ∥2F · ∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤∥2F

]
; (7)

E
∥∥∥∥ ∂Sℓ

∂Xℓ

∥∥∥∥2
F

≤
8σ2

qσ
2
kσ

2
vdkdv

n
· E
∥∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤

∥∥2
F
+ 2d2vσ

2
v . (8)

Proof. Here, we suppress the index ℓ.

Gradient with respect to the values matrix.

Recall that from Lemma A.2 we have that:

∂S

∂WV
= softmax

(
XWQWK⊤

X⊤
√
dk

)
X ⊗ Idv

Ass. 3.1
=

1

n
1n×nX⊗ Idv

.

By direct computation:∥∥∥∥ ∂S

∂WV

∥∥∥∥2
F

= tr

(
∂S

∂WV

∂S

∂WV

⊤
)

(22)
=

1

n2
tr((1n×nXX⊤1n×n)⊗ Idv

)

(21)
=

1

n2
tr(1n×nXX⊤1n×n) tr(Idv

)

=
d

n2
tr(XX⊤1n×n1n×n)

=
dv
n

tr(XX⊤1n×n)

=
dv
n

tr(XX⊤1n1
⊤
n)

=
dv
n
1⊤
nXX⊤1n

=
dv
n
∥X⊤1n∥2 = dvn ∥x̄∥2 .

18

Gradients with respect to the queries/keys matrix.

First, recall the expression for the gradient of the softmax under the uniform-attention assumption
(Eq. (24)):

∂A

∂M
=

1

n
In ⊗

(
In − 1

n
1n×n

)
.

Hence, we can rewrite the expression of Lemma A.2 for the gradients of the queries as:
∂S

∂WQ
=
(
In ⊗WV ⊤

X⊤
) ∂A

∂M

(
X⊗XWK

√
dk

)
=

1√
dkn

(
In ⊗WV ⊤

X⊤
)[

In ⊗
(
In − 1

n
1n×n

)] (
X⊗XWK

)
=

1√
dkn

X⊗
[
WV ⊤

X⊤
(
In − 1

n
1n×n

)
XWK

]
,

where in the last step we have used twice the property of the Kronecker product in Eq. (22) of
Lemma A.1.

Hence,∥∥∥∥ ∂S

∂WQ

∥∥∥∥2
F

= tr

(
∂S

∂WQ

∂S

∂WQ

T
)

(21)
=

1

dkn2
∥X∥2F ·

∥∥∥∥WV ⊤
X⊤

(
In − 1

n
1n×n

)
XWK

∥∥∥∥2
F

,

where we have used the property on the trace of the Kronecker product (Lemma A.1, Eq. (21)). Note
that if we are conditioning on X, then we only have to take the expectation of the last term with
respect to the weights WK and WV . Let us call L := In − 1

n1n×n for notation simplicity.

Note: for a matrix W ∈ Rd×d whose entries wij ∼ N (0, σ2), then EWW⊤ = dσ2 Id. Thus,
exchanging the order of trace and expectation, we can write:

E∥WV⊤
X⊤LXWK∥2F = E tr(WV⊤

X⊤LXWK · WK⊤
X⊤LXWV)

= tr(X⊤LXE[WKWK⊤
]X⊤LXE[WV WV⊤

])

= σ2
vσ

2
kdkdv tr(X

⊤LX · X⊤LX)

= σ2
vσ

2
kdkdv∥X⊤LX∥2F

= σ2
vσ

2
kdkdv

∥∥∥∥X⊤(In − 1

n
1n1

⊤
n)X

∥∥∥∥2
F

= σ2
vσ

2
kdkdv∥X⊤X− nx̄x̄⊤∥2F ,

where, x̄ = 1
nX

⊤1n ∈ Rd is the mean embedding. Multiply this by 1
dkn2 ∥X∥2F to get the final

answer.

Gradient with respect to the input.

Plugging in the values of ∂A
∂M and A under the uniform-attention assumption into Eq. (25) gives rise

to the following:
∂S

∂X
=

1

n
√
dk

In ⊗WV⊤
X⊤

(
In − 1

n
1n1

⊤
n

)
XWKWQ⊤

+
1

n
√
dk

[
In ⊗WV⊤

X⊤
(
In − 1

n
1n1

⊤
n

)]
Knn(In ⊗XWQWK⊤

)

+
1

n
1n×n ⊗WV⊤

Let’s refer to the matrices on the right-hand side as A1,A2,A3 respectively. We compute the
expected squared Frobenius norm of these as follows:

For A3:

E[∥A3∥2F] =
1

n2
E[tr(n1n×n ⊗WV⊤

WV)]

(21)
=

1

n
tr(1n×n) tr(E[WV WV⊤

]) = d2vσ
2
v .

19

Similarly, for A1:

E[∥A1∥2F] =
σ2
qσ

2
kσ

2
vdkdv

n2
tr(In) tr(X

⊤LX · X⊤LX) (30)

=
σ2
qσ

2
kσ

2
vdkdv

n

∥∥X⊤X− nx̄x̄⊤∥∥2
F

(31)

= σ2
qσ

2
kσ

2
vdkdvn

∥∥∥∥ 1nX⊤X− x̄x̄⊤
∥∥∥∥2
F

. (32)

Finally, for A2:

E[∥A2∥2F] (33)

=
1

n2dk
E
[
tr(
[
In ⊗WV⊤

X⊤L
]
Knn(In ⊗XWQWK⊤

WKWQ⊤
X⊤)Knn

[
In ⊗ LXWV

]
)
]

(34)

=
σ2
qσ

2
kσ

2
vdkdv

n2
tr((In ⊗XX⊤)[In ⊗ LXX⊤L]) (35)

=
σ2
qσ

2
kσ

2
vdkdv

n
tr(X⊤LX · X⊤LX) = E[∥A1∥2F], (36)

where in the second line we have taken the expectation inside and used the fact that Knn, being a
commutation matrix, is orthogonal. Then, by simple properties of Kronecker product and cyclic
property of trace, we have the result, which is the same as that for A1.

Finally, by the triangle inequality

E
∥∥∥∥ ∂S∂X

∥∥∥∥2 ≤ 2E∥A1 +A2∥2 + 2E∥A3∥2 (37)

≤ 4E∥A1∥2 + 4E∥A2∥2 + 2E∥A3∥2 (38)

= 8E∥A1∥2 + 2E∥A3∥2 (39)

=
8σ2

qσ
2
kσ

2
vdkdv

n

∥∥X⊤X− nx̄x̄⊤∥∥2
F
+ 2d2vσ

2
v . (40)

This completes the proof.

A.1.3 Proof of Theorem 3.2

Theorem 3.2 (Vanishing gradients under rank collapse). Suppose that the uniform-attention
assumption holds. If additionally Xℓ for any l ∈ [L] has rank-1, and there exists a vector x ∈ Rd

such that Xℓ = 1nx
T , then:

E
∥∥∥∥ ∂L
∂WQ,ℓ

∥∥∥∥2
F

= 0, E
∥∥∥∥ ∂L
∂WK,ℓ

∥∥∥∥2
F

= 0, (9)

where the expectation is taken over the weight matrices. This implies that these quantities are
vanishing almost surely, due to the non-negativeness of the norm.

Before starting the proof, it is interesting to note that, even though the gradients of queries and keys
vanish in the rank collapse regime (i.e.

∥∥X⊤X− nx̄x̄⊤
∥∥ = 0), the gradient with respect to the

values and the input does not (see Theorem 3.1). From this simple remark, we can conclude that, even
in the rank collapse regime, information still propagates in the backward pass. In Section 3.4 (main
paper), we show that even if gradients effectively propagate, the phenomenon studied in this theorem
still greatly affects training.

20

Proof. By using the chain rule and the fact that for two matrixes A,B we have that ∥AB∥2F ≤
∥A∥2F ∥B∥2F , we can upper bound the gradient as:∥∥∥∥ ∂L

∂WQ,ℓ

∥∥∥∥2
F

≤
L−1∏
i=ℓ+1

∥∥∥∥∂Xi+1

∂Xi

∥∥∥∥2
F

∥∥∥∥ ∂L
∂XL

∥∥∥∥2
F

∥∥∥∥ ∂Xℓ+1

∂WQ,ℓ

∥∥∥∥2
F

≤
L−1∏
i=ℓ+1

∥∥∥∥∂Xi+1

∂Xi

∥∥∥∥2
F

∥∥∥∥ ∂L
∂XL

∥∥∥∥2
F

∥∥∥∥∂Xℓ+1

∂Zℓ

∥∥∥∥2
F

∥∥∥∥ ∂Zℓ

∂WQ,ℓ

∥∥∥∥2
F

≤
L−1∏
i=ℓ+1

∥∥∥∥∂Xi+1

∂Xi

∥∥∥∥2
F

∥∥∥∥ ∂L
∂XL

∥∥∥∥2
F

∥∥∥∥∂Xℓ+1

∂Zℓ

∥∥∥∥2
F

∥∥∥∥ ∂α1S
ℓ

∂WQ,ℓ

∥∥∥∥2
F

+

∥∥∥∥ ∂Xℓ

∂WQ,ℓ

∥∥∥∥2
F︸ ︷︷ ︸

=0

 ,

where we recall that Zℓ = α1S
ℓ +Xℓ and in the last step we have used that Xℓ does not depend on

WQ,ℓ, hence the gradient vanishes. By taking expectation and using the tower property, we have that:

E
∥∥∥∥ ∂L
∂WQ,ℓ

∥∥∥∥2
F

≤ E

E
[

L−1∏
i=ℓ+1

∥∥∥∥∂Xi+1

∂Xi

∥∥∥∥2
F

∥∥∥∥ ∂L
∂XL

∥∥∥∥2
F

∥∥∥∥∂Xℓ+1

∂Zℓ

∥∥∥∥2
F

]
︸ ︷︷ ︸

=:G(Xℓ)

∥∥∥∥ ∂α1S
ℓ

∂WQ,ℓ

∥∥∥∥2
F

 ,

where the expectations are taken with respect to Xℓ for the outer one and conditioning on Xℓ for
inner one. Indeed, the first three terms only depend on the network values after Xℓ. Now, a repeated
application of the tower property in G(Xℓ), together with the results on the gradients of Lemma
3.1, easily shows that G(Xℓ) stays bounded under our hypothesis. To see this one can also simply
note that, since the softmax and its derivatives are almost surely bounded, the boundedness of G(Xℓ)
is implied by an analogous statement for a vanilla linear MLP (i.e removing the softmax). In this
setting, the random variable inside the expectation in G(Xℓ) is a finite linear combination of Gaussian
products — which has bounded expectation.

All in all, we have that

E
∥∥∥∥ ∂L
∂WQ,ℓ

∥∥∥∥2
F

≤ E

[
BXℓ

∥∥∥∥ ∂α1S
ℓ

∂WQ,ℓ

∥∥∥∥2
F

]
,

where BXℓ is an almost-surely-bounded function of Xℓ. Hence, to show that E
∥∥ ∂L
∂WQ,ℓ

∥∥2
F
= 0, we

now just need to show that:

E
∥∥∥∥ ∂α1S

ℓ

∂WQ,ℓ

∥∥∥∥2
F

= 0

under the rank-1 hypothesis for Xℓ. Let Xℓ
1, . . .X

ℓ
n ∈ Rdv be the representations for the n tokens.

Under the rank-1 assumption, each token can be written as a multiple of a single vector x ∈ Rdv , and
hence there exists a1, . . . , an ∈ R such that X1 = a1x, . . . ,Xn = anx. From Lemma 3.1, we know
that:

E
∥∥∥∥ ∂Sℓ

∂WQ

∥∥∥∥2
F

=
σ2
vσ

2
kd

2

n2
· E
[
∥Xℓ∥2F · ∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤∥2F

]
.

The mean token simplifies to x̄l = x
n

∑
k ak and hence

(
x̄ℓ(x̄ℓ)⊤

)
ij
= 1

n2 (
∑

k ak)
2xixj . Similarly,(

(Xℓ)⊤Xℓ
)
ij
=
∑

k a
2
kxixj . If furthermore all the coefficients ai are the same (which corresponds

to the rank collapse assumption Xℓ = 1nx
T analyzed here), then it is easy to see that

(
(Xℓ)⊤Xℓ

)
ij
−

n
(
x̄ℓ(x̄ℓ)⊤

)
ij
= 0 ∀i, j and hence ∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤∥2F = 0.

21

A.2 Gradient Analysis of Section 3.3

Throughout this section we assume that between every pair of tokens, the same dimension is a
zero-mean Gaussian random variable with the same correlation, meaning that

E [Xi,jXi′,j′] =

0 j ̸= j′ (independent dimensions)
σ2
x i = i′, j = j′

ρσ2
x i ̸= i′, j = j′.

As we will deal with the computation of 4-th order moments of correlated Gaussian random variables,
we will make use of Isserlis theorem [Isserlis, 1918]:

Theorem A.1 (Isserlis). Let X1, . . . Xm be m zero-mean Gaussian random variables. Then:

E[X1 · · ·Xm] =

{∑
p∈P 2

m

∏
(i,j)∈p E[XiXj] m even

0 m odd
(41)

where P 2
m is the set of all the possible pairings of the indexes 1, . . . ,m.

In particular, we will only need the 4-th order term, which reads:

E[X1X2X3X4] = E[X1X2]E[X3X4] + E[X1X3]E[X2X4] + E[X1X4]E[X2X3].

Now we can prove Eq. (17) , which we re-state here:

E
∥∥∥∥ ∂S

∂WV

∥∥∥∥2
F

= σ2
xd

2 (1 + ρ(n− 1)) .

Also, from Eq. (6) we have that

E
∥∥∥∥ ∂Sℓ

∂WV,ℓ

∥∥∥∥2
F

= dnE∥x̄ℓ∥2.

Now,

E∥x̄ℓ∥2 = E

(
d∑

i=1

(x̄ℓ
i)

2

)
.

Each x̄ℓ
i =

1
n

∑n
k=1 X

ℓ
ki is equally distributed with mean

E[x̄ℓ
i] = E

[
1

n

n∑
k=1

Xℓ
ki

]
= 0

and variance

Var[x̄ℓ
i] = Var

[
1

n

n∑
k=1

Xℓ
ki

]
=

1

n2

(
nσ2

x + n(n− 1)ρσ2
x

)
=

1

n
σ2
x(1 + ρ(n− 1)).

Finally we get

E
∥∥∥∥ ∂Sℓ

∂WV,ℓ

∥∥∥∥2
F

= σ2
xd

2(1 + ρ(n− 1)).

We know prove Eq. (18), which reads:

E
∥∥∥∥ ∂S

∂WQ

∥∥∥∥2
F

= σ6
x

(n− 1)

n
(1− ρ)2d(n+ d).

22

For the queries (and the keys respectively), recall from Eq. (7) that

E
∥∥∥∥ ∂Sℓ

∂WQ,ℓ

∥∥∥∥2
F

=
σ2
vσ

2
kd

2

dn2
· E
[
∥Xℓ∥2F · ∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤∥2F

]
.

To proceed, we drop the superscript ℓ and we make the additional assumption that ∥X∥2F is uncorre-
lated from the correlation magnitude ∥X⊤LX∥2F = ∥X⊤X− nx̄x̄⊤∥2F .

Let us proceed with an expansion:

E
[
∥X⊤LX∥2F

]
=

d∑
i,j=1

E

 n∑

a,b=1

XaiLabXbj

2

=

d∑
i,j=1

n∑
a,b,a′,b′=1

LabLa′b′E [XaiXa′iXbjXb′j] .

Now, we have 2 cases: if i ̸= j, which gives d(d− 1) equal terms, we need to compute

A :=

n∑
a,b,a′,b′=1

LabLa′b′E [XaiXa′i] · E [XbjXb′j] ,

where (i, j) is any tuple with i ̸= j and we used uncorrelation of different dimensions. Otherwise,
we get d each equal to

B :=

n∑
a,b,a′,b′=1

LabLa′b′E [XaiXa′iXbiXb′i] ,

where i is any index.

Term A. Note that

E [XaiXa′i] · E [XbjXb′j] =

σ4
x a = a′, b = b′, n2 terms

ρσ4
x a = a′, b ̸= b′, n2(n− 1) terms

ρσ4
x a ̸= a′, b = b′, n2(n− 1) terms

ρ2σ4
x a ̸= a′, b ̸= b′, n2(n− 1)2 terms

.

So basically A is the sum of 3 terms:

A1 := σ4
x

∑
a,b

L2
ab = (n− 1)σ4

x

A2 := 2ρσ4
x

∑
a,b

∑
b′ ̸=b

LabLab′ = −2(n− 1)ρσ4
x

A3 := ρ2σ4
x

∑
a,b

∑
a′ ̸=a

∑
b′ ̸=b

LabLa′b′ = ρ2σ4
x(n− 1),

where we leveraged the following direct calculations:

A1 = σ4
x

∑
a,b

L2
ab

= σ4
x

(
n

(
n− 1

n

)2

+ (n− 1)n
1

n2

)

= σ4
x

(n− 1)2 + (n− 1)

n

= σ4
x(n− 1).

23

Next, we compute

A2 = 2ρσ4
x

∑
a,b

Lab

∑
b′ ̸=b

Lab′

= 2ρσ4
x

∑
a

La,a

∑
b′ ̸=b

Lab′ +
∑
a

∑
b̸=a

Lab

∑
b′ ̸=b

Lab′

= 2ρσ4

x

∑
a

n− 1

n

[
−(n− 1)

1

n

]
+
∑
a

∑
b ̸=a

Lab

[
n− 1

n
− n− 2

n

]
= 2ρσ4

x

(
− (n− 1)2

n
− 1

n
(n− 1)n

1

n

)
= −2ρσ4

x(n− 1).

Finally, similar computations also lead to the last term. To follow the calculations, we invite the
reader to draw the matrix L and to hide the columns over which summations are not performed:

A3 = ρ2σ4
x

∑
a,b

Lab

∑
a′ ̸=a

∑
b′ ̸=b

La′b′

= ρ2σ4
x

∑
a

Laa

∑
a′ ̸=a

∑
b′ ̸=a

La′b′ +
∑
a

∑
b ̸=a

Lab

∑
a′ ̸=a

∑
b′ ̸=b

La′b′

= ρ2σ4

x

∑
a

Laa(1−
1

n
+
∑
a

∑
b̸=a

Lab(−1
1

n
)

= ρ2σ4

x

(
n(1− 1

n
)(1− 1

n
) + n(n− 1)(− 1

n
)(− 1

n
)

)
= ρ2σ4

x(n− 1).

All in all, we get:
A = (n− 1)(1− ρ)2σ4

x.

Term B. We make use of Isserlis theorem, stating that:

E [XaiXa′iXbiXb′i] = EXaiXa′iEXbiXb′i︸ ︷︷ ︸
Q1

+EXaiXbiEXa′iXb′i︸ ︷︷ ︸
Q2

+EXaiXb′iEXa′iXbi︸ ︷︷ ︸
Q3

.

By using our independence assumptions, we get:

Q1 = σ4
x(δaa′ + ρδa̸=a′)(δbb′ + ρδb̸=b′) = σ4

x(δaa′δbb′ + ρδaa′δb̸=b′ + ρδa ̸=a′δbb′ + ρ2δa̸=a′δb ̸=b′).

Similarly for Q2 and Q3:

Q2 = σ4
x(δabδa′b′ + ρδabδa′ ̸=b′ + ρδa̸=bδa′b′ + ρ2δa̸=bδa′ ̸=b′)

and
Q3 = σ4

x(δab′δa′b + ρδab′δa′ ̸=b + ρδa̸=b′δa′b + ρ2δa ̸=b′δa′ ̸=b).

Hence,

B =

n∑
a,b,a′,b′=1

LabLa′b′E [XaiXa′iXbiXb′i] =

n∑
a,b,a′,b′=1

LabLa′b′(Q1 +Q2 +Q3).

Let’s study it term by term. We will also use Lab = (δab − 1
n), and so LabLa′b′ = (δabδa′b′ − δab

n −
δa′b′
n + 1

n2).

24

First term: we have that σ4
x

∑
aa′b′b′ LabLa′b′Q1 which is equal to (omitting the constant σ4

x):

=
∑

a,a′,b,b′

(δabδa′b′ −
δab
n

− δa′b′

n
+

1

n2
)(δaa′δbb′ + ρδaa′δb ̸=b′ + ρδa ̸=a′δbb′ + ρ2δa ̸=a′δb̸=b′)

= ρ2
(
n(n− 1)− 2(n− 1)(n− 1) + (n− 1)2

)
+ ρ(−4(n− 1) + 2(n− 1)) + n− 2 + 1

= ρ2(n− 1) (n− 2(n− 1) + (n− 1))− 2ρ(n− 1) + (n− 1)

= ρ2(n− 1)− 2ρ(n− 1) + (n− 1).

Second term: we have that σ4
x

∑
aa′b′b′ LabLa′b′Q2 which is equal to (omitting the constant σ4

x):

=
∑

a,a′,b,b′

(δabδa′b′ −
δab
n

− δa′b′

n
+

1

n2
)(δabδa′b′ + ρδabδa′ ̸=b′ + ρδa ̸=bδa′b′ + ρ2δa ̸=bδa′ ̸=b′)

= ρ2(n− 1)2 + ρ(−2n(n− 1) + 2(n− 1)) + n2 − 2n+ 1

= ρ2(n− 1)2 − 2ρ(n− 1)2 + (n− 1)2.

Third term: we have that σ4
x

∑
aa′b′b′ LabLa′b′Q3 which is equal to (omitting the constant σ4

x):

=
∑

a,a′,b,b′

(δabδa′b′ −
δab
n

− δa′b′

n
+

1

n2
)(δab′δa′b + ρδab′δa′ ̸=b + ρδa ̸=b′δa′b + ρ2δa ̸=b′δa′ ̸=b)

= ρ2
(
n(n− 1)− 2(n− 1)(n− 1) + (n− 1)2

)
+ ρ(−4(n− 1) + 2(n− 1)) + n− 2 + 1

= ρ2(n− 1)− 2ρ(n− 1) + (n− 1).

Summing all the three terms, we get:
B = σ4

x(n− 1)
[
ρ2(n+ 1)− 2(n+ 1)ρ+ (n+ 1)

]
= σ4

x(n− 1)(n+ 1)(1− ρ)2.

Plugging in the values of A and B we get:

E[∥X⊤LX∥2F] = d ·B + d(d− 1) ·A = σ4
x(1− ρ)2d(n− 1)(n+ d),

and finally assuming Xavier initialization

E
∥∥∥∥ ∂Sℓ

∂WQ,ℓ

∥∥∥∥2
F

=
σ2
vσ

2
kd

2

dn2
· E
[
∥Xℓ∥2F · ∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤∥2F

]
= σ6

x

n− 1

n
(1− ρ)2d(n+ d).

A.3 Forward Pass: Proofs of Lemma 3.2 and 3.3

First, we characterize the evolution of the correlations between tokens Xk,Xk′ with depth, under
the assumptions of Theorem 3.3, namely uniform-attention assumption, and the adoption of a linear
activation.

Lemma A.4 (Expectation of Linear Layers). Let D = XW, where W ∈ Rd×d is a random matrix
with i.i.d random entries with variance σ2 = 1

d and X ∈ Rn×d is a fixed matrix:

E[DkjDk′j] =
1

d
⟨Xk,Xk′⟩

Note that by summing over the indexes, Lemma A.4 implies:

E ∥D∥2F = E ∥X∥2F
EC(D) = EC(X).

Proof.

E[DkjDk′j] =
∑
zz′

XkzXk′z′E[WzjWz′j] = σ2
∑
z

XkzXk′z =
1

d
⟨Xk,Xk′⟩.

25

Lemma A.5 (Expectation of skip connection). Let A,B ∈ Rp×q. Let D := αA + B with
E[A|B] = 0 and α ∈ R. Then:

E [DijDi′j] = α2E[AijAi′j] + E[BijBij′] (42)

holds for all i, i′ ∈ [p], j ∈ [q].

Note that by summing over the indexes, Lemma A.5 implies:

E ∥D∥2F = α2E ∥A∥2F + E ∥B∥2F
EC(D) = α2EC(A) + EC(B).

Proof.

E[DijDi′j] = E [(αAij +Bij)(αAi′j +Bi′j)]

= E
[
α2AijAi′j + αAijBi′j + αAi′jBij +BijBi′j

]
= α2E [AkjAi′j] + E [BijBi′,j] ,

where using iterated expectations αE[Ai′jBij] = αE[E[Ai′j |B]Bij]] = 0 and identically
αE[AijBi′j] = 0.

Lemma A.6 (Expectation of Attention Layers). Under the uniform-attention assumption:

E[SkjSk′j] =
1

dvn2
EC(X).

In this case, by summing over the indexes we have that:

E ∥S∥2F =
EC(X)

n
EC(S) = EC(X).

Proof. Note that under the uniform-attention assumption:

Skj =
1

n

(
1n×nXWV

)
kj

=
1

n

∑
zi

XziW
V
ij .

Hence, using the fact that the weights are i.i.d with variance σ2
v = 1

dv
:

E[SkjSk′j] =
σ2
v

n2

∑
z,z′

∑
i

E[XziXz′i] =
1

dvn2

∑
k,k′

⟨Xz,Xz′⟩ = 1

dvn2
EC(X).

Lemma 3.2 (Propagation of inner products). Let C(Xℓ) =
∑

k,k′⟨Xℓ
k,X

ℓ
k′⟩ and X the input

sequence. Under the Assumption 3.1 and if σ is the linear activation function, we have that:

E
[
C(XL)

]
= (α2

2 + 1)L(α2
1 + 1)LC(X). (10)

hence, under the depth scaling for the residual block parameters α2
1 = α̃1

L , α2
2 = α̃2

L with α̃1, α̃2 ∈ R
independent of L, we have that:

lim
L→∞

E[C(XL)] = eα̃1+α̃2C(X). (11)

Proof. First, note that for the residual blocks we have that E[Y ℓ
kj |Zℓ

k′j] = 0 due to the independence
assumption on the feedforward weights, and similarly E[Sℓ

kj |Xℓ
k′j] = 0. Hence, we can use Lemma

26

A.5 in both the skip connections of the Transformer architecture. Therefore, using Lemma A.5 (skip),
Lemma A.4 (linear) and Lemma A.6 (attention):

E[C(Xℓ+1)]

skip
= α2

2EC(Yℓ) + EC(Zℓ)

linear
= α2

2EC(Zℓ) + EC(Zℓ)

= (α2
2 + 1)EC(Zℓ)

skip
= (α2

2 + 1)
(
α2
1EC(Sℓ) + EC(Xℓ)

)
attention
= (α2

2 + 1)(α2
1 + 1)E[C(Xℓ)]

unroll recurs.
= (α2

2 + 1)ℓ+1(α2
1 + 1)ℓ+1C(X),

where in the last step we have unrolled the recursion until the input layer.

For the limit as L → ∞, simply note that:

lim
L→∞

(
α̃i

L
+ 1

)L

= eα̃i ,

with i ∈ {1, 2}.

Now we are ready to re-state and prove Lemma 3.3.

Lemma 3.3 (Propagation of the norm). Let XL be the representations of the input sequence at the
final layer. Under the assumptions of Lemma 3.2, we have that:

E
∥∥XL

∥∥2
F
= n(α2

2 + 1)Lα2
1

L−1∑
k=0

(α2
1 + 1)k ∥x̄∥2 + (α2

2 + 1)L||X||2F , (12)

hence, under the depth scaling for the residual block parameters α2
1 = α̃1

L , α2
2 = α̃2

L with α̃1, α̃2 ∈ R
independent of L, we have that:

lim
L→∞

E
∥∥XL

∥∥2
F
= neα̃2(eα̃1 − 1) ∥x̄∥2 + eα̃2 ||X||2F . (13)

Proof. The proof is in the same spirit as Lemma 3.2 but slightly more involved. Again, using Lemma
A.5 in both the skip connections of the Transfomer architecture. Therefore, using Lemma A.5 (skip),
Lemma A.4 (linear) and Lemma A.6 (attention):

E[||Xℓ+1||2F]
skip
= α2

2E||Yℓ||2F + E||Zℓ||2F
linear
= (α2

2 + 1)E||Zℓ||2F
skip
= (α2

2 + 1)
(
α2
1E[||Sℓ||2F] + E[||Xℓ||2F]

)
softmax
= (α2

2 + 1)

(
α2
1

n
E[C(Xℓ)] + E[||Xℓ||2F]

)
= (α2

2 + 1)
α2
1

n
E[C(Xℓ)] + (α2

2 + 1)E[||Xℓ||2F]

unroll C(Xℓ)
= (α2

2 + 1)ℓ+1α2
1(α

2
1 + 1)ℓ

C(X)

n
+ (α2

2 + 1)E[||Xℓ||2F]

unroll ∥Xℓ∥2

F= (α2
2 + 1)ℓ+1α2

1

C(X)

n

ℓ∑
k=0

(α2
1 + 1)k + (α2

2 + 1)ℓ+1||X||2F ,

where in the second to last step we have used Lemma 3.2 and in the last step we have unrolled the
recursion for

∥∥Xℓ
∥∥2
F

until the input layer.

27

For the second part, we now show that for a network of L layers, the choice α2
1 = α̃1

L and α2
2 = α̃2

L
stabilizes the norm of the activations in the forward pass. Using the product law for the limits, we can
study the converges of (α2

2 + 1)ℓ and α1

∑ℓ
k=0(α

2
1 + 1)k separately.

Let i ∈ {1, 2}. For the latter term we have that:

lim
L→∞

α̃i

L

L−1∑
l=0

(
1 +

α̃i

L

)ℓ

= lim
L→∞

α̃i

L

1−
(
1 + α̃i

L

)ℓ
1− 1− α̃i

L

= lim
L→∞

−1 +

(
1 +

α̃i

L

)ℓ

= eα̃i − 1,

while for the former term we have that limL→∞(α̃i

L + 1)ℓ = eα̃i . Hence, the norm of the representa-
tions converges to:

lim
L→∞

E[||Xℓ||2F] = eα̃2(eα̃1 − 1)
C(X)

n
+ eα̃2 ||X||2F .

The final results as stated in the theorem hold because of the following:

Remark: note that C(X) =
∑

k,k′
∑

j XkjXkj′ =
∑

j(
∑

k,k′ XkjXk′j) =
∑

j(
∑

k Xkj)
2 =

n2 ∥x̄∥2.

A.4 Proof of Theorem 3.3: Correlations are Preserved under Residual Scaling

Theorem 3.3. Let the input tokens have the same norm, i.e. ∥Xk∥ = ∥x∥ ∀k ∈ [n] for some
x ∈ Rdv . Under the depth scaling for the residual block parameters α2

1 = α̃1

L , α2
2 = α̃2

L with
α̃1, α̃2 ∈ R independent of L, we have that:

lim
L→∞

ρℓ =
neα̃1C(X)

(n− 1)[(eα̃1 − 1)C(X) + n ∥X∥2F]
− 1

n− 1
. (15)

On the other hand, if α1, α2 ̸= 0 are some constants independent of L, we have that:

lim
L→∞

ρℓ = 1. (16)

Proof. Due to the rotational symmetries of the Gaussian random matrices, if the input tokens have the
same norm, then the expected norm at layer ℓ ∈ [L] is also the same across the token’s representations.
Hence, we can write E

∥∥Xℓ
∥∥2
F

= nE
∥∥xℓ

∥∥2, where
∥∥xℓ

∥∥2 is the norm of every token at layer
ℓ. Furthermore, by definition of our correlation coefficient ρlkk′ , we have that E⟨Xℓ

k,X
ℓ
k′⟩ =

ρℓkk′E
∥∥xℓ

∥∥2. By summing over the indexes k, k′, we can expand the relation as:∑
k,k′

E⟨Xℓ
k,X

ℓ
k′⟩︸ ︷︷ ︸

EC(X)

=
∑
k,k′

ρℓkk′E
∥∥xℓ

∥∥2 = (n+
∑
k ̸=k′

ρℓk,k′)E
∥∥xℓ

∥∥2 = nE
∥∥xℓ

∥∥2︸ ︷︷ ︸
E∥Xℓ∥2

F

(1 + (n− 1)ρℓ).

By solving for ρℓ, we have that:

ρℓ =
EC(Xℓ)

(n− 1)E ∥Xℓ∥2
− 1

n− 1
.

Now we plug in the expressions for EC(Xℓ) and E
∥∥Xℓ

∥∥2 with the aid of Lemma 3.2 and Lemma
3.3, respectively. Finally, by taking the limits with respect to L, we get the desired result.

A.5 Motivation for Assumption 3.1

We motivate here the following assumption, stated in the main paper. This assumption is crucial to
compute expectations involving the softmax function.
Assumption 3.1 (Uniform attention). We assume that Aℓ = 1

n1n×n,

28

Theoretical analysis. We first show that this assumption holds when taking dk to infinity, keeping
dv fixed.

Lemma A.7. Consider initializing each entry of WQ ∈ Rdv×dk and WK ∈ Rdv×dk independently
with variance σ2

k = 2/(dv + dk) — i.e. Glorot initialization [Glorot and Bengio, 2010]. Let
M = 1√

dk
XℓWQ,ℓWK,ℓ⊤Xℓ⊤; for any (i, j) ∈ [n]× [n] we have

E[Mi,j |X] = 0, E[M2
i,j |X] = σ4

k · ∥Xi,:∥2 · ∥Xj,:∥2. (43)

While keeping dv < ∞ fixed, taking dk to infinity yields

E[M2
i,j |X] = O

(
1

d2k

)
. (44)

In other words, M converges to 0n×n in L2 as dk → ∞.

Proof. First, note that

Mi,j =
1√
dk

dv∑
a,c=1

dk∑
b=1

Xi,aW
Q
a,bW

K
c,bXj,c.

Since WQ is independent from WK at initialization, E[Mi,j |X] = 0. Next, we compute

E[M2
i,j] =

1

dk

dv∑
a,c,a′,c′=1

dk∑
b,b′=1

Xi,aXi,a′Xj,cXj,c′E
[
WQ

a,bW
Q
a′,b′W

K
c,bW

K
c′,b′

]

=
1

dk

dv∑
a,c,a′,c′=1

dk∑
b,b′=1

Xi,aXi,a′Xj,cXj,c′E
[
WQ

a,bW
Q
a′,b′

]
E
[
WK

c,bW
K
c′,b′
]

=
σ4
k

dk

dv∑
a,c=1

dk∑
b=1

X2
i,aX

2
j,c

= σ4
k∥Xi,:∥2∥Xj,:∥2.

This concludes the proof.

The following classical result implies almost sure convergence of the softmax matrix as dk → ∞.

Lemma A.8 (Borel-Cantelli). Let (Xi) be a sequence of random variables. If for any ϵ > 0

∞∑
i=0

P[|Xi −X| > ϵ] < ∞,

then Xi converges to X almost surely4.

Theorem A.2 (Almost-sure convergence). Consider initializing each entry of WQ ∈ Rdv×dk and
WK ∈ Rdv×dk independently with variance σ2

k = 2/(dv + dk) — i.e. Glorot initialization [Glorot
and Bengio, 2010]. Let dv < ∞ be fixed, as dk → ∞ we have that, for any X,

A := softmax

(
1√
dk

XWQWK⊤
X⊤
)

a.s.→ 1

n
1n×n

and
∂A

∂M

a.s.→ 1

n
In ⊗

(
In − 1

n
1n×n

)
.

4That is, limi→∞ Xi(ω) = X(ω) for almost every ω ∈ Ω (i.e. with probability one).

29

Proof. Thanks to Lemma A.7 and Markov Inequality, we have fast convergence in probability: for
any fixed X,

P[|Mi,j | > ϵ] ≤
E[M2

i,j]

ϵ2
≤ Cϵ

d2k
.

Borel Cantelli then directly yields almost sure convergence of M to 0n×n as dk → ∞. Next,
note that both A and ∂A

∂M are continuous functions of A, hence we can apply standard continuity
event-per-event. For almost every ω ∈ Ω,

lim
dk→∞

A(A(ω)) = A

(
lim

dk→∞
A(ω)

)
= A(0n×n) =

1

n
1n×n.

Hence A → 1
n1n×n almost surely. This can also be seen as a simple application of the continuous

mapping theorem. The same reasoning yields almost sure convergence of

∂A

∂M
= blockdiag

(
diag(Ai:)−Ai:A

⊤
i:

)
,

to the corresponding limiting quantity.

102 103

dK

10 10

10 9

10 8

10 7

Ex
pe

ct
ed

 (e
nt

ry
-w

ise
) e

rro
r 1

d2

simulation

Figure 7: Evolution of 1
n2 ||Aℓ − 1

n
1n×n||2F as a

function of dk for dv fixed at 100.

Empirical analysis. We empirically assess the va-
lidity of Assumption 3.1 and of its theoretical justifi-
cation by performing the following experiments: for
a range of increasing values of dk, we compute A
and we calculate 1

n2 ||Aℓ − 1
n1n×n||2F , i.e. its aver-

age (entry-wise) distance from a uniform matrix with
entries all equal to 1/n. For each value of dk, we
repeat this calculation 200 times, each time with dif-
ferent random weight matrices. Fig. 7 displays how
the ||A − 1

n1n×n||2F averaged over 200 runs, tends
to zero with a trend inversely proportional to d2k, as
predicted by our theoretical analysis.

B Additional Results

B.1 On the Roles of the 1/
√
L-Scaling

of the Residuals and Layer Normalization

We present some additional results on the propagation of the norm and the correlations in Figure 8.
In particular, we empirically show that, with an adequate depth-dependent residual scaling, the norm
and the correlation are stabilized, even for very deep networks. Furthermore, we demonstrate the
propagation of the correlation and the gradient norms for the PRE-LN configuration in Figure 9. As
also hinted in the main text, in Figure 4, the increase in correlation with depth for PRE-LN is much
less wild. This also results in better stabilized gradients for the queries and keys’ parameters. We
also observe the opposite trend for the gradients of the values, in relation to the POST-LN case in
Figure 3. We speculate that this different dependence, along with the better preserved correlation,
is the main reason PRE-LN configured Transformers have been shown to scale better with depth.
We plan to investigate this dependence more in future work. We provide the detailed experimental
setup for Figures 3 and 9 in Table 2. Finally, as hinted in the main text, replacing the linear activation
function with ReLU leads to an even faster increase in correlations (for instance, see the contraction
argument in Nachum et al. [2021] below Equation (2)). We empirically evaluate that, by comparing
the propagation of correlation (as in Figure 4) also for a network with ReLU activation functions.
Results are shown in Figure 10.

30

0 20 40 60 80 100

106

1014

1022

1030

1038

1046

1054

1062

||X
L||

2 F

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Simulation
Prediction

0.1
L

1
L

2
L

3
L

5
L

10
L

Depth

0.1
L

1
L

2
L

3
L

5
L

10
L

Simulation
Prediction

Figure 8: (Left) Propagation of the Frobenius norm of the input sequence; (Right) Propagation of the
average token correlation. In both cases, no layer normalization layers are used and linear activations
are employed.

0 50 100 150 200 250 30010 2

10 1

100

101

Re
sid

ua
l s

ca
lin

g

1,
2

non-scaled residual connection

scaled residual connection 1
L

Cosine angle

0 50 100 150 200 250 300
Depth

non-scaled residual connection

scaled residual connection 1
L

Relative gradient norm of queries

0 50 100 150 200 250 300

non-scaled residual connection

scaled residual connection 1
L

Relative gradient norm of values

0.0

0.2

0.4

0.6

0.8

1.0

 zero
 gradient

10 4

10 3

10 2

10 1

100

101

10 1

100

101

Figure 9: Same as Figure 3 but with a PRE-LN architecture. The correlation at depth 0 originates
from the correlations in the randomly initialized tokens’ embeddings and positional encodings.

Hyperparameters Value
Embedding dimension 32
MLP dimension 128
Number of heads 4
Number of tokens 50
nonlinearity ReLU

Table 2: Hyperparameters for Figures 3 and 9. Results are averaged across 50 runs.

B.2 Further Empirical Assessment of Assumption 3.1

Here, we empirically test the accuracy and limitations of the uniform-attention assumption.

For the empirical verification of Assumption 3.1 in the forward pass analysis, we plot the density
of the norm of the representations for only-encoder Transformers of increasing depth. The results
are shown in Fig 11. Note that when the standard deviation of the input is set to 1/

√
d, then the

uniform-attention assumption provide an excellent approximation to the common Xavier-initialization.
On the contrary, we observe a deviation when the standard deviation of the input is increased. Also,
note how as the depth increases, the distribution becomes more heavy-tailed. This heavy-tailedness

31

0 10 20 30 40 50
Depth

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Co
rre

la
tio

n

Linear

NO-LN
PRE-LN
POST-LN
No scaling
1
L
 scaling

0 10 20 30 40 50
Depth

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Co
rre

la
tio

n

ReLU

NO-LN
PRE-LN
POST-LN
No scaling
1
L
 scaling

Figure 10: Increase in correlation at initialization for a network with linear (left) and ReLU (right)
activation functions.

Figure 11: Density plots for
∥∥Xℓ

∥∥2
F

for Transformers of depths L from 1 to 10. The input X contains
i.i.d Gaussian entries, simulating an embedding layer. We set d := dv = dq = 30. The empirical
mean at L = 10 is highlighted in a vertical dashed red line, while the theoretical mean (Lemma 3.3)
is a dashed blue line. The densities are estimated by sampling 1000 times the weights of the network.
(Left): we adopt the uniform-attention. The standard deviation of the input is set to 1/

√
d. (Center):

Same, but removing the uniform-attention assumption. (Right): We remove the uniform-attention
assumption, and set the standard deviation of the input to 1.

was recently formally shown for standard MLPs with and without ReLU activation [Noci et al., 2021,
Zavatone-Veth and Pehlevan, 2021].

For the verification of the assumption in the backward pass, we additionally show in Fig. 12 how the
norm of the gradients w.r.t queries and keys depends on the hidden dimension, the sequence length,
the input correlation and the input variance. Ground-truth gradients are calculated with automatic
differentiation, and they are compared with our theoretical results based on Assumption 3.1. As
shown in Fig.12, our theoretical predictions show a very good agreement with the true gradients.
Again, we notice that the smaller the values of the input standard deviation the tighter the agreement
of the theory with the simulations. Intuitively, a higher input variance causes the argument of the
softmax to have a large range of values. This in turn causes a deviation from the uniform distribution
(i.e. maximum entropy), towards the distribution of minimum entropy (a Delta Dirac, corresponding
to attending to only one token).

B.3 Empirical Verification of the Gradient Analysis of Section 3.3

Finally, in Figures 13 and 14 we show the dependence of the norm of the gradients for the keys
and values based on the parameters of the architecture and the task-specific parameters. Figure 13
illustrates the true dependence and Figure 14 the one expected by the theory based on our assumptions.
In short, the main takeaways are the following.

32

• As the correlation between the tokens increases (x-axis in the global plot), the norm of the
gradients of the queries quickly diminishes compared to the one of the values.

• The dependence on the variance of the input σ2
x is different (y-axis in the global plot), being

linear for the values and cubic for the queries. This highlights the importance of a stabilized
forward pass and provides another explanation regarding the successful use of layer norm in
Transformers.

• The dependence on n (x-axis in each subplot) and d (y-axis in each subplot) is more
complicated, also being a function of the correlation ρ (compare the first column where
ρ = 0 to the rest).

20 40 60 80 100
n

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

||
S W

Q
||2 F

Autograd
Lemma A.2 + Assumption 3.1
Eq. (18)

20 40 60 80 100
n

1000

2000

3000

4000

5000

||
S W

V
||2 F

Autograd
Lemma A.2 + Assumption 3.1
Eq. (17)

0 50 100 150 200 250 300
d

0.000

0.005

0.010

0.015

0.020

0.025

||
S W

Q
||2 F

Autograd
Lemma A.2 + Assumption 3.1
Eq. (18)

0 50 100 150 200 250 300
d

0

2000

4000

6000

8000
||

S W
V
||2 F

Autograd
Lemma A.2 + Assumption 3.1
Eq. (17)

0.2 0.4 0.6 0.8 1.0

x

0

500

1000

1500

2000

2500

3000

3500

||
S W

Q
||2 F

Autograd
Lemma A.2 + Assumption 3.1
Eq. (18)

0.2 0.4 0.6 0.8 1.0

x

0

20000

40000

60000

80000

100000

||
S W

V
||2 F

Autograd
Lemma A.2 + Assumption 3.1
Eq. (17)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.000

0.002

0.004

0.006

0.008

0.010

||
S W

Q
||2 F

Autograd
Lemma A.2 + Assumption 3.1
Eq. (18)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

400

600

800

1000

1200

1400

1600

1800

||
S W

V
||2 F

Autograd
Lemma A.2 + Assumption 3.1
Eq. (17)

Figure 12: Empirical comparison of our theoretical findings. We sample, as aforementioned, the
tokens according to a zero-mean Gaussian distribution, while varying the hidden dimension, sequence
length, input correlation and input variance. Results are averaged over 20 runs.

C Experimental Setup

Here we provide more details regarding the experimental setup.

33

100

200

300

400

500

In
pu

t s
td

 0
.2

Cosine angle 0.0

100

200

300

400

500

In
pu

t s
td

 0
.4

100

200

300

400

500

In
pu

t s
td

 0
.6

100

200

300

400

500

In
pu

t s
td

 0
.8

100

200

300

400

500

In
pu

t s
td

 1
.0

100

200

300

400

500

In
pu

t s
td

 1
.2

100

200

300

400

500

In
pu

t s
td

 1
.4

100

200

300

400

500

In
pu

t s
td

 1
.6

100

200

300

400

500

In
pu

t s
td

 1
.8

50 100 150 200

100

200

300

400

500

In
pu

t s
td

 2
.0

Cosine angle 0.1

50 100 150 200

Cosine angle 0.2

50 100 150 200

Cosine angle 0.3

50 100 150 200

Cosine angle 0.4

50 100 150 200

Cosine angle 0.5

50 100 150 200

Cosine angle 0.6

50 100 150 200

Cosine angle 0.7

50 100 150 200

Cosine angle 0.8

50 100 150 200

Cosine angle 0.9

50 100 150 200

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Sequence length

Em
be

dd
in

g
siz

e
d v

Figure 13: Log ratio of the norm of the gradients for the queries compared to those of the values for
varying values of embedding dimension, sequence length, cosine of the tokens angle and standard
deviation.

C.1 Toy Example

In Figure 6, we focus on a toy example where the task is to reverse a sequence of tokens. More
specifically, given a sequence of 20 numbers in the range 0− 9, we predict the same tokens in the
inverted order. We use an embedding layer of size 16, initializes with variance 1, and sinusoidal
positional encodings to initially embed the input. We use a 5-layer POST-LN Transformer encoder
model, with a single head attention operation and a two-layer feed-forward layer with a ReLU
nonlinearity. We use residual scaling in this case equal to α1 = α2 = 1. We train using Adam with
betas parameters (0.9, 0.999), learning rate 0.01 and weight decay 0.

C.2 Tempering the softmax

The theory devised in Section 3.3 postulates that a different magnitude between the gradients of
the queries/keys and the values should likely be observed. Here, we propose a simple remedy that
consists in introducing an inverse temperature scaling τ inside the softmax that modifies the attention

34

100

200

300

400

500

In
pu

t s
td

 0
.2

Cosine angle 0.0

100

200

300

400

500

In
pu

t s
td

 0
.4

100

200

300

400

500

In
pu

t s
td

 0
.6

100

200

300

400

500

In
pu

t s
td

 0
.8

100

200

300

400

500

In
pu

t s
td

 1
.0

100

200

300

400

500

In
pu

t s
td

 1
.2

100

200

300

400

500

In
pu

t s
td

 1
.4

100

200

300

400

500

In
pu

t s
td

 1
.6

100

200

300

400

500

In
pu

t s
td

 1
.8

50 100 150 200

100

200

300

400

500

In
pu

t s
td

 2
.0

Cosine angle 0.1

50 100 150 200

Cosine angle 0.2

50 100 150 200

Cosine angle 0.3

50 100 150 200

Cosine angle 0.4

50 100 150 200

Cosine angle 0.5

50 100 150 200

Cosine angle 0.6

50 100 150 200

Cosine angle 0.7

50 100 150 200

Cosine angle 0.8

50 100 150 200

Cosine angle 0.9

50 100 150 200

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Sequence length

Em
be

dd
in

g
siz

e
d v

Figure 14: Log ratio of the norm of the gradients of the queries as expected by the theory, compared
to those of the values for varying values of embedding dimension, sequence length, cosine of the
tokens angle and standard deviation. We use Equations (17) and (18).

operation to

Sℓ
τ := softmax

(
τ√
dk

XℓWQ
(
XℓWK

)⊤)
XℓWV . (45)

By computing the gradients of the queries/keys as in 3.3, Equation 18 becomes:

E
∥∥∥∥ ∂Sτ

∂WQ

∥∥∥∥2
F

= τ2σ6
x

(n− 1)

n
(1− ρ)2d(n+ d). (46)

Hence, the norm of gradients of the queries/keys scales linearly with τ . On the contrary, the
temperature scaling inside the Softmax will not affect the gradients with respect to the values due to
the fact that the Softmax normalizes the activations (see Lemma A.1 in Wang et al. [2022]). Hence τ
can be heuristically chosen such that the magnitude of the gradients approximately matches:

E
∥∥∥∥ ∂Sτ

∂WQ

∥∥∥∥2
F

!
= E

∥∥∥∥ ∂Sτ

∂WV

∥∥∥∥2
F

⇐⇒ τ2 ≈ dn(1 + ρ(n− 1))

σ4
x(1− ρ)2(n+ d)(n− 1)

. (47)

35

We stress that this requires a constant correlation ρ. In practice, this can be estimated as the mean
correlation across all pairs of tokens (as we do in the computation of the correlations in Figure 1).
Furthermore, both ρ and the variance σ2

x change across layers as our analysis in Section 3.2 predicts.
Hence in practice a different temperature per layer should be adopted. Finally, note that in practice
both ρ and σ2

x change during training, and is hard to study their the dynamics under SGD. We leave
the time evolution of ρ and τ as an exciting future direction. Also, the value of n is set to be the
average number of tokens per sentence. In this work, we set τ to a fixed value according to our
analysis at initialization.

C.3 Translation Task

We now describe the experimental setup regarding the translation task on the IWSLT’14 De-En
dataset. Using the ideas detailed in the previous section, we choose a temperature value of τfinal = 8.5
to match the gradient norms of the values and queries as in Equations. (17) and (18). Doing so, we
assume a constant small correlation between tokens (also empirically verified in Fig. 15) and set the
sequence length n to the average found in our training dataset. Due to instabilities in training, we use
warm-up on this temperature value. In short:

τ = τfinal · max(1,
step

stepswarmup
),

with ‘stepswarmup = 1000’ and ‘step’ the current training step.

We base our implementation on fairseq [Ott et al., 2019]. For the hyperparameter configuration, we
mostly rely on the extensive search already done in fairseq [Ott et al., 2019] and Liu et al. [2020]. The
final used parameters are exhibited in Table 3. For the final evaluation, we use the best-performing
model on the left-out validation set. We apply weight decay as in Loshchilov and Hutter [2017] for
both SGD and Adam.

Hyperparameters Value
Max tokens 4096
Label smoothing 0.1
clip-norm 0.0
General Dropout 0.3
Attention Dropout 0.1
ReLU Dropout 0.1
Hidden size 512
FFN inner hidden size 2048
Attention Heads 4

A
da

m

Learning rate 7ϵ−4

Learning rate scheduler inverse sqrt
Warm-up updates 6000
Warm-up init learning rate 1e-7
Adam (β1, β2) (0.9, 0.98)
Training updates 100K
Weight decay 0.0001

SG
D

Learning rate 2ϵ−2

Learning rate scheduler step
Step scheduler γ 0.1
Step scheduler update steps [100K, 200K]
Training updates 250K
Weight decay 0.001

Table 3: Hyperparameters for the IWSLT’14 De-En translation task (Figure 1, 5).

Finally, in Figure 15 we display the evolution of correlations, residual scaling, and norm of the activa-
tions, with depth, for our best trained model. The residual scaling α1, α2 are trainable parameters.
This enables them to weight differently the residual branches if deemed necessary. Although these
values increase during training, the correlation between the tokens does not significantly increase,
which as implied by our main results, allows efficient propagation of the gradients. The norm of the
propagated forward signal tends to slightly increase with depth.

36

0 50000 100000 150000 200000 250000

0.10

0.15

0.20

0.25

Cosine angle with depth

0 50000 100000 150000 200000 250000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Residual scaling values with depth

0 50000 100000 150000 200000 250000

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Variance of the activations 2
x with depth

1

2

3

4

5

6

Depth

Training steps

Figure 15: Evolution of the cosine of the angles, the trained residual α1, α2 and the activation norm
throughout our training.

37

	 Appendix
	Proof of Theorems
	Backward Pass: Proofs of Lemma 3.1 and Theorem 3.2
	Preliminaries
	Proof of Lemma 3.1
	Proof of Theorem 3.2

	Gradient Analysis of Section 3.3
	Forward Pass: Proofs of Lemma 3.2 and 3.3
	Proof of Theorem 3.3: Correlations are Preserved under Residual Scaling
	Motivation for Assumption 3.1

	Additional Results
	On the Roles of the 1/L-Scaling of the Residuals and Layer Normalization
	Further Empirical Assessment of Assumption 3.1
	Empirical Verification of the Gradient Analysis of Section 3.3

	Experimental Setup
	Toy Example
	Tempering the softmax
	Translation Task

