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Abstract

Transformers have achieved remarkable success in several domains, ranging from
natural language processing to computer vision. Nevertheless, it has been recently
shown that stacking self-attention layers — the distinctive architectural component
of Transformers — can result in rank collapse of the tokens’ representations at
initialization. The question of if and how rank collapse affects training is still
largely unanswered, and its investigation is necessary for a more comprehensive
understanding of this architecture. In this work, we shed new light on the causes
and the effects of this phenomenon. First, we show that rank collapse of the tokens’
representations hinders training by causing the gradients of the queries and keys
to vanish at initialization. Furthermore, we provide a thorough description of
the origin of rank collapse and discuss how to prevent it via an appropriate depth-
dependent scaling of the residual branches. Finally, our analysis unveils that specific
architectural hyperparameters affect the gradients of queries and values differently,
leading to disproportionate gradient norms. This suggests an explanation for the
widespread use of adaptive methods for Transformers’ optimization.

1 Introduction

Since its first appearance in Vaswani et al. [2017], the Transformer architecture has revolutionized
the field of Natural Language Processing (NLP), achieving remarkable success in tasks such as
text classification [Yang et al., 2019], machine translation [Conneau and Lample, 2019], reading
comprehension [Brown et al., 2020] and question answering [Raffel et al., 2019] among others.
Recent efforts have effectively extended its applicability to computer vision [Dosovitskiy et al., 2020]
and other domains [Baevski et al., 2020, Huang et al., 2018, Biggio et al., 2021, Polu et al., 2022],
further popularizing it outside NLP.

The Transformer operates on inputs comprising a sequence of tokens. At its core, it relies on stacked
attention layers, which compute a measure of relevance for the whole sequence by assigning token-
wise importance weights — obtained by matrix multiplication of the queries and keys, and finally
normalized with the softmax function. The output of an attention layer is then a linear combination
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Figure 1: Evolution of the cosine of the angle between tokens for training POST-LN Transformers
of increasing depth, with the Adam optimizer, for the IWSLT’14 De-En translation task. Unless
adequate residual scaling is used at initialization, increasing depth leads to an increase in the tokens’
alignment at initialization, which can inhibit training.

of the importance weights and the so-called values. Then, the architecture includes fully-connected
sub-layers, residual connections [He et al., 2016], and layer normalization (LN), as illustrated in
Fig. 2.

In the absence of residual connections, Dong et al. [2021] proved that at initialization the rank of the
sequence representation collapses doubly exponentially with depth, and both layer normalization and
fully connected layers can only partially alleviate the speed of degeneracy. Under rank collapse, the
model does not distinguish between representations of different tokens, which are perfectly aligned
in feature space at initialization. However, the precise implications of rank collapse in Transformers
are not fully understood.

In this paper, we show that a high alignment of the tokens’ representations at initialization —
corresponding to rank collapse in the extreme case of perfect alignment — affects training by
causing vanishingly small gradients of the queries and keys’ parameter matrices. This problem
severely diminishes the capabilities of the model to learn meaningful attention weights and is further
exacerbated in very deep networks, where the rank deficiency — and hence the vanishing gradient
problem of the queries and keys — affects several layers (see Fig. 1). In order to shed light on this
problem, we take inspiration from the flourishing literature on signal propagation in random networks
and start our analysis by computing the expected gradients of an attention layer with respect to the
queries, keys, and values, which leads to Theorem 3.2 on the vanishing gradients for the queries and
keys. From here, we pursue two different directions.

Firstly, we investigate under which conditions rank collapse can be avoided by studying the evolution
of the input sequence in a Transformer at initialization. Our theory reveals that a depth-dependent
scaling of the residual branches, beyond stabilizing the norm of the activations at initialization, also
approximately preserves the cosine of the angle between tokens, hence stabilizing the rank of the
propagating sequence. We show that this holds even in the infinite-depth limit.

Secondly, we illustrate that there are factors, other than the average tokens’ correlation, that affect
differently the gradient norm of the queries and keys compared to the values. In particular, the
propagating sequence’s squared norm has a linear dependence in the values, while a cubic one in the
queries and keys, justifying the use of layer normalization. We also highlight a different dependence
on the embedding dimension and the length of the input sequence, implying that the gradient norm
of a subset of parameters can potentially be of different orders of magnitude, as empirically hinted
by previous works [Liu et al., 2020]. Our analysis brings to light fundamental issues in the signal
propagation in Transformers, opening the way for new, well-founded and motivated approaches to
improve optimization in these models.

2 Background

Transformers. A Transformer architecture consists of L stacked attention blocks, as show in Fig. 2.
Layer normalization is usually applied token-wise either after the residual connections or to the inputs
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of the self-attention and position-wise feed-forward sub-layers, leading to the POST-LN [Vaswani
et al., 2017] and PRE-LN [Wang et al., 2019, Xiong et al., 2020] variants respectively.

Formally, given an input sequence X ∈ Rn×dv , with n tokens of dimension dv, the single-head
unmasked scaled dot-product self-attention1 is defined as:

Sℓ := AℓXℓWV , where Aℓ = softmax
(

1√
dk

XℓWQ
(
XℓWK

)⊤)
, (1)

 

Position-wise
Feed-forward

 

PRE-norm

POST-norm

Self-Attention

 

PRE-norm

POST-norm

 

Figure 2: A single Trans-
former block.

where the softmax function is applied independently across each row,
and the superscript ℓ indexes the ℓ-th layer. The matrices WQ,WK ∈
Rdv×dk and WV ∈ Rdv×dv are learnable parameters, and each layer
is initialized with an independent set of weights. In the literature, the
matrices XℓWQ,XℓWK ,XℓWV are referred to as queries, keys and
values, respectively. The complete Transformer block, in the absence of
layer normalization, can be written recursively as:

Zℓ = α1S
ℓ +Xℓ (2)

Yℓ = σ(ZℓWF1)WF2 (3)

Xℓ+1 = α2Y
ℓ + Zℓ, (4)

where the introduced α1, α2 parameters indicate the strength of the resid-
ual block, WF1 , WF2 ∈ Rdv×dv 2 are matrices of learnable parameters;
we set X0 := X, and σ : R → R is an activation function. In our case, σ
is the ReLU function, but we relax this assumption to the linear activation
from Section 3.2 on.

At initialization, each weight is sampled independently from a distribution
with zero-mean and variance σ2

v = 1
dv

for the values and feedforward
weights3, and σ2

k = 1
dk

for the queries and keys. This is the standard
“Xavier” [Glorot and Bengio, 2010] or “He” [He et al., 2015] initialization,
commonly used in deep learning.

Rank Collapse in Transformers. Interestingly, Dong et al. [2021]
proved that when the residual branches are omitted, the matrix of the
tokens’ representations Xℓ converges to a rank-1 matrix in which all the
representations are the same and equal to a vector x ∈ Rdv , i.e. Xℓ → 1nx

⊤, where 1dv
is the

vector with all ones in Rdv . Note that this is a slightly stronger notion of a rank-1 matrix, as it implies
that all the tokens’ representations are both perfectly aligned and have the same norm. Indicating the
inner product with the usual bracket notations ⟨·, ·⟩, and the cosine of the angle between two tokens
as θk,k′ , perfect alignment happens when ⟨Xℓ

k,X
ℓ
k′⟩ =

∥∥Xℓ
k

∥∥∥∥Xℓ
k

∥∥ cos θk,k′ with cos θk,k′ = 1 for
all k, k′ ∈ [n]. Note that perfect alignment together with equal norm between all the tokens implies
that all the representations are the same. One of our main contributions is to provide an explanation
of how rank collapse affects the gradients of a Transformer at initialization.

Vanishing Gradient Problem. Traditionally considered one of the core issues that prevents suc-
cessful training, the vanishing gradient problem has a long and rich history that dates back to before
the popularization of deep learning [Hochreiter, 1991, Bengio et al., 1994]. In its essence, given
a loss function L : Rn×dv → R, vanishing gradients occur when the norm of the gradient of the
loss L with respect to the parameters of the network W — which we indicate as

∥∥ ∂L
∂W

∥∥ — is too
small to provide enough backpropagating signal, thus hindering gradient-based optimization methods.

1Our analysis also easily generalizes to the case of cross-attention.
2In practice, one commonly uses WF1 ∈ Rdv×dF , WF2 ∈ RdF×dv where dF = γdv , with γ ∈ {2, 4, 8}.

Our results then hold up to a constant factor that depends on γ.
3One should explicitly write the layer dependence WQ,ℓ,WK,ℓ,WV,ℓ,WF1,ℓ,WF2,ℓ. We at times

suppress the ℓ index to improve readability. In case σ is the ReLU function, we set WF,1 to have variance 2
dv

.
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Despite extensive research toward understanding and overcoming the problem in disparate contexts
[Glorot and Bengio, 2010, He et al., 2015, Hanin, 2018, Zhang et al., 2019], a formal explanation of
its role in relatively new architectures such as Transformers is largely missing in the literature, with a
few exceptions [Xiong et al., 2020, Wang et al., 2022, Huang et al., 2020]. In our paper (Section
3.1), we show how vanishing gradient occurs in conjunction with the rank collapse issue identified by
Dong et al. [2021].

Signal Propagation in Random Networks at Initialization. After addressing the question on the
effects of rank collapse, we take a step back and rigorously analyze its causes by looking at how the
properties of the input sequence X are lost/preserved as it propagates through a randomly initialized
Transformer. More specifically, we focus on two aspects of the propagating sequence: the expected
Frobenius norm E

∥∥Xℓ
∥∥2 and the expected inner product between different tokens E⟨Xk,X

′
k⟩, with

k ̸= k′. The former is linked to a number of studies on the initialization of neural networks at
the edge of chaos [Poole et al., 2016, Schoenholz et al., 2017], and vanishing/exploding gradients
[Hanin, 2018]. The latter quantity describes how the geometry of the feature space changes after
applying a Transformer block, and is related to the concept of dynamical isometry [Saxe et al., 2013].
To understand the evolution of the inner product, we analyze the following measure of correlation
[Nachum et al., 2021, Cho and Saul, 2009]:

ρℓkk′ :=
E⟨Xℓ

k,X
ℓ
k′⟩√

E
∥∥Xℓ

k

∥∥2 E ∥∥Xℓ
k′

∥∥2 . (5)

Note that ρℓkk′ = 1 if and only if the k-th and k′-th tokens are perfectly aligned (cos θkk′ = 1). We
stress that in our case — differently from the aforementioned works — instead of analyzing the
relationship between two different data points, we study the relationship between tokens of the same
sequence.

3 Theoretical Results

The goal of this section is twofold. In Lemma 3.1 and Theorem 3.2, we provide an explanation of
the possible cause of vanishingly small gradients for queries and keys at initialization, namely the
high correlations between the tokens representations in Xℓ as the depth increases. In Section 3.2, we
show that the problem can be mitigated with an appropriate choice of the residual branch parameters
α1 and α2 that inversely scales with the depth of the network L. Under the proposed scaling, the
correlations are well behaved even in the infinite depth limit. Finally, in Section 3.3 we analyze
the scaling of the gradients with respect to other network’s parameters, and in 3.4 we draw some
connections between our findings and optimization of Transformers.

3.1 Vanishing Gradients for Queries and Keys under Rank Collapse

To investigate the problem of vanishing gradients in the attention layers, we make use of the framework
of matrix calculus [Magnus and Neudecker, 2019, Singh et al., 2021]. In particular, we compare
the expected Frobenius norm of the gradient of a self-attention layer with respect to its parameters

E
∥∥∥ ∂Sℓ

∂W

∥∥∥2
F

, where here W indicates one of the keys, queries or values weight matrices. Due to the
well-known difficulty of computing expectations of the softmax [Daunizeau, 2017, Shekhovtsov
and Flach, 2018], throughout this manuscript, we make the simplifying assumption that the softmax
output is the uniform distribution at initialization, i.e. the n× n matrix containing 1

n in each entry.

Assumption 3.1 (Uniform attention). We assume that Aℓ = 1
n1n×n,

where 1n×n is the matrix with all entries equal to 1. Crucially, in Appendix A.5, we formally show
that this assumption holds almost surely in the limit dk → ∞. There, we also experimentally show
that even in the more realistic case where dk = dv ≈ 512, the empirical simulations provide a
surprisingly faithful approximation of the theoretical insights presented in this paper.

We define the mean token x̄ℓ through its components x̄ℓ
i =

1
n

∑n
k=1 X

ℓ
ki, i ∈ [dv]. In the following

theorem, we compute the expected gradients of an attention layer at initialization, and set the basis
for our following analysis. We provide the results only for the queries, as the case for the keys is
analogous.
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Lemma 3.1. Let Xℓ be the representations of the input sequence at the ℓ-th layer. Under the
uniform-attention assumption, we have

E
∥∥∥∥ ∂Sℓ

∂WV,ℓ

∥∥∥∥2
F

= dvnE∥x̄ℓ∥2 ; (6)

E
∥∥∥∥ ∂Sℓ

∂WQ,ℓ

∥∥∥∥2
F

=
σ2
vσ

2
kdv

n2
· E
[
∥Xℓ∥2F · ∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤∥2F

]
; (7)

E
∥∥∥∥ ∂Sℓ

∂Xℓ

∥∥∥∥2
F

≤
8σ2

qσ
2
kσ

2
vdkdv

n
· E
∥∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤

∥∥2
F
+ 2d2vσ

2
v . (8)

We defer the precise study of the scaling of these quantities as a function of n and dv, dk, to Section 3.3.
At this stage, it is crucial to note that 1

n (X
ℓ)⊤Xℓ − x̄ℓ(x̄ℓ)⊤ is the centered empirical covariance

matrix of the tokens’ representations. It is easy to see that if Xℓ is a rank-1 matrix, then all the rows
of Xℓ are proportional to a fixed dv-dimensional vector, and the empirical covariance matrix has all
zero entries. Introducing a differentiable loss function L : Rn×dv → R, we make the statement on
vanishing gradients more formal in the following theorem:

Theorem 3.2 (Vanishing gradients under rank collapse). Suppose that the uniform-attention
assumption holds. If additionally Xℓ for any l ∈ [L] has rank-1, and there exists a vector x ∈ Rd

such that Xℓ = 1nx
T , then:

E
∥∥∥∥ ∂L
∂WQ,ℓ

∥∥∥∥2
F

= 0, E
∥∥∥∥ ∂L
∂WK,ℓ

∥∥∥∥2
F

= 0, (9)

where the expectation is taken over the weight matrices. This implies that these quantities are
vanishing almost surely, due to the non-negativeness of the norm.

The proof simply relies on expanding the norm of the gradient of the loss with the aid of the chain
rule and then bounding it by the product of the norms of each term of the chain. The final result holds
with an application of Lemma 3.1, in which the rank-1 assumption makes E

∥∥∥ ∂Sℓ

∂WQ,ℓ

∥∥∥ vanish. The
proof of the results presented in this section is deferred to Appendix A.1.

In light of Theorem 3.2, we can conclude that the issue of rank collapse originally identified in
Dong et al. [2021] corresponds to an initialization in a region of vanishing gradient signal in the
subspace of parameters identified by the queries and keys. How can this affect training? One may
argue that if rank collapse does not happen in the very first layer, then the corresponding gradients
are non-zero and the rank of the subsequent layers — affected by rank collapse — can be increased
with the first few steps of gradient descent. In practice, we show empirically in Fig. 1 that escaping
this pathological landscape is harder in deeper nets where rank collapse persists across several layers.

3.2 Forward Signal Propagation and the Importance of Scaling the Residual Branches

We now turn our attention to the study of the influence of skip connections in Transformers. Dong
et al. [2021] showed that simply adding this architectural trick prevents rank collapse. Somewhat
surprisingly, we show that while the claim holds for any finite depth, the average angle between
different tokens quickly increases with just a few layers, and as L → ∞ a Transformer can still lose
rank unless the residual branches are adequately initialized. As Dong et al. [2021] showed that layer
normalization does not avoid rank collapse, we omit it in our analysis. Firstly, we introduce two
lemmas on the propagation of inner products (Lemma 3.2) and the norm (Lemma 3.3) of the tokens’
representations.
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Figure 3: Effect of the residual scaling to the norm of the gradients of the network at initialization
with respect to some loss. From left to right: (a) the cosine of the angle between tokens increases with
depth. Note how larger values of α1, α2 imply a faster token alignment with depth (Theorem 3.3).
Subplots (b) and (c) show the gradients of the queries-keys and values parameters respectively by
increasing depth, compared to the corresponding norms of the first layer. Gradients for the queries-
keys diminish with depth, while the opposite happens for the values. We use POST-LN to disentangle
the effect of the variance of the input.

Lemma 3.2 (Propagation of inner products). Let C(Xℓ) =
∑

k,k′⟨Xℓ
k,X

ℓ
k′⟩ and X the input

sequence. Under the Assumption 3.1 and if σ is the linear activation function, we have that:

E
[
C(XL)

]
= (α2

2 + 1)L(α2
1 + 1)LC(X). (10)

hence, under the depth scaling for the residual block parameters α2
1 = α̃1

L , α2
2 = α̃2

L with α̃1, α̃2 ∈ R
independent of L, we have that:

lim
L→∞

E[C(XL)] = eα̃1+α̃2C(X). (11)

Note that C(Xℓ) = n2
∥∥x̄ℓ

∥∥2. The lemma on the propagation of the norm is slightly more involved:

Lemma 3.3 (Propagation of the norm). Let XL be the representations of the input sequence at the
final layer. Under the assumptions of Lemma 3.2, we have that:

E
∥∥XL

∥∥2
F
= n(α2

2 + 1)Lα2
1

L−1∑
k=0

(α2
1 + 1)k ∥x̄∥2 + (α2

2 + 1)L||X||2F , (12)

hence, under the depth scaling for the residual block parameters α2
1 = α̃1

L , α2
2 = α̃2

L with α̃1, α̃2 ∈ R
independent of L, we have that:

lim
L→∞

E
∥∥XL

∥∥2
F
= neα̃2(eα̃1 − 1) ∥x̄∥2 + eα̃2 ||X||2F . (13)

The proof of Lemma 3.3 consists in expanding E
∥∥XL

∥∥2
F

according to the defining equations

for the Transformer, and simplifying the expression by using iterated expectations E
∥∥XL

∥∥2
F

=

E[E[
∥∥XL

∥∥2
F
|Xℓ]] to exploit the conditional independence between different layers, and then com-

puting the expectations using the independence assumption on the weights. The expression on the
right-hand side will then depend on Xℓ only through its norm

∥∥Xℓ
∥∥ and the norm of the mean token∥∥x̄ℓ

∥∥2. Using Lemma 3.2 then allows us to unroll the recursion and get the final result. The complete
proof, together with the proof of Lemma 3.2, can be found in Appendix A.3.

The previous Lemma provides theoretical justification that scaling the residual branches by setting
the alpha parameters to be O(1/

√
L) allows both the norm of the propagating input and the inner

products between different tokens to be approximately preserved. Hence, the information contained
in the input is not lost, even in the infinite depth limit.
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Residual Scaling Preserves Correlations. We now prove that without the depth-dependent residual
scaling (i.e. with α1 = α2 = 1) the correlation between the tokens quickly increases, and reaches
perfect alignment in the infinite depth limit. More specifically, our argument shows that in this limit,
the correlation between different tokens ρℓk,k′ as in Eq. (5) converges to 1, implying rank collapse.
Furthermore, we show how setting the residual parameters α1 and α2 as dictated by Theorem 3.3,
ensures that the correlation measure is dependent on the input in a non-trivial way even at infinite
depth. To this end, we introduce the average correlation at layer ℓ:

ρℓ =
1

n(n− 1)

∑
k ̸=k′

ρℓkk′ . (14)

Note that ρℓ = 1 if and only if every pair of tokens is perfectly aligned. We are now ready to
formalize the influence of the 1/

√
L-scaling on the correlation between tokens’ representations by

stating Theorem 3.3.

Theorem 3.3. Let the input tokens have the same norm, i.e. ∥Xk∥ = ∥x∥ ∀k ∈ [n] for some
x ∈ Rdv . Under the depth scaling for the residual block parameters α2

1 = α̃1

L , α2
2 = α̃2

L with
α̃1, α̃2 ∈ R independent of L, we have that:

lim
L→∞

ρℓ =
neα̃1C(X)

(n− 1)[(eα̃1 − 1)C(X) + n ∥X∥2F ]
− 1

n− 1
. (15)

On the other hand, if α1, α2 ̸= 0 are some constants independent of L, we have that:

lim
L→∞

ρℓ = 1. (16)

The proof consists in noting that due to the symmetry of the problem at initialization, for a fixed
layer the expected norm of each token is the same. Hence, by our definition of ρℓkk′ , we can write
E⟨Xℓ

k,X
ℓ
k′⟩ = ρℓkk′E

∥∥xℓ
∥∥2. By summing over the k, k′ indexes, the resulting equation will depend

on E[C(Xℓ)] and E
∥∥Xℓ

∥∥2, which can be expanded using Lemma 3.2 and 3.3 respectively. The
result is then given by solving for ρℓ.
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Figure 4: Evolution of Correlation in
Transformers with (dashed lines) and
without (solid lines) 1/

√
L-scaling for

PRE-LN, POST-LN and without layer
normalization (No-LN).

Note that under the 1/
√
L-scaling, the correlation term is

one if and only if C(X) = n ∥X∥2, which holds in the
degenerate case where all the input tokens are perfectly
aligned. In Appendix A.4, we give precise formulas for
the expected correlations at any depth, showing that ρℓ
reaches values close to one even for relatively shallow net-
works when the 1/

√
L-scaling is not adopted (see also Fig.

3 (left)). Additionally, in Fig. 4, we empirically show that
in the presence of the 1/

√
L-scaling, layer normalization

(either PRE or POST) does not significantly affect the evo-
lution of the correlations. On the other hand, without the
residual scaling, PRE-LN seems to alleviate the rate of in-
crease of ρℓkk′ . It is intriguing that most deep Transformer
models use this configuration [Brown et al., 2020]. We
provide more extensive empirical results in Appendix B.

Note that the 1/
√
L scaling for the residual branches has

been previously studied in the context of stabilization of
residual networks (see Section 4), here we extend these
results to Transformers and provide new insights on its
role in the context of rank preservation. Finally, note that
by setting α̃1, α̃2 = 0, we recover the so called "ReZero"
initialization [Bachlechner et al., 2021]. In this context,
the 1/

√
L scaling extends this framework as it allows for

wider range of values for α̃1, α̃2 while still guaranteeing
stability.
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ReLU extension. We mention here that extending these results from the linear activation to the
ReLU case is known to be a hard problem, due to the technical difficulty of propagating the inner
products across ReLU layers that are shared among the tokens (this is the case in the position-wise
feed-forward layers in Transformers). Exact formulas can be found only in the case of one ReLU
layer with Gaussian inputs in Cho and Saul [2009]. However, in the context of rank collapse analyzed
here, the linear activation function provides a bound on the correlation with respect to the ReLU case.
In fact, correlations are exactly preserved in expectation in the linear case, but increase in the ReLU
case (for instance, see the contraction argument in Nachum et al. [2021] below Equation (2)). Hence,
the perfect alignment (a.k.a rank collapse) that affects the linear case affects the ReLU case as well
(in which case the rank collapses even faster with depth, as we show in Figure 10).

3.3 Dependence on the Angle between Tokens and the Input Norm

In this section, we drop the superscript ℓ as it is obvious from context and assume for simplicity that
dk = dv. To gain a better intuition on the factors that affect the gradients and provide additional
insights, we study the case in which every pair of distinct tokens are zero-mean Gaussian random
variables, correlated in the same way, i.e ρℓii′ = ρ for i ̸= i′ or more precisely

E [Xi,jXi′,j′ ] =


0 j ̸= j′ (independent dimensions)
σ2
x i = i′, j = j′

ρσ2
x i ̸= i′, j = j′

.

To see that this equation satisfies our definition of the correlation metric, note that E[∥Xi∥2] = dσ2
x

and E⟨Xi,Xi′⟩ = dσ2
xρ, for i ̸= i′. Then, the expected norm of the gradients for the values (Eq. (6))

simplifies to

E
∥∥∥∥ ∂S

∂WV

∥∥∥∥2
F

= σ2
xd

2 (1 + ρ(n− 1)) . (17)

By making the additional assumption that the norm and the correlation propagate independently, the
respective norm for the queries — and symmetrically the keys — (Eq. (7)) reduces to:

E
∥∥∥∥ ∂S

∂WQ

∥∥∥∥2
F

= σ6
x

(n− 1)

n
(1− ρ)2d(n+ d). (18)

In Appendix A.2 we provide a rigorous proof, that relies on Isserlis theorem [Isserlis, 1918] to
compute higher-order moments. The above expressions reveal the different dependencies on four
main actors, that we inspect separately here. The gradients of the queries depend via a cubic function
on the variance of the input, σ2

x, compared to a linear for the values. This provides an additional
interpretation of the successful use of layer normalization, as in Xiong et al. [2020], either in the
POST-LN or PRE-LN format, that standardizes the input variance σ2

x to the value 1.

Next, we emphasize the dependence on the correlation between the tokens, also illustrated in Fig. 3.
Importantly, note how the queries/keys have opposite monotonic functional dependence with respect
to ρ compared to the values. As revealed by Theorem 3.3 and Fig. 3 (center), inappropriate scaling of
the residual branches can already lead to this phenomenon even in a relatively shallow network.

Finally, Eq. (17) and (18) reveal a different scaling in terms of the embedding size d and the sequence
length n due to the self-attention operation itself. We hope that the identification of the different
dependencies in the gradients of the parameters will inspire a new line of works aimed at solving
some of the difficulties in training Transformers.

3.4 Connections to Optimization and Adaptive Methods

The existence of the discrepancy in the magnitude of the gradients with respect to the weights
WQ,WK and WV , might explain the success of adaptive optimization algorithms, as illustrated
in Fig. 6, where we plot the effective learning rate computed by Adam [Kingma and Ba, 2014] in a
toy encoder task (more details in Appendix C). Notice that the effective learning rate is increasingly
larger (with depth) for the queries compared to the values — as postulated by our theory — and
this difference is remarkably constant throughout training. Hence, we conjecture that the success
of adaptive methods in Transformers’ training can be partially explained by the need to fix this
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Figure 5: BLEU scores by increasing the number of
transformers blocks. ‘X’ Transformer blocks implies
in total ‘X’ encoder self-attention, ‘X’ decoder self-
attention and ‘X’ decoder cross-attention layers.

Table 1: BLEU scores for the IWSLT14 German-to-
English translation task. SGD res-scale refers to the train-
ing of SGD without layer normalization and initialization
of the residual scaling a1 = a2 = 1√

L
. SGD temperature

additionally employs an inverse temperature inside the
softmax.

Method (6L-Encoder / 6L-Decoder) BLEU ↑
SGD POST-LN 31.36
SGD res-scale 32.79
SGD temperature 35.69
Adam POST-LN [Vaswani et al., 2017] 35.39
Adam PRE-LN [Vaswani et al., 2017] 35.10
ReZero [Bachlechner et al., 2021] 34.55
T-Fixup Zhang et al. [2019] 35.59

disproportionate gradient’s magnitude. To test this hypothesis, we propose a simple architectural
modification, an inverse temperature scaling τ ∈ R inside the softmax:

Sℓ
τ := softmax

(
τ√
dk

XℓWQ
(
XℓWK

)⊤)
XℓWV . (19)
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Figure 6: Adaptive learning rates computed by
Adam in Transformers.

A direct consequence of our analysis is that τ al-
lows controlling the magnitude of the gradients
for the queries and keys’ parameters. In Sec-
tion C.2, we detail how one can choose τ such
that the magnitude of the gradients as derived in
Equation 17 and 18 is approximately matched
at initialization.

We evaluate our proposal, consisting of residual
scaling and the aforementioned inverse temper-
ature parameters, on the widely used IWSLT14
German-to-English (De-En) benchmark transla-
tion task. All details regarding the experimen-
tal setup and the choice of inverse temperature
used are provided in Appendix C. We train a
Transformer encoder-decoder of varying depth
with stochastic gradient descent (SGD), after re-
moving all normalization layers and adequately
initializing the residual connections. For our training with SGD, we avoid using any learning rate
warm-up, as commonly done for Adam, and instead use a step-scheduler to decrease the learning rate
at 40% and 80% of training. We compare against the following methods that make use of Adam;
POST-LN and PRE-LN refer to the aforementioned alternatives to apply layer normalization. We
also compare against other successful techniques that rely on specific initializations to avoid layer
normalization, such as ReZero [Bachlechner et al., 2021] and T-Fixup [Zhang et al., 2019]. We report
the average BLEU score [Papineni et al., 2002] across 5 runs in Fig. 5 and Table 1.

Our proposed method considerably improves training with SGD, keeping up and in some cases
surpassing any results achieved by the Adam optimizer. We are also able to train deeper networks
without the use of layer normalization. We leave for future work to further investigate modifications
or alternatives to the self-attention operation.

4 Related Work

Our work builds upon the rich literature on forward and backward signal propagation in random
neural networks [Poole et al., 2016, Schoenholz et al., 2017, Xiao et al., 2018, Pennington et al.,
2017, Orvieto et al., 2021, Noci et al., 2021, Zavatone-Veth and Pehlevan, 2021]. The 1/

√
L scaling

scheme has been investigated in the literature for the stabilization of residual networks [Hanin and
Rolnick, 2018, Arpit et al., 2019, Allen-Zhu et al., 2019, Hayou et al., 2021].
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Our work draws inspiration from a series of recent works studying the rank of the representations
of random feed-forward neural networks at initialization [Daneshmand et al., 2020, 2021]. In the
context of Transformers, Dong et al. [2021] has recently identified the rank collapse issue object of
study of the present work. Thanks to our analysis of the backward pass, we are able to demonstrate
that rank collapse in Transformer architectures leads to vanishingly small gradients of queries and
keys, thereby preventing effective training and allowing us to complete the analysis of [Dong et al.,
2021].

Among the architectural components in Transformers, layer normalization is, arguably, one of the
most important – and debated – ones [Chen et al., 2018, Wang et al., 2019, Nguyen et al., 2010, Xiong
et al., 2020]. In the original architecture [Vaswani et al., 2017], layer normalization is used to stabilize
the forward pass by reducing the variance of the inputs to the following sublayer. Our analysis of the
forward pass shows that its inclusion is not strictly necessary for the purpose of controlling the norm
of the representations. For a theoretical analysis of signal propagation in the presence of layer norm,
we refer the reader to Xiong et al. [2020].

Additionally, our theoretical study of the backward pass provides a rigorous explanation of the
empirically observed discrepancy between the magnitude of the gradients of the queries and the
values, which Liu et al. [2020] hypothesize to be one of the causes of the success of adaptive methods
in training Transformers [Liu et al., 2019, Zhang et al., 2020, Huang et al., 2020].

Finally, properly rescaled residual connections have been found to be beneficial for training Trans-
formers by a number of recent research works [Zhang et al., 2019, Bachlechner et al., 2021, Wang
et al., 2022]. However, none of these studies characterize the impact of skip connections on rank
propagation, while our analysis suggests a theoretically-grounded way to stabilize it.

5 Conclusions and Future Work

In this paper, we showed how, at initialization, rank collapse and more generally high correlation
in the tokens causes vanishing gradients of the queries and keys of a Transformer architecture.
While residual connections help mitigate rank collapse at finite depth, we showed that they alone
cannot prevent high alignments of the tokens’ representations — unless properly scaled by a 1/

√
L-

factor. Finally, we have also discovered counter-intuitive dependencies on the variance of the input,
embedding size, and sequence length, potentially causing large differences between the gradients
of queries/keys compared to the values’ parameters. Hence, we conclude that one of the strengths
of Transformers lies in their carefully designed architecture together with an adequate initialization.
Finally, we gave preliminary evidence that one of the factors contributing to the higher efficacy
of Adam compared to SGD in training Transformers arises from the disproportionate magnitude
of gradients as postulated by our theory. Nonetheless, other factors might further accentuate the
difference between these two algorithms during training, leaving the door open for further research
regarding the benefits of adaptive optimization methods with Transformers.
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