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Abstract

Top Two algorithms arose as an adaptation of Thompson sampling to best arm
identification in multi-armed bandit models [38], for parametric families of arms.
They select the next arm to sample from by randomizing among two candidate arms,
a leader and a challenger. Despite their good empirical performance, theoretical
guarantees for fixed-confidence best arm identification have only been obtained
when the arms are Gaussian with known variances. In this paper, we provide
a general analysis of Top Two methods, which identifies desirable properties of
the leader, the challenger, and the (possibly non-parametric) distributions of the
arms. As a result, we obtain theoretically supported Top Two algorithms for best
arm identification with bounded distributions. Our proof method demonstrates in
particular that the sampling step used to select the leader inherited from Thompson
sampling can be replaced by other choices, like selecting the empirical best arm.

1 Introduction

Finding the distribution that has the largest mean by sequentially collecting samples from a pool of
candidate distributions (“arms”) has been extensively studied in the multi-armed bandit [6, 24] and
ranking and selection [21] literature. While existing approaches often rely on parametric assumptions
for the distributions, we are interested in (near) optimal and computationally efficient strategies when
the distributions belong to an arbitrary class F of distributions.

For applications to online marketing such as A/B testing [30, 37] assuming Bernoulli or Gaussian
arms is fine, but more sophisticated distributions arise in other fields such as agriculture. In Section 5
we consider a crop-management problem: a group of farmers wants to identify the best planting
date for a rainfed crop. The reward (crop yield) can be modeled as a complex distribution with
multiple modes, but upper bounded by a known yield potential. Therefore, sequentially identifying
the best planting date calls for efficient best arm identification algorithms for the class of bounded
distributions with a known range.

To tackle this problem, we build on Top Two algorithms [38, 35, 39], originally proposed for specific
parametric families. We propose a generic analysis of this type of algorithms, which puts forward
new possibilities for the choice of leader and challenger used by the algorithm. In particular, this
work leads to the first asymptotically β-optimal strategies for bounded distributions.
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1.1 Setting and related work

A bandit problem is described by a finite number of probability distributions (K many), called arms.
Let4K be the K-dimensional probability simplex and P(R) the set of probability distributions over
R. Let F ⊂ P(R) be a known family of distributions to which the arms to. We will refer to tuples of
distributions in FK with bold letters, e.g. F = (F1, . . . , FK) ∈ FK where Fi is the cdf of arm i.
We suppose that all distributions in F have finite first moment and we denote the mean of F ∈ F by
m(F ). We denote by I = {m(F ) | F ∈ F} the set of possible means for the arms.

The goal of a best arm identification (BAI) algorithm is to identify an arm with highest mean in the
set of available arms, i.e. an arm which belongs to the set i?(F ) = arg maxk∈[K]m(Fk). At each
time n ∈ N, the algorithm interacts with the environment (the set of arms) by (1) choosing an arm
In based on previous observations, (2) observing a sample Xn,In ∼ FIn , and (3) deciding whether
to stop and return an arm ı̂n or to continue. We study the fixed confidence identification setting, in
which we require algorithms to make mistakes with probability less than a given δ ∈ (0, 1). To
compare such algorithms we consider their sample complexity τδ , which is a stopping time counting
the number of rounds before the algorithm terminates. The goal is then to minimize E[τδ] among the
class of δ-correct algorithms.
Definition 1. An algorithm is δ-correct1 on FK if PF (τδ < +∞, ı̂τδ /∈ i?(F )) ≤ δ for all F ∈
FK .

In order to be δ-correct on FK , an algorithm has to be able to distinguish problems in FK with
different best arms. This intuition is formalized by the lower bound provided in Lemma 1. The
characteristic time defined in the lower bound depends on two functions K+

inf and K−inf , mapping
P(R)× R to R+, obtained by minimizing a Kullback-Leibler divergence (KL) over F ,

K+
inf(F, u) := inf{KL(F,G) | G ∈ F , EX∼G[X] > u} ,
K−inf(F, u) := inf{KL(F,G) | G ∈ F , EX∼G[X] < u} .

Lemma 1 (From [16, 3]). Any algorithm which is δ-correct on FK verifies, for any F ∈ FK ,

EF [τδ] ≥ T ?(F ) log (1/(2.4δ)) ,

where T ?(F )−1 := supw∈4K mini 6=i? infu∈I
{
wi?K−inf(Fi? , u) + wiK+

inf(Fi, u)
}

.

We say that an algorithm is asymptotically optimal if its sample complexity matches that lower bound,
that is if lim supδ→0 EF [τδ]/ log (1/δ) ≤ T ?(F ).

A related, weaker notion of (asymptotic) optimality is (asymptotic) β-optimality [39]. An algorithm
is called asymptotically β-optimal if it satisfies lim supδ→0 EF [τδ]/ log (1/δ) ≤ T ?β (F ), for the
complexity term

T ?β (F )−1 := sup
w∈4K ,wi?=β

min
i6=i?

inf
u∈I

{
βK−inf(Fi? , u) + wiK+

inf(Fi, u)
}
.

An asymptotically β-optimal algorithm is asymptotically minimizing the sample complexity among
algorithms which allocate a β fraction of samples to the best arm and T ?(F ) = minβ∈(0,1) T

?
β (F ).

As was first shown by [38] when F is an exponential family, an asymptotically β-optimal algorithm
with β = 1/2 also has an expected sample complexity which is asymptotically optimal, up to a
multiplicative factor 2. That is, T ?1/2(F ) ≤ 2T ?(F ).

We denote by w?(F ) and w?β(F ) the allocations realizing the argmax in the definition of T ?(F ) and
T ?β (F ), respectively. We will show that for common choices of F these allocations are unique when
there is a unique best arm.

Distribution classes The characteristic time T ?(F ) depends on the class of distributions F , known
to the algorithm in advance, to which F belongs to. For example, all arms could have Bernoulli
distributions. We strive to provide an analysis which could easily be applied to many classes F , but
we specialize our results to two main cases:

1. distributions with bounded support, F = {F ∈ P(R) | supp(F ) ⊆ [0, B]} for B > 0,

1A stronger definition of δ-correctness has also been studied by requiring the algorithm to stop almost surely.
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2. single parameter exponential families (SPEF) of sub-exponential distributions.

Given a distribution P(0) with cumulant generating function ϕ, defined on an interval Iϕ, the
SPEF defined by P(0) is the set of distributions P(λ) with density with respect to P(0) given by
dP(λ)

dP(0) (x) = eλx−ϕ(λ). For example, Gaussian distributions with a known variance form a SPEF, as
do Bernoulli distributions with means in (0, 1). We consider SPEF of sub-exponential distributions
to have a concentration property for the empirical mean estimator.

Related work The first Best Arm Identification (BAI) algorithms [14, 27, 15, 23] were proposed
and analyzed for bounded rewards, but their sample complexity scales with a sum of inverse gaps
between the means of arms instead of the quantity T ?(F ) prescribed by the lower bound. Asymptoti-
cally optimal BAI algorithm were first designed when the arms belong to the same single-parameter
exponential family. In this context, two families of asymptotically optimal algorithms have emerged.
Tracking-based algorithms solve the optimization problem provided by the lower bound in every
round, and track the corresponding allocation [16]. The gamification approach views the characteristic
time as a min-max game between the learner and the nature, and apply a saddle-point algorithm to
solve it sequentially at a lower computational cost [13].

Some Bayesian algorithms arose as another computationally appealing alternative to Track-and-
Stop. Russo notably proposed the Top Two Probability Sampling (TTPS) and Top Two Thompson
Sampling (TTTS) algorithms [38], that may be seen as counterparts of the popular Thompson
Sampling algorithm for regret minimization [41]. Other Bayesian flavored Top Two algorithms have
been proposed, Top Two Expected Improvement (TTEI, [35]) and Top Two Transportation Cost
(T3C, [39]). All these algorithms sample either a leader with fixed probability β or a challenger with
probability 1− β. TTTS, TTEI and T3C were proved to be asymptotically β-optimal for Gaussian
bandits and perform well in practice even against asymptotically optimal algorithms [35, 39]. This
motivates our investigation of Top Two algorithms to tackle bounded distributions, which led us
to propose a new generic analysis of this kind of algorithms of independent interest. We prove the
asymptotic β-optimality of several Top Two instances for bounded bandit models, some of which
depart from their original Bayesian motivation as they don’t need a sampler. An asymptotically
optimal algorithm for a non-parametric class of distribution has been proposed by [3] for heavy-tailed
rewards. It relies on the computationally prohibitive Track-and-Stop approach, and an adaptation to
bounded distributions is mentioned, yet without an explicit calibration of the stopping rule.

1.2 Contributions

We present the first fixed-confidence analysis of Top Two algorithms for distribution classes other than
Gaussian, including the non-parametric setting of bounded distributions. In Section 2, we introduce
several variants of Top Two algorithms, including new ones which choose the empirical best arm as a
leader instead of relying on (Thompson) sampling and/or use some penalization in the previously
proposed Transportation Cost challenger.

For the class of bounded distributions, we propose in Section 3 a calibration of the stopping rule and
a concrete instantiation of the Top Two algorithms, based on a Dirichlet sampler for the randomized
variants. We prove in Theorem 1 that those algorithms are asymptotically β-optimal. This optimality
can also be shown for deterministic instances in the case of sub-exponential single parameter
exponential families (Appendix H). Our generic analysis, sketched in Section 4, provides insight
on what properties the leader and challenger in a Top Two algorithm should have in order to reach
asymptotic β-optimality. We show that the algorithm should ensure that all arms are explored
sufficiently, and explain how to guarantee that the sampling proportions reach their optimal values
once the sufficient exploration condition holds.

Finally, in Section 5 we report results from numerical experiments on a challenging non-parametric
task using real-world data from a crop-management problem for various members of the Top Two
family of algorithms. Most of them perform significantly better than the baselines.

2 Generic Top Two algorithms

Let F ∈ FK such that |i?(F )| = 1 and µi := m(Fi) ∈ I for all i ∈ [K]. As for most BAI
algorithms, each arm is pulled once for the initialization. At time n + 1, the σ-algebra Fn :=
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σ(U1, I1, X1,I1 , · · · , In, Xn,In , Un+1), called history, encompasses all the information available to
the agent and the internal randomization denoted by (Ut)t∈[n+1], which is independent of everything
else. For all Fn-measurable sets A, we denote by P|n[A] := P[A | Fn] its probability. For an
arm i, we denote its number of pulls by Nn,i :=

∑
t∈[n] 1 (It = i), its empirical distribution by

Fn,i := 1
Nn,i

∑
t∈[n] δXt,It1 (It = i) and its empirical mean by µn,i := m(Fn,i).

Stopping and recommendation rules Our Top Two algorithms rely on the same stopping rule,
which can be expressed using the (empirical) transportation cost between arm i and arm j, defined as

Wn(i, j) = inf
x∈I

[
Nn,iK−inf(Fn,i, x) +Nn,jK+

inf(Fn,j , x)
]
. (1)

In particular, using the definition of K±inf , it can be noted that Wn(i, j) = 0 if µn,i ≤ µn,j . Given a
threshold function c(n, δ), the stopping rule is

τδ = inf{n ∈ N | min
j 6=ı̂n

Wn(̂ın, j) > c(n, δ)} , (2)

and the recommendation rule is ı̂n = arg maxi µn,i. Up to the choice of threshold, this stopping rule
coincides with the GLR-based stopping rule proposed when F is an exponential family [16] and by
[3] for heavy-tailed distributions with an upper bound on a non-centered moment. For a general class
F the stopping rule can be calibrated to ensure δ-correctness under any sampling rule if the threshold
is such that the following time-uniform concentration inequality holds for all F ∈ FK :
PF
(
∃n, ∃i 6= i?(F ) : Nn,iK−inf(Fn,i, µi) +Nn,i?(F )K+

inf(Fn,i?(F ), µi?(F )) > c(n, δ)
)
≤ δ . (3)

Lemma 2 in the next section gives an explicit threshold for the class of bounded distribution. For
SPEF, we can use generic stopping thresholds derived in [29].

1: Input: β
2: Choose a leader Bn ∈ [K]
3: U ∼ U([0, 1])
4: if U < β then
5: In = Bn
6: else
7: Choose a challenger Cn ∈ [K] \ {Bn}
8: In = Cn
9: end if

10: Output: next arm to sample In

Figure 1: Generic β-Top Two sampling rule

Choice of the leader (two propositions):
EB - BEB

n ∈ arg maxi µn−1,i

TS - Sample θ ∼ Πn−1 then set BTS
n ∈

arg maxi∈[K] θi

Choice of the challenger (three propositions):
TC - CTC

n ∈ arg minj 6=BnWn−1(Bn, j)

TCI - CTCI
n ∈ arg minj 6=BnWn−1(Bn, j) +

logNn−1,j

RS - repeat θ ∼ Πn−1 until
CRS
n ∈ arg maxi∈[K] θi 63 Bn

Figure 2: Choices of leader and challenger (uni-
form tie-breaking).

Sampling rule The sampling rule of a Top Two algorithm is shown in Figure 1. The method chooses
a first arm Bn called leader which is then sampled with probability β. If Bn is not sampled, then a
second arm Cn called challenger is chosen and sampled. Our analysis isolates properties that those
two choices should fulfill in order for the Top Two algorithm to be asymptotically β-optimal.

The practical implementation of a Top Two method then requires subroutines for Bn and Cn. Two
possibilities for the leader and three possibilities for the challenger are presented in Figure 2. Our
analysis will apply to any combination of those and we will refer to the algorithms obtained by
β-[leader]-[challenger]; for example β-EB-TCI or β-TS-TC.

We have two flavors of leaders and challengers: deterministic and randomized. The deterministic
choices (EB, for Empirical Best, leader, TC and TCI challengers) rely on the empirical Transportation
Costs (TC) Wn(i, j) used in the stopping rule: the TC and TCI challengers are the arms which
minimize the transportation cost from the leader (up to a penalization for TCI, hence TC Improved).
The randomized choices (TS leader and RS challenger) rely on a sampler, denoted by Πn. Πn

generates i.i.d. vectors θ = (θ1, . . . , θK) ∈ IK which are interpreted as possible means for the
arms, under a distribution which depends on observations gathered in the first n rounds. The TS
leader is the best arm in the sampled vector, which is inspired by Thompson Sampling. The RS (for
Re-Sampling) challenger is obtained by performing repeated calls to the sampler until the best arm in
the sampled vector is not Bn, then taking the best arm.
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Randomized instances The samplers suggested by prior work all have a Bayesian flavor. For
SPEF bandits, they use Πn = Πn,1 × · · · × Πn,K where Πn,i is the posterior distribution on the
mean of arm i after n rounds (given some prior distribution). With this choice of sampler, β-TS-RS
coincides with the TTTS algorithm [38], while β-TS-TC coincides with the T3C algorithm [39].
TTTS and T3C were only proved to be asymptotically β-optimal for Gaussian bandits with improper
priors, whereas a by-product of the general analysis that we propose in this work permits to establish
the necessary properties on the sampler for it to hold for more general distributions. Moreover, we
extend these algorithms to bounded distributions by virtue of Dirichlet sampling and also analyze
their sampler-free counterparts. As will be apparent in our analysis, the crucial property needed from
the sampler in a Top Two algorithm using the RS challenger is that for all arms i, j such that µi > µj ,
Pθ∼Πn(θj > θi) ' exp(−Wn(i, j)).

Deterministic instances Under the RS challenger, the probability to obtain as a challenger arm j is
proportional to the probability that Pθ∼Πn(θj > θBn). Therefore, if Πn is a good sampler satisfying
the above property, the TC challenger can be seen as replacing the randomization in the RS challenger
by a computation of the mode of the distribution of CRS

n . This was the motivation behind T3C [39] as
Gaussian transportation costs have a simple closed form expression while re-sampling becomes more
and more costly when the posterior distributions are concentrated. While our asymptotic analysis
holds for deterministic algorithms, the empirical performance of fully deterministic algorithms
might suffer from unlucky draws. In Section 5, we show that β-EB-TC is indeed the least robust
of all our instances. To cope for this pitfall, explicit or implicit exploration mechanisms can be
added. Inspired by IMED [20], the TCI challenger fosters exploration by penalizing over-sampled
challengers. Randomization and forced exploration are two other examples of implicit and explicit
exploration mechanisms.

3 Asymptotically β-optimal algorithms for bounded distributions

For bounded distribution, Lemma 2 provides a calibration of the stopping rule. Its proof, given in
Appendix E.1, relies on a martingale construction proposed by [5].
Lemma 2. The stopping rule (2) with threshold

c(n, δ) = log (1/δ) + 2 log (1 + n/2) + 2 + log(K − 1) (4)

is δ-correct for the family of bounded distributions.

Transportation costs Both the stopping rule and the TC and TCI challengers of the sampling
rule require the computation of Wn(i, j) defined in (1). For single-parameter exponential families,
this can be done easily since K±inf are KL divergences and the transportation cost has a closed form
expression [16, 38]. However, for bounded distributions, computing K±inf is more challenging and we
rely on the dual formulation first obtained by [18] (see Theorem 3):

Nn,iK+
inf(Fn,i, x) = sup

λ∈[0,1]

∑
t∈[n]

1 (It = i) log

(
1− λXt,i − x

B − x

)
.

The minimization in λ can be computed using a zero-order optimization algorithm (e.g. Brent’s
method [10]). The same optimizer can be used to compute the minimization in x ∈ [0, B] featured in
Wn(i, j). By nesting those optimizations of univariate functions on a bounded interval, the computa-
tion of Wn(i, j) in the stopping rule dominates the computational cost of our Top Tow algorithms
(except the RS challenger). Our experiments suggest that using (2) is twice as computationally expen-
sive as the LUCB-based stopping rule, which is a mild price to pay for the improvement in terms of
empirical stopping time. Algorithms for non-parametric distributions are bound to be computationally
more expensive than their counterpart in SPEF, where a sufficient statistic can summarize Fn.

Sampler The TS leader and RS challenger require a sampler. Our proposed sampler for bounded
distributions in [0, B] has a product form: Πn = Πn,1 × · · · ×Πn,K where Πn,i leveragesHn,i :=
(X1,i, . . . , XNn,i,i), which is the history of samples from arm i collected in the first n rounds. Let
F̃n,i denote the empirical cdf ofHn,i augmented by the known bounds on the support, {0, B}. For
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each arm i, Πn,i outputs a random re-weighting of F̃n,i. Concretely, lettingw = (w1, . . . , wNn,i+2)
be drawn from a Dirichlet distribution Dir(1Nn,i+2), a call to the sampler Πn,i returns∑

t∈[Nn,i]

wtXt,i +BwNn,i+1 .

This sampler is inspired by that used in the Non Parametric Thompson Sampling (NPTS) algorithm
proposed by [36] for regret minimization in bounded bandits, with the notable difference that we
have to add both 0 and B in the support, while NPTS only adds the upper bound B. We will see that
this is only necessary to ensure that the re-sampling procedure stops. Therefore, the TS leader could
use a sampler Π̃n based directly onHn,i.
Theorem 1. Combining the stopping rule (2) with threshold (4) and a Top Two algorithm with
β ∈ (0, 1), instantiated with any pair of leader/challenger as in Figure 2, yields a δ-correct algo-
rithm which is asymptotically β-optimal for all F ∈ FK with µF ∈ (0, B)K and ∆min(F ) :=
mini 6=j |µFi − µFj | > 0.

Theorem 1 gives the asymptotic β-optimality for six algorithms (Figure 2). Choosing our favorite Top
Two instances therefore requires further empirical and computational considerations. Computing the
EB leader has a constant computational cost, while the TS leader is computationally costly for large
time n since it requires to sample from a Dirichlet distribution with Nn,i + 2 parameters for each
arm i. On the challenger side, the RS challenger is computationally very expensive for large time n
as the sampler becomes concentrated around the true mean vector. On the contrary, by leveraging
computations done in the stopping rule (2), the TC and TCI challengers can be computed in constant
time. Based on these computational considerations, the most appealing Top Two algorithm for
bounded distribution appears to be the fully deterministic β-EB-TC. But experiments performed
in Section 5 reveal its lack of robustness, and for bounded distributions the best trade-off between
robustness and computational complexity is β-EB-TCI. More generally, β-TS-TC can also be a good
choice provided that we have access to an efficient sampler.

Distinct means Restricting to instances such that ∆min(F ) > 0 (which implies |i?(F )| = 1) is
an uncommon assumption in BAI. However, known Top Two algorithms [38, 35, 39] only have
guarantees on those instances. Our generic analysis reveals that it is solely used to prove sufficient
exploration, characterized by (7) (Appendix C.3). Experiments highlights that all our Top Two
algorithms except β-EB-TC perform well on instances where |i?(F )| = 1 and ∆min(F ) = 0
(Figure 4(b)). Proving theoretical guarantees in this situation is an interesting problem for future
work (see Appendix D.3 for a discussion).

4 Sample complexity analysis

In this section, we sketch the proof of Theorem 1, which follows from the generic sample complexity
analysis of Top Two algorithms presented in Appendix C. Our proof strategy is the same as that first
introduced by [35] for the analysis of TTEI and also used by [39] for TTTS and T3C. It consists in
upper bounding the expectation of the convergence time, defined as

T εβ := inf

{
T ≥ 1 | ∀n ≥ T, max

i∈[K]

∣∣∣∣Nn,in − wβi

∣∣∣∣ ≤ ε} , (5)

for ε small enough. Indeed, we prove in Appendix C.5 that for any sampling rule

∃ε0(F ) > 0, ∀ε ∈ (0, ε0(F )], EF [T εβ ] < +∞ =⇒ lim sup
δ→0

EF [τδ]

log (1/δ)
≤ T ?β (F ) . (6)

This implication only leverages the expression of the stopping rule and the threshold. It was previously
established for Gaussian bandits by [35] and we extend this property to bounded distributions and
SPEF of sub-exponential distributions. Up to technicalities (Kinf continuity and second order terms),
this implication is shown by using that if τδ ≥ n, then

log (1/δ) ≈δ→0 c(n, δ) ≥ min
j 6=ı̂n

Wn(̂ın, j) ≈n≥T εβ nT
?
β (F )−1 .

To upper bound the expected convergence time, as prior work we first establish sufficient exploration:

∃N1 s.t. EF [N1] < +∞, ∀n ≥ N1, min
i∈[K]

Nn,i ≥
√
n/K . (7)

6



By generalizing [39] which considered Gaussian, we identify two generic properties for the leader
and the challenger under which (7) hold (Appendix C.3), provided that we assume ∆min > 0.

We proceed similarly to prove convergence by identifying in Appendix C desired properties for the
leader and challenger, which are satisfied by all our leaders and challengers for bounded distributions
(Appendix D). We sketch these conditions below. Let i? be the unique element of i?(F ).

The requirements on the leader and the challenger to ensure EF [T εβ ] < +∞ become apparent when
looking at generic properties of Top Two algorithms. Under any Top Two algorithm, the probability
to select arm i at round n, ψn,i := P|(n−1)[In = i], can be written as

ψn,i = βP|(n−1)[Bn = i] + (1− β)
∑
j 6=i

P|(n−1)[Bn = j]P|(n−1)[Cn = i|Bn = j] . (8)

We let Ψn,i :=
∑
t∈[n] ψt,i. For the leader, we can prove using (8) that

∀M ∈ N,
∣∣∣∣Ψn,i?

n
− β

∣∣∣∣ ≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?] .

This suggests that a good leader should satisfy that there exists N2 with EF [N2] < +∞ s.t.

∀n ≥ N2, P|n[Bn+1 6= i?] ≤ g(n) , (9)

where g(n) =+∞ o(n−α) for some α > 0. For the challenger, noticing that

∀M ∈ N, ∀i 6= i?,
Ψn,i

n
≤ M − 1

n
+

1

n

n∑
t=M

P|(t−1)[Bt 6= i?]+
1

n

n∑
t=M

P|(t−1)[Ct = i|Bt = i?] ,

suggests that a good challenger should satisfy that there exists N3 with EF [N3] < +∞ s.t.

∀n ≥ N3, ∀i 6= i?,
Ψn,i

n
≥ wβi + ε ⇒ P|n[Cn+1 = i|Bn+1 = i?] ≤ h(n) , (10)

where h(n) =+∞ o(n−α) for some α > 0. Then, Cesaro’s theorem further yields

∃N4 s.t. EF [N4] < +∞, ∀n ≥ N4, max
i∈[K]

∣∣∣∣Ψn,i

n
− wβi

∣∣∣∣ ≤ ε .
Using that (Nn,i −Ψn,i)/

√
n are sub-Gaussian random variables, we obtain EF [T εβ ] < +∞.

We now explain why (9) and (10) are satisfied for the leaders and challengers in Figure 2 when F is
the class of bounded distributions. This follows from concentration properties. Using the fact that√
n‖Fn,i − F‖∞ is sub-Gaussian, which follows for the Dvoretzky–Kiefer–Wolfowitz inequality

[31], the continuity of the mean operator m on F and the sufficient exploration property (7), we
establish that for all α > 0, there exists a random variable Nα with finite expectation such that

∀n ≥ Nα, max
i∈[K]

‖Fn,i − Fi‖∞ ≤ α and max
i∈[K]

|µn,i − µi| ≤ α . (11)

Deterministic instances Recall that BEB
n+1 ∈ arg maxi∈[K] µn,i. Choosing α in (11) smaller than

half the gap between the best and second best arm (which is possible as |i?(F )| = 1) yields that for
all n ≥ Nα, BEB

n+1 = i?. This proves (9) with g(n) = 0. Using continuity and convexity properties
of K±inf , we then establish that there exists α > 0 and a problem-dependent constant CF > 0 such
that for n ≥ Nα and for all i 6= i?,

Ψn,i

n
≥ wβi + ε =⇒ 1

n

(
Wn(i?, i)−min

j 6=i?
Wn(i?, j)

)
≥ CF .

This implies that i /∈ minj 6=i?Wn(i?, j), hence P|n[CTC
n+1 = i | Bn+1 = i?] = 0 for n ≥ Nα.

Therefore, (10) holds with h(n) = 0. A similar argument holds for CTCI
n+1.
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Randomized instances Let an+1,i := Pθ∼Πn(i ∈ arg maxj∈[K] θj) be the probability that arm i
is the best arm in a sampled model at round n. Since

P|n[BTS
n+1 6= i?] ≤ (K − 1) max

i 6=i?
an+1,i ≤ (K − 1) max

i6=i?
Pθ∼Πn(θi ≥ θi?) ,

an upper bound on Pθ∼Πn [θi ≥ θi? ] is sufficient to prove (9). We show in Lemma 64 that this can be
obtained by leveraging upper bound on the Boundary Crossing Probability (BCP) of the Dirichlet
sampler, Pθ∼Πn [θi ≥ u] for a fixed threshold u ∈ (0, B). An upper bound on the BCP can be
obtained using the work of [36] and is given in Theorem 5 for the sake of completeness. Putting
things together yields that, for all n,

Pθ∼Πn [θi ≥ θi? ] ≤ f
(

inf
u∈[0,B]

[(Nn,i? + 2)K−inf(F̃n,i? , u) + (Nn,i + 2)K+
inf(F̃n,i, u)]

)
,

where f(x) = (1 +x)e−x. Using again continuity and concentration (11), we conclude that (9) holds
with g(n) = (K − 1)f

((√
n
K + 2

)
DF
)
, where DF > 0 is a problem dependent constant.

For the challenger, we first observe that

P|n[CRS
n+1 = i | Bn+1 = i?] =

an+1,i

1− an+1,i?
≤ Pθ∼Πn [θi ≥ θi? ]

maxj 6=i? Pθ∼Πn [θj ≥ θi? ]
.

Further upper bounding this quantity to prove (10) requires a lower bound on Pθ∼Πn [θi ≥ θi? ] which
can again be obtained using a lower bound on the BCP. In Appendix G.3 we provide a tight lower
bound on Pθ∼Πn [θi ≥ θi? ] featuring the K±inf functions. It permits to prove that (10) holds with
− log(h(n))/n =+∞ C̃F + o(1) where C̃F > 0 is a problem dependent constant.

The above derivations all use the concentration property (11), which requires the sufficient exploration
property (7). For our deterministic challengers, sufficient exploration is obtained by noticing that
Wn(i, j) can be upper and lower bounded by linear functions of the number of samples. Proving
sufficient exploration is more challenging for a randomized challenger, and existing proofs were
exploiting the symmetry of the Gaussian posterior. In our analysis we show that a coarse lower bound
on the BCP is sufficient to obtain (11), and prove such lower bound for the Dirichlet sampler:

Pθ∼Πn [θi ≥ u] ≥ (1− u/B)
n+1 and Pθ∼Πn [θi ≤ u] ≥ (u/B)

n+1
.

These lower bounds ensure that any arm has some (small) probability of being the challenger thanks
to re-sampling. Without adding {0, B} toHn,i, those probabilities could be equal to zero.

Our analysis is easily amenable to tackle different families of distributions F . This requires continuity
and convexity properties for the correspondingKinf functions, an appropriate concentration result and
further upper and lower bounds on the BCP of the sampler if one wish to analyze randomized algo-
rithms. As an illustration, we show asymptotic β-optimality of the β-EB-TC, β-EB-TCI algorithms
for SPEF with sub-exponential distributions, see Appendix H.

5 Experiments

We assess the empirical performance of our Top Two algorithms on the DSSAT real-world data and
on Bernoulli instances in the moderate regime (δ = 0.01). The stopping rule (2) is used with the
threshold c(n, δ) defined in (4). As Top Two sampling rules, we present results for β-EB-TC, β-EB-
TCI, β-TS-TC and β-TS-TCI with β = 0.5. Additional experiments are available in Appendix I.2:
on the RS challenger whose computational cost prevent it to be evaluated with (4) and on larger sets
of arms (up to K = 1000).

As benchmarks for the sampling rule, we use KL-LUCB with Bernoulli divergence [28] (whose
theoretical guarantees extend to any distribution bounded in [0, 1]), “fixed” sampling which is
an oracle playing with proportions w?(F ) and uniform sampling. We also propose a heuristic
adaptation of the DKM algorithm [13] (which is asymptotically optimal for SPEF) to tackle bounded
distributions, which we denote by Kinf -DKM, and uses forced exploration instead of optimism.
Inspired by the regret minimization algorithm Kinf -UCB [4], we propose its LUCB variant [27],
named Kinf -LUCB. The upper/lower confidence indices are obtained by inverting of K±inf , i.e.

∀i 6= ı̂n, Un+1,i = max
{
u ∈ [µn,i, B] | Nn,iK+

inf(Fn,i, u) ≤ c(n, δ)
}
,

Ln+1,̂ın = min
{
u ∈ [0, µn,̂ın ] | Nn,̂ınK−inf(Fn,̂ın , u) ≤ c(n, δ)

}
.
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LUCB-based algorithms [27] use their own stopping rule, namely they stop when Ln+1,̂ın ≥
maxj 6=ı̂n Un+1,j . For Bernoulli distributions, Kinf -LUCB recovers KL-LUCB. While being asymp-
totically optimal for heavy-tailed distributions [3] with an adequate stopping threshold, the Track-
and-Stop algorithm is computationally intractable for bounded distributions as it requires to compute
w?(Fn) at each time n (or on a geometric grid). We hence omit it from our experiments.

Crop-management problem We benchmark our algorithms on the DSSAT simulator2 [22]. Each
arm corresponds to a choice of planting date and fixed soil conditions (details in Appendix I). To
illustrate the problem’s difficulty we represent an empirical estimate (independent of the runs of our
algorithms) of the yield distributions in Figure 3(b). Since the gaps between means are small, the
identification problem is hard. Moreover, Kinf computations for non-parametric distributions are
costlier than Bernoulli ones (see Appendix I.1), so we only present the results for 100 runs.

Figure 3: Empirical stopping time (a) on scaled DSSAT instances with their density and mean (b).
Lower bound is T ?(F ) log(1/δ). “stars” equal means.

In Figure 3, β-EB-TCI, β-TS-TC and β-TS-TCI slightly outperformKinf -DKM and the fixed (oracle)
sampling rule. Moreover, Kinf -LUCB performs significantly worse than uniform sampling. Due to
the small number of runs, we don’t observe large outliers for β-EB-TC (see Appendix I.2). KL-LUCB
performs ten times worse than Kinf -LUCB, hence we omit it from Figure 3.

Bernoulli instances Next we assess the performance on 1000 random Bernoulli instances with
K = 10 such that µ1 = 0.6 and µi ∼ U([0.2, 0.5]) for all i 6= 1, where we enforce that ∆min ≥ 0.01.
We also study the instance µ = (0.5, 0.45, 0.45), in which ∆min = 0, and perform 1000 runs.

Figure 4: Empirical stopping time on Bernoulli (a) random instances with K = 10 and (b) instance
µ = (0.5, 0.45, 0.45).

In Figure 4(a), we see that β-EB-TCI, β-TS-TC and β-TS-TCI outperform other algorithms. While
this gain is slim compared to Kinf -DKM, the empirical stopping time is twice (resp. three times) as
large for KL-LUCB (resp. uniform sampling). Even when ∆min = 0, Figure 4(b) hints that their
empirical performance might be preserved. Figure 4 confirms the lack of robustness of β-EB-TC,

2DSSAT is an Open-Source project maintained by the DSSAT Foundation, see https://dssat.net.
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which is prone to large outliers. For the symmetric instance in Figure 4(b), uniform sampling
outperforms KL-LUCB and perform on par with the “fixed” sampling.

6 Perspectives

We provided a general analysis of Top Two algorithms, including new variants using the EB leader
and TCI challenger, and proved their asymptotic β-optimality on the non-parametric class of bounded
distributions. On experiments on distributions coming from a real world application, several Top Two
variants (in particular β-TS-TC and β-EB-TCI) proved more effective than all baselines. Furthermore,
β-EB-TCI is computationally not costlier than computing the stopping rule.

As in previous work on Top Two methods our result only characterizes the asymptotic performance of
the algorithms, and obtaining bounds on the sample complexity for any δ that would reflect their good
empirical performance is a most pressing open question. Our work also hints at what is needed to
obtain non-asymptotic guarantees: the only variant for which the empirical behavior does not reflect
the asymptotic bound is β-EB-TC, which is also the most greedy variant. Algorithms using a sampler
naturally explore, and the penalized version β-EB-TCI successfully corrects the shortcomings of
β-EB-TC by penalizing over-sampling. Quantifying the amount of exploration required by Top Two
algorithms should also allow the removal of the hypothesis ∆min > 0 from Theorem 1.

Finally, Top Two algorithms are promising algorithms to tackle the setting of fixed budget identifica-
tion, in which the algorithms have to stop at a given time and should then make as few mistakes as
possible. As their sampling rule is anytime (i.e. independent of δ), Top Two algorithms might also
have theoretical guarantees for BAI in the fixed-budget setting or even the anytime one, in which
guarantees on the error probability should be given at all time.
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