
Figure 4: Enriched phase diagram for the subspace clustering of two-clusters GMM at fixed ↵ = 2.
We plot the SNR � as a function of ⇢ and we rescale the y-axis by

p
↵/k. We colour different region

of the figure according to the associated phase. We introduce in the black dotted line the dynamical
spinodal threshold �dyn, in the yellow dashdotted line the Bayes-algorithmical threshold �alg-Bayes and
in purple dashed line the jump-Bayes one �jump-Bayes. It is not visible, due to the choice of the axis,
the easy region, in which AMP performs better than random but not Bayes-optimally. We analyze
this in Fig. 6.

A Analysis of the thresholds

We identified in Sec. 4 different reconstruction phases for the subspace clustering problem, character-
izing completely the Bayes-optimal and algorithmical performances. We detail in this section the
definition of the reconstruction phases and the consequences for the computational and statistical
limits of subspace clustering. We discuss in particular an interesting link between the thresholds
separating these phases and the potential function �rs in eq. (10). First, we enlarge the picture on
the reconstruction phases we offered in Sec. 3. Along with the impossible, hard and easy phases
we can define a further region. We call the Alg-Bayes phase, the region of parameters in which the
performance of AMP is, not only achieving positive correlation with the ground truth, but achieves
the Bayes-optimal performance. We summarize now the complete description:

Impossible phase: There is not enough information in the data matrix X handled to the statistician
in order to assign cluster membership better than chance for any algorithm, and the Bayes-optimal
MMSE is not better than a random guess. Clustering (i.e. reconstruction of U? better than chance) is
impossible.
Hard phase: The MMSE is non-trivial, and clustering is statistically possible to some extent, but
the best known polynomial time algorithm, AMP, fails to correlate better than chance with the true
cluster assignment U?. Any polynomial-time algorithm is conjectured to fail in this region.
Easy phase: In the easy phase, not only clustering is statistically possible, but AMP is able to
achieve positive correlation with U?.
Alg-Bayes phase: In the alg-Bayes phase AMP is able to achieve Bayes-optimal positive correlation
with U?.

Following the introduction of the alg-Bayes phase, we find an enriched version of the phase diagram
for the two-classes subspace clustering at fixed ↵, see Fig. 4. When we cross from one region to
an other we have a phase transition. Each phase transition is characterized by different thresholds:
values of the parameters which signal the onset of a new phase. In Fig. 4 we see different thresholds
which were not present in the previous plot in Fig. 1: {�dyn,�alg-Bayes,�jump-Bayes}. In order to define
these quantities, it is useful to highlight the relationship between the thresholds and the minima of the
"free energy" �rs in eq. (10). Let us fix a sparsity level 1� ⇢, say ⇢ = 0.05, and move vertically on
the y-axis starting from the bottom on the y-axis, i.e. �

p
↵/k ⌧ 1. As we increase the value of the

SNR we can identify the following thresholds:
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Figure 5: Evolution of the MSE and the potential �rs for fixed ⇢ ' 0.05 and ↵ = 2. Top: We take
vertical cross section of the phase diagram in Fig. 4 for ⇢ ' 0.05, as explained in the left panel. In
the right panel we analyze the MSE via SE both informed and uninformed as a function of the SNR
� and we rescale the x-axis by

p
↵/k. In vertical line we plot the different thresholds we encounter as

we increase the SNR. Bottom: Cartoon plot of the minima of the potential �rs as we follow the cross
section of the phase diagram at ⇢ ' 0.05. The blue star denotes the global minimum of �rs, which
corresponds to the correlation of the Bayesian-optimal estimator, while the orange dot denote local
minima. We label the phase in which we are at a given stage by colouring the circle below every plot.
We plot the thresholds as vertical lines separating the different subplots.

• � < �dyn: The only minimum of eq. (9) is the trivial minimum corresponding to zero correlation
Mu = 0 with U?. Therefore, below this threshold reconstruction is impossible.

• � 2 (�dyn,�it): A second minima with higher �rs (i.e. a local minimum) and correlation appears,
but the trivial minimum Mu = 0 is still the global one. Therefore, AMP with a uninformed
initialization Mt=0 = 0 will converge to the trivial minimum, and reconstruction is only possible
with a strong informed initialization. We call the threshold value for the emergence of this local
minimum the dynamical spinodal �dyn.

• � 2 (�it,�alg): As the SNR is increased, the local minumum goes down in energy �rs, and at a
certain �it, it crosses the trivial minimum. Therefore, in this interval the non-trivial minimum is
the global one, while the trivial minimum becomes local. Although reconstruction is statistically
possible in this region, AMP with a uninformed initialization Mt=0 = 0 is stuck at the trivial minima.
Therefore, in this region we enter the hard phase.

• � 2 (�alg,�alg-Bayes) As the SNR is further increased, AMP with a uninformed initialization starts
to achieve positive correlation with U?, although strictly lower than the Bayes-optimal estimator. In
terms of the potential �rs, this corresponds to the trivial minimum continuously becoming a local
maximum, and another local minimum corresponding to higher correlation continuously appearing.
This new local minima coexists with the global one, which corresponds to the Bayes-optimal
performance. We enter the easy phase.

• � > �alg-Bayes: Finally, as the SNR is further increased the local minima disappears, and there is
only one minimum with high-correlation with the signal left. In this region, AMP with a uninformed
initialization achieves the same performance as the Bayes-optimal estimator. We enter the alg-Bayes
phase.

The discussion above is summarized in Fig. 7. We plot toghether with the evolution of the minima
of �rs, the performance of SE with both informative and uninformative initialization to analyze the
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Figure 6: Zoom around the tri-critical point of Fig. 4.

behaviour of the MSE. The full characterization of the subspace clustering problem both from an
algorithmic and statistical perspective, boils down to the analysis of the evolution of the critical
points of �rs as we vary the meaningful parameters in the problem. We note from Fig. 4 that
the performance of AMP is, when it achieves positive correlation with the ground truth, almost
everywhere Bayes-optimal apart from a small region around the tri-critical point. This point is
defined - at fixed (↵, k)- as the tuple of parameters (�T (↵, k) , ⇢T (↵, k)), such that the "spinodal"
thresholds meet, i.e. �alg-Bayes = �dyn. We discuss why these thresholds are called spinodals, and how
to compute them practically in Sec. B. We can analyze the vicinity of the tri-critical point to analyze
the non-trivial interplay between the easy and alg-Bayes phase, where AMP does not achieve always
Bayes-optimal performance. Imagine to repeat the same steps as before considering the zoom around
the tri-critical point of the phase diagram, see Fig. 6. Fix a sparsity level 1� ⇢, say ⇢ = 0.202, and
move vertically on the y-axis starting from the bottom on the y-axis, i.e. �

p
↵/k ⌧ 1. As we increase

the SNR we can repeat the previous analysis, obtaining now:

• � < �alg: The only minimum of eq. (9) is the trivial minimum corresponding to zero correlation
Mu = 0 with U?. Therefore, below this threshold reconstruction is impossible.
• � 2 (�alg,�dyn): The trivial minimum becomes unstable and AMP achieves positive correlation
with the ground truth. The minimum is unique and also SE with a positive initialization would end up
there. The phase is alg-Bayes.
• � 2 (�dyn,�jump-bayes): As the SNR is increased, a new local minimum appears. The reconstruction
phase is still alg-Bayes since the non-trivial minimum has higher free energy than the global one.
• � 2 (�jump-Bayes,�alg-Bayes) As the SNR is further increased, the free energy of the informative
minimum goes down and becomes equal to the uninformative one. We enter the easy phase, neverthe-
less AMP achieves positive correlation with the truth, Bayes optimal performance is superior. The
Bayes-optimal MSE have a first order phase transition at �jump-Bayes, hence the name jump-Bayes.
• � > �alg-Bayes: Finally, as the SNR is further increased the local minima disappears, and there is
only one minimum with high-correlation with the signal left. In this region, AMP with a uninformed
initialization achieves the same performance as the Bayes-optimal estimator. We enter the alg-Bayes
phase.

The analysis of the evolution of the minima of �rs and the consequences on the MSE is done in Fig. 7.

B Building the phase diagram

We build in this section the phase diagram for the two-classes GMM shown in Fig. 1 , explaining the
steps which are easily generalizable to the general mixture case. First we note that we can simplify
the model for two-mixtures GMM in eq. (4) even further by mapping it to an easier rank k = 1
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Figure 7: Evolution of the MSE and the potential �rs for fixed ⇢ ' 0.202 and ↵ = 2. Top: We take
vertical cross section of the phase diagram in Fig. 4 for ⇢ ' 0.202, as explained in the left panel. In
the right panel we analyze the MSE via SE both informed and uninformed as a function of the SNR
� and we rescale the x-axis by

p
↵/k. In vertical line we plot the different thresholds we encounter as

we increase the SNR. Bottom: Cartoon plot of the minima of the potential �rs as we follow the cross
section of the phase diagram at ⇢ ' 0.202. The blue star denotes the global minimum of �rs, which
corresponds to the correlation of the Bayesian-optimal estimator, while the orange dot denote local
minima. We label the phase in which we are at a given stage by colouring the circle below every plot.
We plot the thresholds as vertical lines separating the different subplots.

version of the matrix factorization problem. It suffices to replace the matrices (U, V ) in eq. (4) by the
following quantities:

u ⇠ Rad(n) 2 {�1,+1}n v ⇠i.i.d. ⇢N (0, Id) + (1� ⇢)�0 2 Rd (27)

The two formulations of the problem are indeed formally equivalent up to a rescaling of the parameters
such that at fixed ↵ the quantity �/k is the same in two settings. The mapping simplify significantly
the computation. First, in order to compute the Bayes-optimal performance in eq. (8), we must
compute the partition functions Zu/v in eqs. (11),(12) for the new simplified model. We shall exploit
the following general relation, as a function of the prior distribution on (U,V):

Zu/v(A, b) = Ex⇠Pu/v


exp

✓
�b>x+

x>Ax

2

◆�
(28)

thus exploiting the explicit expression of the prior in eq. (27) we obtain:

Zu(A, b) = e
�A

2 cosh b (29)

Zv(A, b) = 1� ⇢+
⇢p

1 +A
exp

✓
b
2

2(1 +A)

◆
(30)

We study the computational limits for the subspace clustering problem deriving the associated AMP
to this simplified low-rank matrix factorization problem. We have to compute the denoising functions

for the simplified model, written in eqs. (13),(14) for the general rank case. We shall exploit the
general formula relating them with the partition functions computed above:

⌘u/v(A, b) = @b logZu/v(A, b) (31)
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thus using the prior for the simplified k = 1 model in eq. (27) we obtain:

⌘u(A, b) = tanh(b) (32)

⌘v(A, b) =
⇢b

1 +A

1

⇢+ (1� ⇢)
p
1 +Ae

� b2

2(1+A)

(33)

where now (A, b) 2 R2. We can write at this point the SE equations for the overlaps (mt
u,m

t
v) which

are now scalar variables. Let us introduce the following notation:

m
t+1
u = Eu⇤⇠Pu,⇠⇠N (0,1)
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⇢
+
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u

⇢
⇠

!
v⇤

#
:= V(↵�mt

u/⇢) (35)

The perturbative method we presented in Sec 5 would pinpoint easily the expected algorithmical
threshold �alg = 1/

p
↵. Despite this, as we discussed in Sec. 5, it would not guarantee the presence of

an algorithmically hard region since the number of cluster k < khard. We have to resort to numerical
computations for finding the exact values of the thresholds since also in this simple case we do
not have a closed-form update for the iterates (mt

u,m
t
v), although we will treat them analytically

in App. C. We keep in mind the picture in Figs. (5,7) and compute the different thresholds there
defined. Let us consider first �it, the IT threshold, defined as the SNR at which the problem becomes
statistically possible. We see in Fig. 5 that it coincides with the SNR level at which the free energy of
the two minima (if present) are equal. We analyze for simplicity sparsity levels in which �dyn < �alg,
i.e. we refer to Fig. 5, otherwise the criterion above would define equivalently �bayes-Jump. We compute
the difference of free energy �� between the two minima introducing the path � : R ! R2 which
follows the state evolution equations:

�(t) = (t,V(↵�t)) (36)

We can use the fundamental theorem of calculus to obtain the difference of free energy between the
trivial fixed point (mu,mv) = (0, 0) and a non-trivial one (mu,mv) =

�
x,V

�
↵�(x)x)

�
at overlap

mu = x as follows:

��(x) =

Z x

0
dq

d�

dt

�
mu(t) = q,mv(t) = V(↵�(x)q);�(x), ⇢,↵

�
(37)

where we introduced �(x) as the SNR needed in order to have at fixed (⇢,↵) an overlap mu = x

defined by the self-consistent equation:

x = U
�
�(x)V(↵�(x)x)

�
(38)

Plugging in the expression of the derivative we identify the IT threshold �it as the minimal SNR such
that the following equation is satisfied:

Z x(�it)

0
dqV 0(↵�itq)[q � U(�itV(↵�itq))] = 0 (39)

Let us consider now the Bayes-algorithmical and dynamical thresholds, always referring to their
pictorial representation in Figs. (5,7). From a practical standpoint they are stationary point of the
the function �(mu), solution of eq. (38). A reader with some statistical physics background may
recognize a parallel with the theory of real gases. The curve �(mu), exactly as the Pressure-Volume
curve p(v) for real gases, is composed of two branches called stable and unstable branch defined
from the value of the derivative @�/@m (resp. @p/@v). The operative definition of these thresholds
as critical points of the curve �(mu) allows us to easily compute them numerically, see Fig. 8 to
observe their evolution as a function of the sparsity level. We see that as we increase the sparsity,
i.e. decrease ⇢, the statistical-to-computation gap, measured visually by the distance between the
two critical points, increase. Moreover the IT threshold collapse with the dynamical one. The same
happens with the Bayes-algorithmic threshold, approaching �alg ⇡ 1.
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Figure 8: Evolution of the SNR � as a function of mu for different ⇢ 2 {0.09, 0.11, 0.13, 0.15}.
We rescale the y-axis by

p
↵/k. We plot the different transitions {�dyn,�it,�alg,,�alg-Bayes} for each

different sparsity level. It is visually clear that the hard phase becomes bigger and bigger as the
sparsity grows, while the gap between dynamical and IT threshold closes.

C Scaling behaviour at large sparsity

We do not have in general an analytical expression for the iterates of the SE equation (mt
u,m

t
v)

appearing in eq. (20), thus we introduced in Sec. 6 a change of variables that allows us to approach
analytically the problem in the large sparsity regime. We study in this section the consequences of
this scaling assumption. Let us rewrite it here:

mu = m̃u

r
�⇢ log ⇢

↵
mv = m̃v⇢ � = C(k)k

r
�⇢ log ⇢

↵
(40)

Consider the update of the parameter mv under this parametrization:

mv = ⇢m̃v = f
(k)
v

�
� m̃uC(k) log ⇢

�
(41)

We can rewrite the right hand side in the following way:

⇢m̃v = ⇢
�m̃uC(k) log ⇢

(k � m̃uC(k) log ⇢)

Z +1

0

Sk�1

(2⇡)
k
2

⇢⇠
k+1

e
�⇠2/2

⇢+ (1� ⇢)(k�m̃uC(k) log ⇢
k )

k
2 ⇢m̃uC(k)⇠2/2

d⇠ (42)

where Sk�1(1) is the surface of the k�dimensional unitary hypersphere. Working in the small ⇢
limit allows us to exploit a concentration in measure over which we integrate on the right hand side.
The exponent of ⇢ in the denominator, i.e. m̃uC(k)⇠2

2 , will determine the large sparsity behaviour. If
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the exponent is greater than one, ⇢m̃uC(k)⇠2/2 will go to zero, otherwise it will diverge in the limit
⇢ ! 0. Thus we obtain:

mv ⇡ ⇢

Z +1

0

Sk�1(1)

k(2⇡)k/2
⇠
k+1

e
�⇠2/2⇥

✓
m̃uC(k)

2
⇠
2 � 1

◆
:= ⇢Tk (m̃uC(k)) (43)

where we introduced ⇥(x) as the Heavyside theta. Plugging in the above expression into the equation
defining m

t
u we have:

mu = f
(k)
u (�⇢Tk (m̃uC(k))) (44)

thus approximating for small ⇢ the function f
(k)
u , expressing everything in terms of mu and plugging

in the scaling ansatz for mu in eq. (40), we obtain the simplified SE in the large sparsity regime:

m̃u = C(k)Tk (m̃uC(k)) (45)

We can repeat the analysis done in the previous appendix to find the thresholds in this limit. The
condition defining the IT threshold �it written in eq. (37) simplifies to:

Z x̃

0
dq̃ T

0
k (Ck(x̃)q̃) q̃ =

Z x̃

0
dq̃ T

0
k (Ck(x̃)q̃)Ck(x̃)Tk (Ck(x̃)q̃) (46)

where we defined Ck(x̃) as the value of the coefficient C(k), solution of eq. (45) when the overlap

is fixed at mu =
q

�⇢ log ⇢
↵ x̃. This task is much easier to solve. Likewise the computation of the

dynamical spinodal simplifies greatly. We need to find the minimum SNR such that eq. (45) has a
non trivial solution. By introducing the auxiliary variable y = Ck(y)m̃ we rewrite eq. (45) as:

C
2
k(y) =

y

Tk(y)
(47)

thus the minimal SNR to obtain a non trivial solution, defined by the coefficient Cdyn(k), to obtain a
non trivial solution of the equation above is given by:

Cdyn(k) = min
y2R+

r
y

Tk(y)
(48)

At this stage we still need to resort to numerical inspection in order to find the coefficient Cit, Cdyn,
but we can investigate analytically the large k behaviour. By considering the leading order of the
function Tk(·), one can see that Tk(z) ⇡ ⇥

⇣
z � 2

k+1

⌘
. By plugging in this expression into the

definition of the coefficients (Cit(k), Cdyn(k)) in eqs. (46),(48) we obtain the following asymptotic
result:

Cit(k) ⇡
r

4

k + 1
Cdyn(k) ⇡

r
2

k + 1
(49)

thus plugging them into the scaling assumption in eq. (40) we obtain the following scaling for the
thresholds:

�it ⇡
r

4k2

k + 1

r
�⇢ log ⇢

↵
�dyn ⇡

r
2k2

k + 1

r
�⇢ log ⇢

↵
(50)

The evolution of the coefficients Cit, Cdyn as a function of the number of clusters is summarized in
Fig. 9. We see in Fig. 9 that the large rank expansion is quite accurate also at moderate k, especially
for the IT threshold. The easy phase and the alg-Bayes phase merge, hence we will not analyze the
distinction between �alg and �alg-Bayes in this regime.

D Details on numerical simulations

We discuss in this section the details behind the numerical simulations presented in Sec. 4. The code
is available at https://github.com/lucpoisson/SubspaceClustering. First we stress an important point
on the convergence of low-rAMP algorithms. Increasing the sparsity of the problem, i.e. decreasing
⇢, the convergence of AMP becomes more difficult. In order to solve this problem is useful to
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Figure 9: Left: Comparison of the threshold coefficients (Cit, Cdyn) (dots) with their high rank
asymptotic expression (solid line).

Algorithm 2 low-rAMP with damping
Input: Data X 2 Rd⇥n

Initialize v̂t=0
i , ût=0

⌫ ⇠ N (0k, ✏Ik), �̂t=0
u,⌫ = 0k⇥k, �̂t=0

v,i = 0k⇥k.
for t  tmax do

Atmp
u = �

s

⇣
Û

t
⌘>

Û, A
tmp
v = �

s

⇣
V̂

t
⌘>

V̂

Btmp
v =

q
�
sXÛ

t � �
s

nP
⌫=1

�
t
u,⌫V̂

t�1
, Btmp

u =
q

�
sX

>
V � �

s

dP
i=1

�
t
v,iÛ

t�1

Damping step with damping coefficient �:
At

u = (1� �)Atmp
u + �A

t�1
u At

v = (1� �)Atmp
v + �A

t�1
v

Bt
u = (1� �)Btmp

u + �B
t�1
u Bt

v = (1� �)Btmp
v + �B

t�1
v

Take {btv,i 2 Rk}di=1, {b
t
u,⌫ 2 Rk}n⌫=1 rows of Bt

v,Bt
u

v̂t+1
i = ⌘v(At

v, b
t
v,i), ût+1

⌫ = ⌘u(At
u, b

t
u,⌫)

�̂
t+1
v,i = @b⌘v(At

v, b
t
v,i), �̂

t+1
u,⌫ = @b⌘u(At

u, b
t
v,⌫)

Here Û
t 2 Rn⇥k

, V̂
t 2 Rd⇥k

,Bt
u 2 Rn⇥k

,Bt
v 2 Rd⇥k

,At
u 2 Rk⇥k

,At
v 2 Rk⇥k

end for

Return: Estimators v̂amp,i, ûamp,⌫ 2 Rk
, �̂u,⌫ , �̂v,i 2 Rk⇥k

implement damping to stabilize the iteration, see the modified AMP in Algorithm 2. We compared
the performance of AMP with different popular algorithm in the literature. The first general-purpose
algorithm we considered for subspace clustering is a modification of the sparse PCA algorithm
(SPCA). Let us consider a data matrix Y 2 Rn⇥d, where as in our notation n is the number of
samples and d is the feature dimension. In the SPCA problem, the statistician wants to find directions
in the space which maximize the variance of our dataset by constraining the cardinality of the new
basis vectors. In vanilla PCA instead we try to find directions, called principal components {êm}dm=1,
which maximize the variance not caring if they will be given by linear combination of all the features
of our problem: êm =

Pd
i=1 ↵

(m)
i ei, where we called {ei}di=1 the canonical basis vectors. In

SPCA we want that some of the coefficients ↵
(m)
i (called "loadings" in the literature) to be zero,

favouring interpretability of the optimal estimator. By formulating in a variational way the problem
the sparsity of the estimator is enhanced using LASSO regularization. We write the pseudocode for
the program we used in the two-class subspace clustering problem in Algorithm. 3. The unregularized
problem, i.e. � = 0, is equivalent to vanilla PCA. The comparison of the performances of the two
spectral algorithms has been done in Fig. 2 and we have a clear advantage in imposing the cardinality
constraint as the sparsity level increase. We considered in the sub-extensive sparsity regime in Sec. 6
the Diagonal Thresholding algorithm (DT). The main idea is to search for spatial directions with the
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Algorithm 3 SPCA
Input: Data Y 2 Rn⇥d

Initialize �sparsity = 1,� = 10�3

while |�sparsity| � 1 do

Solve variational problem: (Ĉ, D̂) = argmin
C2Rn,D2Rd

{
��Y � CDT

��
F
+ � kDk1}

Compute first sparse principal component D
Compute the estimated sparsity ŝ =

Pd
i=1(1� �v̂i,0)

Compute sparsity mismatch �sparsity = ⇢d� ŝ

If �sparsity < 0 decrease �, otherwise increase it
end while

Project the data matrix onto the first sparse principal component: P = YD 2 Rn

Compute cluster membership assignment: Û = sign(P)
Return: MSE(Û)

Algorithm 4 Diagonal Thresholding
Input: Data Y 2 Rn⇥d

Compute the sample covariance matrix K̂ = 1
n

Pn
⌫=1 y⌫y

>
⌫

Find the directions with the s largest variance, with s = b⇢dc.
Call the subset of indices corresponding to the directions above S .
Create K̃:

K̃ij =

⇢
K̂ij if (i, j) 2 S
0 otherwise

Compute the largest eigenvector of the thresholded matrix K̃ and call it v̂.
Project the data matrix onto the first sparse principal component: P = Yv̂ 2 Rn

Compute cluster membership assignment: û = sign(P)
Return: MSE(û)

largest variance, and threshold the sample covariance matrix accordingly, hence the name Diagonal
Thresholding. The pseudocode for the algorithm we used in the two-classes subspace clustering is
given in Algorithm. 4.
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