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Abstract

Contextual Bayesian optimization (CBO) is a powerful framework for sequential
decision-making given side information, with important applications, e.g., in wind
energy systems. In this setting, the learner receives context (e.g., weather condi-
tions) at each round, and has to choose an action (e.g., turbine parameters). Standard
algorithms assume no cost for switching their decisions at every round. However,
in many practical applications, there is a cost associated with such changes, which
should be minimized. We introduce the episodic CBO with movement costs prob-
lem and, based on the online learning approach for metrical task systems of Coester
and Lee [19], propose a novel randomized mirror descent algorithm that makes use
of Gaussian Process confidence bounds. We compare its performance with the of-
fline optimal sequence for each episode and provide rigorous regret guarantees. We
further demonstrate our approach on the important real-world application of altitude
optimization for Airborne Wind Energy Systems. In the presence of substantial
movement costs, our algorithm consistently outperforms standard CBO algorithms.

1 Introduction

Bayesian optimization (BO) is a well-established framework for sequential black-box function op-
timization that relies on Gaussian Process (GP) models [42] to sequentially learn and optimize the
unknown objective. In many practical scenarios, however, one wants to additionally use available
contextual information when making decisions. In this setting, at each round, the learner receives a
context from the environment and has to choose an action based upon it. Previous works have devel-
oped contextual BO algorithms [32, 16, 31, 40], and applied them to various important applications,
e.g., vaccine design, nuclear fusion, database tuning, crop recommender systems, etc.

A potential practical issue with these standard algorithms is that they assume no explicit costs for
switching between their actions at every round. Frequent action changes can be extremely costly
in many real-world applications. This work is motivated by the problem of real-time control of the
altitude of an airborne wind energy (AWE) system.1 In AWE systems, the wind speed is often only
measurable at the system’s altitude, and determining the optimal operating altitude of an AWE system
as the wind speed varies represents a challenging problem. Another fundamental challenge is that
additional energy is required for adjusting the altitude, which makes the frequent altitude changes
costly. Consequently, this work is motivated by the following question: How can we efficiently learn

1AWE system is a wind turbine with a rotor supported in the air without a tower that can benefit from the
persistence of wind at different high altitudes [22].
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to optimize the AWE system’s operating altitude despite varying wind conditions while minimizing
the energy cost associated with turbine altitude changes?

Figure 1: Total energy generated by the AWE
system when operated with GP-MD (proposed in this
work), CGP-LCB [32] and a stationary baseline. The
stationary baseline employs no-learning and does not
incur movement costs. GP-MD and CGP-LCB learn an
operating strategy, but GP-MD outperforms CGP-LCB
since it also considers movement costs.

In this work, we formalize the movement penal-
ized contextual BO problem. When the switch-
ing cost is a metric (distance function), we pro-
pose a novel algorithm that effectively combines
ideas from BO with the online learning strate-
gies proposed in [19] for solving the so-called
metrical task system (MTS) problem [11]. Fur-
thermore, our algorithm relies solely on noisy
point evaluations (i.e., bandit feedback), allows
for arbitrary context sequences, and besides the
standard exploration-exploitation trade-off, it
also balances the movement costs. As a result,
it outperforms the standard movement-cost-
agnostic contextual BO algorithms as well as
movement-conservative baselines (see Fig. 1).

Related Work. Bayesian optimization (BO)
refers to a sequential approach for optimizing an
unknown objective (cost function) from noisy
point evaluations. A great number of BO methods have been developed over the years (e.g.,
[38, 50, 17]). While the focus of standard BO approaches is mainly on optimizing the unknown ob-
jective cost function, in this work, we additionally focus on penalizing frequent action changes. This
problem makes the most sense in the contextual BO setting [32], where the main objective changes
with the observed contextual information and the learner also seeks to minimize the cost associated
with frequent changes of its actions. Several works have tried to incorporate such and similar cost
functions in the BO setting. [35] explicitly consider switching costs based on how deep into the
pipeline the change in variable occurs. But they do not consider the contextual setting that is essential
for our wind energy application and hence our work is not directly comparable with theirs. Moreover,
it assumes that the system of interest has a modular structure (as detailed in [35, Section-3]). In such
a modular setting, the cost at each round is the number of modules that has to be changed rather than
the amount of change of each variable. Other works include cost-aware and multi-objective sam-
pling strategies in various settings such as batch [29, 27], multi-fidelity [10, 28, 49], multi-objective
optimization [2] and dynamic programming [34, 33]. Finally, two recent works [24, 15] consider
the problem of switching cost minimization in Bayesian optimization. They both consider the
non-contextual setting, and while [24] lacks theoretical guarantees, [15] does not explicitly consider
the cost in the regret definition. Similarly, we consider movement/switching costs, but unlike these
previous work, we specifically focus on minimizing the movement costs in the contextual setting.

The Metrical Task Systems (MTS) problem [11] is a sequential decision-making problem widely
studied in the online learning literature. At each round, the learner observes a service cost function,
chooses an action, and incurs the corresponding cost together with a movement cost penalizing the
distance (according to some metric) between the current action and the one chosen at the previous
round. The MTS problem is directly related to our problem setting (see Section 2.2). After a long
series of works, in [14] and [19], an O

�
(log n)2

�
-competitive algorithm for MTS on any finite metric

space was established. The approach of Coester and Lee [19] relies on a tree representation of the
decision space and an action randomization scheme via a mirror descent procedure. In contrast to our
setting, these works assume that the service costs are known (i.e., they assume the full-information
feedback). Moreover, in the online optimization literature, other related works study the online convex
optimization with switching costs [26, 48, 25, 36] and convex body chasing problems [12, 5, 43, 13].
We make no use of convexity and take a model-based (GP) approach to learn about the unknown
service costs. [37] consider non-convex objective functions, however, they impose certain conditions
on the objective that are not easily modeled via GP as done in our work.

The use of GP confidence bounds in online learning settings has been previously explored, e.g., in
repeated multi-agent [44, 47] and sequential games [46], and to discover randomized max-min strate-
gies [45]. However, none of these works has considered movement costs in the objective. This makes
our problem significantly different from the aforementioned ones, and requires a suitable action ran-
domization scheme that can trade-off exploration, exploitation, and movement costs simultaneously.

2



Various works have applied Bayesian Optimization in the context of wind energy systems before.
[41, 21, 4] use BO techniques to maximize the total energy yield in a wind farm in a cooperative or a
closed-loop framework. [39] use it to tune the parameters of the wind turbine to learn the effective
wind speed. [6] use BO for plant design (i.e., physical system design) of airborne wind energy systems.
[51] apply BO and other regression techniques to predict short-term wind energy production to make
informed production offers. Finally, [3] survey several different methods for efficient wind-power
prediction using machine-learning methods including BO. Our problem formulation differs from the
above mentioned works, since we explicitly consider movement energy loss caused by the altitude
change of the system.

Contributions. We formally introduce Bayesian optimization with movement costs and propose
a novel GP-MD algorithm (in Algorithm 1). GP-MD combines the online mirror descent (MD)
algorithm with shrinking Gaussian Process (GP) confidence bound to decide on which point to
evaluate next. In our theoretical analysis, we establish rigorous sublinear regret guarantees for
our algorithm by combining techniques from Bayesian optimization and metrical task systems
approaches [19]. Finally, we demonstrate that GP-MD is able to successfully outperform previous
contextual Bayesian optimization approaches on both synthetic and real-world data in the presence
of movement costs. In particular, we consider the application to airborne wind energy systems and
demonstrate that GP-MD can effectively operate such a system by considering movement costs
and varying environmental conditions.

2 Problem Statement

Let f : X ⇥ E ! R+ be an unknown cost function defined over X ⇥ E ⇢ Rp, where X is a
finite set of actions, i.e., |X | = n, and E represents convex and compact space of contexts. We
denote the known metric (i.e., distance function) of X as d(·, ·), and similarly to other works in
Bayesian optimization (e.g., [50, 17]) assume that the target cost function f belongs to a reproducing
kernel Hilbert space (RKHS) Hk of functions (defined on X ⇥ E), that corresponds to a known
kernel k : (X ⇥ E) ⇥ (X ⇥ E) ! R+ with k((x, e), (x0, e0))  1 for any action-context pair. In
particular, we assume that for some known B > 0, the target cost f has a bounded RKHS norm, i.e.,
f 2 Fk = {f 2 Hk : kfkk  B}. Also, we assume that the diameter of X (maxx,x02X d(x, x0)) is
bounded and denote it by  .

We consider an episodic setting, wherein each episode runs over a finite time horizon H . Let the
initial state of the system in the first episode correspond to action x0,1 2 X . At the end of every
episode, the system resets to a new given initial action x0,m 2 X where m 2 {1, 2, . . . , Nep} denotes
the episode index. In each episode m and at every time step h 2 {1, 2, . . . , H}, the environment
reveals the context eh,m 2 E to the learner. We make no assumptions on the context sequence
provided by the environment (i.e., it can be arbitrary and different across episodes). The learner
then chooses xh,m 2 X and observes the noisy function value:

yh,m = f(xh,m, eh,m) + ⇠h,m, (1)
where ⇠h,m ⇠ N (0,�2) with known �, and independence over time steps. The goal of the learner
is to minimize the cost incurred over the rounds in every episode, but at the same time to minimize
the distance between its subsequent decisions as measured by d(xh�1,m, xh,m).

Let Dm = {x1,m, x2,m, . . . , xH,m} denote the set of actions chosen by the learner over H rounds
in episode m. We recall that each action xh,m 2 Dm is chosen after observing the corresponding
context eh,m. The objective is to minimize the cumulative episodic cost for each episode m,

costm(Dm) =
HX

h=1

f(xh,m, eh,m)

| {z }
Sm(Dm)

+
HX

h=1

d(xh,m, xh�1,m)

| {z }
Mm(Dm)

,
(2)

where we refer to the two terms in Eq. (2) as service cost Sm and movement cost Mm.

When f is known, the problem can be seen as a MTS instance as detailed in Section 2.2. Even in such
a case, we cannot hope to solve this problem optimally, and nearly-optimal approximate algorithms
were recently proposed (see Coester and Lee [19]). Hence, the learner’s performance in episode m is
measured via (↵,�)-approximate regret:

r↵,�
m

= costm(Dm)� ↵ · costm(D⇤
m
)� �, (3)
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where D⇤
m

:= argmin
D⇢X , |D|=H

costm(D) is the offline optimal action sequence obtained as-
suming the knowledge of the true sequence of contexts {eh,m}H

h=1 in advance, and ↵ and � are
approximation constants (independent of Nep). In contrast, in our setting, the learner only gets to see
the current context when making a decision and has no knowledge about the future ones.

After Nep episodes, the total cumulative regret is defined as

R↵,�

Nep
=

NepX

m=1

r↵,�
m

. (4)

We seek an algorithm whose total cumulative regret grows sublinearly in Nep, so that
limNep!1 R↵,�

H,Nep
/Nep = 0, for any set of initial states {x0,m}Nep

m=1 ⇢ X .

2.1 Gaussian Process Model

In standard Bayesian optimization, a surrogate Gaussian Process model is typically used to model the
target cost function. A Gaussian Process GP (µ(·), k(·, ·)) over the input domain X⇥E , is a collection
of random variables (f(x, e))x2X ,e2E where every finite number of them (f(xi, ei))ni=1, n 2 N, is
jointly Gaussian with mean E[f(xi)] = µ(xi, ei) and covariance E[(f(xi, ei)�µ(xi, ei))(f(xj , ej)�
µ(xj , ej))] = k((xi, ei), (xj , ej)) for every 1  i, j  n.

BO algorithms typically use zero-mean GP priors to model uncertainty in f , i.e., f ⇠ GP (0, k(·, ·)),
and Gaussian likelihood models for the observed data. As more data points are observed, GP
(Bayesian) posterior updates are performed in which noise variables are assumed to be drawn
independently across t from N (0,�). Here, � is a hyperparameter that might be different from the
true noise variance �2. More precisely, given a sequence of previously queried points and their noisy
observations the posterior is again Gaussian, with the posterior mean and variance given by:

µt(x, e) = kt(x, e)
T (Kt + �It)

�1Yt (5)

�2
t
(x, e) = k((x, e), (x, e))� kt(x, e)

T (Kt + �It)
�1kt(x, e), (6)

where Yt := [y1, . . . , yt] denotes a vector of observations, Kt = [k((xs, es), (xs0 , es0)]s,s0t is the
corresponding kernel matrix, and kt(x, e) = [k((x1, e1), (x, e)), . . . , k((xt, et), (x, e))]T 2 Rt⇥1.

Maximum Information Gain. In the standard Bayesian optimization, the main quantity that
characterizes the complexity of optimizing the target cost function is the maximum information gain
[50] defined at time t as:

�t = max
{(xi,ei)}t

i=1

I(Yt; f), (7)

where I(Yt; f) denotes the mutual information between random observations Yt and GP model f .
The mutual information for the GP model is given as:

I(Yt; f) =
1

2
log det(It + ��1Kt). (8)

This quantity is kernel-specific and for compact and convex domains �t is sublinear in t for various
classes of kernel functions [50] as well as for kernel compositions (e.g., additive kernels in [32]).

Confidence Bounds. We also use the following result ([50, 1, 17]) that is frequently used in Bayesian
optimization to provide confidence bounds around the unknown function.
Lemma 1. Assume the �-sub-Gaussian noise model as in Eq. (1), and let f belong to Fk. Then, the
following holds with probability at least 1� � simultaneously over all t � 1 and x 2 X , e 2 E:

|µt(x, e)� f(x, e)|  �t�t(x, e), (9)

where �t = �

�1/2

p
2 ln(1/�) + 2�t +B, and µt and �t are defined in Eqs. (5) and (6) with � > 0.

Based on the previous, we also define the lower confidence bound for every x 2 X , e 2 E as:

lcbt(x, e) := µt(x, e)� �t�t(x, e). (10)

We use lcbm(x, e) when it is computed based on data collected before episode m.
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Algorithm 1 GP-MD

1: Require: Action space X , kernel function k(·, ·), metric d(·, ·)
2: Run FRT(X , d(·, ·)) and obtain ⌧ -HST T = (V,E) with leaves L = X
3: for m = 1, . . . , Nep do
4: Receive x0,m and initialize z0,m (Eq. (29)), conditional prob. q0 = ��1(z0,m) as in Eq. (15)
5: for h = 1, . . . , H do
6: Observe context eh,m and initialize costs: lcbm(v, eh,m) = 0, 8v 2 V \L
7: for u 2 OD(V \L) do
8: Update vertex prob. q(u)

h
from q(u)

h�1 and lcbm(·, eh,m) via Mirror Descent (Eq. (13))

9: Update cost for vertex u:

lcbm(u, eh,m) = hq(u)
h

, lcbm(·, eh,m)i =
X

⌫2C(u)

qh,⌫ · lcbm(⌫, eh,m)

10: end for
11: Compute prob. vector zh,m = �(qh) (Eq. (15)) and leaves’ prob. l(zh,m) (Eq. (11))
12: Estimate optimal coupling ⇣h�1,h,m between l(zh�1,m) and l(zh,m) as in Eq. (12)
13: Sample action xh,m ⇠ ⇣h�1,h,m(·|xh�1,m) and observe yh,m = f(xh,m, eh,m) + ⇠h,m
14: end for
15: Update µm+1(·, ·) and �m+1(·, ·) as per Eq. (5) and Eq. (6)
16: end for

2.2 Relation to Metrical Task Systems (MTS)

When f is known, our optimization objective in Eq. (2) can be seen as a particular type of MTS
problem, where f(·, eh,m) is the MTS service cost that changes for every h and m. Compared to
a standard MTS (see Appendix A), our problem formulation is more challenging since the learner
can only learn about f from previously observed data. The approach proposed in this paper builds
on the algorithm by Coester and Lee [19] for standard MTS problems. However, to cope with the
aforementioned challenge, our approach exploits the regularity assumptions regarding f and utilizes
the constructed lower confidence bounds Eq. (10) to hallucinate information about the unavailable
service cost at each round. Before presenting our overall approach, we describe a preliminary
step proposed by [19], which consists of representing our metric space (X , d) by a Hierarchically
Separated Tree (HST) metric space.

HST metric space. Consider a tree T = (V,E) with root r, leaves L ⇢ V and non-negative weights
wv, for each v 2 V , which are non-increasing along root-leaf paths. Let dT (l, l0) denote a distance
metric between any two leaves l, l0 2 L given as the sum of the encountered weights on the path
from l to l0 (see Fig. 4). (L, dT ) is a HST metric space, and ⌧ -HST metric space if the weights are
exponentially decreasing, i.e., wu  wv/⌧ , with v being the parent of u.

Similarly to [19], we use the algorithm from [23] (which we name via the authors’ surnames as
FRT) to approximate the given metric space (X , d) by a ⌧ -HST one. In particular, we use FRT
in Algorithm 1 as a computationally efficient preprocessing step to create a tree T with leaves L
corresponding to actions in X , distance metric dT , and root node r. We explain the intrinsic MTS
motivation for this preprocessing step in Appendix B.1, and defer additional details to Appendix B.2.

3 The GP-MD Algorithm

In this section, we introduce GP-MD, a novel algorithm for the contextual BO problem with
movement costs defined in Section 2. At each episode m and round h, the state of GP-MD can be
summarized by a vector of probabilities zh,m 2 KT over the vertices of T , where KT :=

n
z 2

R|V |
+ : zr = 1, zu =

P
⌫2C(u)

z⌫ 8u 2 V \L
o
, and C(u) denotes the children of u. Each entry z⌫

represents the probability that the selected action xh,m belongs to the leaves of the subtree rooted at
⌫, i.e., z⌫ = P(xh,m 2 L(⌫)). Below, we specify how zh,m is computed at each round. Moreover,
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given any z 2 KT , the vector
l(z) := [zl, l 2 L] 2 [0, 1]n, (11)

defines a probability distribution over the leaves L, and hence the actions X . As in [19], given
probability vectors zh,m and zh�1,m, GP-MD computes the minimal distance distribution

⇣h�1,h,m = arg inf
⇣2⇧(l(zh�1,m),l(zh,m))

E⇣ [dT (Uh�1,m, Uh,m)], (12)

where Uh�1,m and Uh are random variables having marginals l(zh�1,m) and l(zh,m) respec-
tively. Finally, action xh,m is sampled from the conditional minimal distance distribution xh,m ⇠
⇣h�1,h,m(·|xh�1,m) (Line 13 in Algorithm 1). At the end of each episode m, the newly observed
data are then used to update posterior mean and standard deviation about the cost function.

Finally, we describe how probability vectors zh,m are computed at each round, a key step of GP-MD
(Lines 8–12 in Algorithm 1). We follow the recursive Mirror Descent (MD) procedure proposed
by [19], with the important difference that we are dealing with an unknown context-dependent cost
function. Hence, we make use of the Gaussian process model and corresponding confidence estimates
as defined in Section 2.1.

To obtain probabilities zh,m, we consider conditional probability vectors q 2 QT , where QT is
the set of valid conditional probabilities QT :=

n
q 2 R|V \r|

+ :
P

⌫2C(u)
q⌫ = 1 8u 2 V \L

o
. For

each vertex ⌫ with parent u, q⌫ represents the conditional probability P(xh,m 2 L(⌫)|xh,m 2 L(u)).
Moreover, given qh 2 QT we define the vector q(u)

h
:= [qh,⌫ , ⌫ 2 C(u)] as the conditional

distribution over children of u, and let Q(u)
T be the set of all valid distributions q(u)

h
.

In each episode m, conditional probability vector qh for round h is obtained recursively, from leaves
to root, as a function of qh�1, the observed context eh,m, and the current estimate about the cost
associated to each particular vertex. More precisely, let OD(V \L) be a topological ordering of the
internal vertices V \L so that every child in T occurs before its parent. Then, for each u 2 OD(V \L)
conditional probabilities q(u)

h
are obtained via the Mirror Descent update:

q(u)
h

= argmin
p2Q

(u)
T

n
D(u)(pkq(u)

h�1) + hp, lcb(u)
m

(·, eh,m)i
o
. (13)

Function D(u) is the Bregman divergence with respect to a suitable potential function (see Ap-
pendix D.1), while lcb(u)

m
(·, eh,m) := [lcbm(⌫, eh,m), 8⌫ 2 C(u)] is a lower confidence bound

estimate of the costs corresponding to children of vertex u. For v 2 L, lcbm(⌫, eh,m) are obtained by
the GP-regression techniques outlined in Section 2.1, while for internal vertices these are computed
recursively from their children nodes as:

lcbm(u, eh,m) :=
X

⌫2C(u)

qh,⌫ lcbm(⌫, eh,m) . (14)

The movement cost is primarily controlled by this usage of Bregman divergence based mirror descent.
Also, sampling from the conditional minimal distance distribution further restricts movement between
alternate actions. Once the vector of conditional probabilities qh 2 QT has been updated, we can
obtain the corresponding probability vector zh,m via the mapping � : QT ! KT such that:

z = �(q) ) z⌫ = zuq⌫ 8u 2 V \L, ⌫ 2 C(u). (15)

3.1 Theoretical Guarantees

Our main theorem bounds the cumulative regret of GP-MD.
Theorem 1. Let X be represented by a ⌧ -HST space with ⌧ > 4 (Line 2 of Algorithm 1), and set
� 2 (0, 1). Then, with probability at least 1��, the regret of GP-MD over Nep episodes is bounded by

R↵,�

Nep
= O

⇣
�Nep

�
NepH

2�HNep +H log(H
�
)
� 1

2 +H(B +  ) log
�
Nep log(Nep)

�

�⌘
,

with approximation factors ↵ = O
�
(log n)2

�
and � = O(1). Here, H is the episodes’ length, �Nep

is the confidence level from Lemma 1, and �HNep is the maximum information gain defined in Eq. (7).
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(a) ⇢ = 0.5 (b) ⇢ = 1 (c) ⇢ = 2

(d) ⇢ = 0.5 (e) ⇢ = 2 (f) Varying ⇢

Figure 2: Total and movement cost performance of algorithms on synthetic functions for varying importance of
movement/service cost (i.e., different ⇢ values). GP-MD outperforms CGP-LCB in terms of total incurred cost,
and its performance closely follows one of the idealized benchmark MD-KNOWN. GP-MD also minimizes
the movement cost while CGP-LCB suffers from significant movements (Figs. 2d and 2e). The performance
of GP-MD remains robust when the movement cost importance in the total cost objective diminishes (Fig. 2f).

For most of the popularly used kernels, Thm. 1 can be made more explicit by substituting bounds on
�HNep (e.g., in the case of linear kernel and compact domain, we have �t = O(p log t), while for
squared-exponential kernel it holds �t = O((log t)p+1) [50]; see also Section 2.1). In such cases, we
make the following two important observations regarding our result: i) The obtained regret bound
is sublinear in the number of episodes Nep and hence limNep!1 R↵,�

Nep
/Nep = 0; ii) The bound is

independent of the input space size, i.e., the number of actions n (although the approximation factor ↵
depends logarithmically on n, similarly to [19]). These imply that GP-MD approaches ↵-competitive
ratio performance of the MTS algorithm by [19], while learning about the service cost from noisy
point evaluations (i.e., bandit feedback) only. Finally, in our analysis, we treat H as constant.

Proof of Thm. 1 is detailed in Appendix E. Next, we outline some main steps. We make use of
the competitive ratio guarantees for the used Mirror Descent algorithm from [19, Corollary 4] to
bound the expected hallucinated service cost

P
H

h=1hlcbm(·, eh,m), l(zh,m)i. Here, we use the fact
that lcbm(·, ·) does not change within an episode. Since this is not the actual service cost, we boundP

H

h=1hf(·, eh,m), l(zh,m)i by
P

H

h=1hlcbm(·, eh,m), l(zh,m)i with an additional learning error. The
sum of the learning errors over all episodes can be rewritten as

PNep

m=1

P
H

h=1h�2
m
(·, eh,m), l(zh,m)i.

We use the concentration of the conditional mean result from [30, Lemma 3] to upper bound it by
the actual realizations

PNep

m=1

P
H

h=1 �
2
m
(xh,m, eh,m), and use the result of [18, Lemma-2], to further

upper bound it with the maximum information gain quantity �NepH .

Finally, the movement cost can also be bounded similar to that of the previously mentioned expected
hallucinated service cost

P
H

h=1hlcbm(·, eh,m), l(zh,m)i with an extra ↵ = O
�
(log n)2

�
factor using

[19, Corollary 4].

4 Experiments

This section provides numerical results on synthetic and real-world data. We compare the performance
of our GP-MD algorithm with the following baselines:

• STATIONARY selects the stationary strategy xh = x0 for all h,
• CGP-LCB [32] neglects the movement cost and sets xh = argminx lcbh(x, eh) for all h,
• MINC-KNOWN assumes f(·) is known and chooses xh = argminx f(x, eh), and
• MD-KNOWN assumes f(·) is known and runs mirror descent from [19] on f(·, eh).
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MD-KNOWN and MINC-KNOWN unrealistically assume that f(·) is known and can be seen as
upper-bound for the achievable performance of GP-MD and CGP-LCB, respectively. We use the
same constant value � = 2.0 for the exploration parameter in both GP-MD and CGP-LCB (since the
theoretical worst-case bounds are found to be overly pessimistic and can impede performance [50]).
We run the algorithms over a single episode (as done in CGP-LCB). We also discover that updating
the confidence bounds after every timestep in GP-MD leads to better performance in practice.

Synthetic experiments. We consider synthetic experiments, where the objective function is a random
GP sample. The considered action space X is a subset of [0, 1]2 consisting of 400 points that form the
uniform grid, while the context space E consists of 40 contexts that are uniformly sampled from (0, 1).
We sample objective function (i.e., actual cost) f : X ⇥E ! R from a GP (0, k), where k is a squared
exponential kernel with lengthscale parameter set to l = 0.2. We use the Euclidean distance between
the domain points as the movement cost, calculate the distance matrix (between every pair of points)
and the average movement cost. We subtract the minimum value from f and scale it such that the aver-
age function value is equal to the average movement cost. We also set the noise parameter to 1% of the
function range. We introduce the trade-off parameter ⇢ 2 {0.25, 0.5, 1, 2, 4} that only multiplies the
service cost, i.e, ⇢f(x, e), but not the movement cost. This is to test the performance of the algorithms
for varying importance of the service/movement costs. For each ⇢ we sample 25 different functions
and run the algorithms for 500 timesteps wherein at each step the contexts are randomly sampled.

In Fig. 2a-Fig. 2e, we show the total cumulative cost as a function of timesteps for different ⇢ values.
Then, in Fig. 2f, we show the performance of the algorithms (for known kernel parameters) when
run for 800 timesteps for varying importance of the service and movement costs. In particular, we
consider a convex combination of the service and movement costs, where we set the respective
coefficients multiplying these two objectives as ⇢/(1 + ⇢) and 1/(1 + ⇢).

As shown in Fig. 2a-Fig. 2c, the performance of GP-MD is generally close to the one of the idealized,
unrealistic benchmark MD-KNOWN, which, as expected, performs the best. The stationary baseline
performs comparably when ⇢ is small, while its performance deteriorates for larger values. As
expected, both MINC-KNOWN and CGP-LCB incur higher total costs than GP-MD when the
movement cost is of the higher or same relative importance as the service cost (i.e., ⇢ 2 {0.5, 1.0}),
while the performance gap slowly decreases when the service cost becomes dominant (⇢ = 2.0).
In Figs. 2d and 2e, we also show the corresponding movement costs, and observe that movement cost
ignorant CGP-LCB incurs significant movement costs, while our GP-MD successfully minimizes
the movement costs. Finally, in Fig. 2f, we observe that the performance of GP-MD is robust, i.e.,
it clearly outperforms CGP-LCB whenever the movement cost dominates the total cost objective,
while its performance remains comparable to the one of CGP-LCB (that is built to minimize service
cost) when the movement cost becomes dominated by the service cost.

4.1 Altitude Optimization in AWE Systems

In airborne wind energy (AWE) systems, the turbine’s operating altitude can be changed depending
on the wind pattern. We follow the setup of Baheri et al. [7] that applied CGP-LCB [32] which
ignores movement-costs, to learn this control task. In this section, we use a dataset from [9] which
contains wind-speed information over various locations in Europe for a period ranging from 2011
to 2017, and also includes measurements at different altitudes per location. We consider the wind
speed data from the second half of 2016. Our goal is to maximize the generated energy, while taking
into account the energy loss due to moving the turbine from one altitude to another.

We consider 25 different altitudes (ranging from 10m to 1600m) as the action space and the context
space to be hours in the day (i.e., 24 values). We define our unknown service objective function to be
f(x, t) = maxx0(ES(x0, t))� ES(x, t) where ES(x, t) denotes the energy generated based on the
windspeed at altitude x and time t. Based on the discrete-time power generation formula from Baheri
et al. [7] (Eq. (10)), we have

ES(x, t) =
�
c1(min{Vw(x, t), Vr})3 � c2V

2
w
(x, t)

�
�t. (16)

Here Vw(x, t) denotes the windspeed at altitude x and time t, and Vr denotes the rated windspeed
of the turbine. The constants c1 = 0.0579 and c2 = 0.09 are system dependent. This corresponds
to the energy generated at a particular altitude x for �t time. Similarly to Baheri et al. [7], we use
�t = 60 since we consider intervals of one hour length. Next, we define the movement cost to be
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(a) Lat. = 53,Long. = �10 (b) Total Energy (⇢ = 4) (c) Service Cost (⇢ = 4)

(d) Movement Cost (⇢ = 4) (e) Movement Cost (⇢ = 1) (f) Lat. = 53,Long. = �4

Figure 3: AWE altitude optimization task; Fig. 3a: Total energy generated for 960 hours based on the wind data
at a single location (Latitude= 53 and Longitude= �10). GP-MD outperforms previously used CGP-LCB
(that optimizes for service costs only) for a range of ⇢ values that favor the service against the movement cost.
Fig. 3b: The average total generated energy over 960 hours. Figs. 3c and 3d: The service and movement costs
for ⇢ = 4. Fig. 3e: The movement costs for ⇢ = 1. The movement energy loss is slightly lower for GP-MD as
compared to ⇢ = 4 due to higher importance towards movement cost reduction. Fig. 3f: Same as Fig. 3a, albeit
by using wind data from a different location (Latitude= 53, Longitude= �4).

the energy lost in changing altitude (from x to x0):

EM (x, x0) = c3V
2
r
|x� x0|, (17)

where c3 = 0.15 (see Appendix F for more details).2

We assume that a wind speed gauge is attached to the turbine, and the operator knows the wind
speed at the current altitude. Hence, instead of directly learning f(x, t), we learn Vw(x, t) and use its
confidence bounds to calculate the confidence bounds of f(x, t). To learn Vw(x, t), we normalize the
inputs, and fit a GP with RBF kernel (lengthscale=3.67, outputscale=6.85 and noise parameter=2.73).

We run the algorithms for different ⇢ for 960 timesteps, where again ⇢ is used to multiply ES . For
each ⇢, the algorithms were initiated with every possible starting point (25 different altitudes), and ran
for 3 iterations. Based on this we plot the total energy generated w.r.t. varying ⇢ in Fig. 3. In Figs. 3a
and 3f, we show the performance of the algorithms at two different locations (we also consider
additional locations and time periods in Appendix F). We use different values of ⇢ > 1 to show the
robustness of our algorithm (as ⇢ increases, the importance of the service cost w.r.t. the movement
cost in the overall objective increases). Our algorithm outperforms CGP-LCB for a range of ⇢ values.
As ⇢ keeps increasing, we observe that MINC-KNOWN closes the performance gap to MD-KNOWN,
and the same is happening with CGP-LCB w.r.t. GP-MD. In Fig. 3b, we focus on a particular
⇢ = 4, and notice that GP-MD performs better than CGP-LCB and STATIONARY algorithm at this
location. In Fig. 3c, we plot the service cost and observe that both learning algorithms GP-MD and
CGP-LCB have lower service cost than the STATIONARY baseline. We also note that due to the
implicit service cost definition, the MINC-KNOWN baseline achieves zero service cost. In Figs. 3d
and 3e, we compare the movement energy loss for ⇢ = 4 and ⇢ = 1. As expected, ⇢ = 1 results in
slightly lower GP-MD movement energy loss due to the tradeoff shifting towards the movement cost.

5 Conclusions
We have considered the problem of optimizing an unknown cost function subject to time-varying
contextual information, as well as movement costs of changing the selected action from round to

2According to the power equation from [7], EM (x, x0) would depend on Vw(x, t), whereas, we assume
our movement cost is based on a fixed metric and is independent of contexts. Hence, we simply approximate
Vw(x, t) by Vr and consider time-independent movement costs.
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round. Our problem formulation is motivated by Airborne Wind Energy systems, where one seeks
to optimize the operating altitude of the wind turbine to maximize the amount of generated energy.
We propose a novel algorithm, GP-MD, which makes use of GP confidence bounds and employs
the mirror descent techniques from [19] for solving MTS problems. We analyze the theoretical
performance of our algorithm by providing a rigorous regret bound. Moreover, we demonstrate its
performance in synthetic experiments and on an AWE application by using real-world data. GP-MD
carefully trades off service and movement costs while at the same time learning about the unknown
objective function and yielding improved performance (i.e., generating more energy) compared to
the considered baselines. Our setup and analysis open up multiple interesting directions for further
exploration. For instance, an extension to continuous action spaces via discretization arguments is
an immediate direction for future work. Another interesting direction is to analyze the single-episode
setting and obtain general sublinear regret guarantees.
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