
Appendix A Environment Details

A.1 ReactorEnv

Recall that the reaction is of form A → B. Performing a component balance on reactant A, we obtain
the following ordinary differential equation

dcA
dt

=
qin
πr2h

(cAf − cA)− k0 exp(−
E

RT
)cA, (1)

where cA is the concentration of reactant A in kmol/m3, t is the time in min, qin is the volumetric
flowrate of the inlet stream in m3/min, r is the radius of the reactor in m, h is the level of reaction
mixture in the reactor in m, cAf is the concentration of reactant A in the feed stream in kmol/m3, k0
is the pre-exponential factor in min−1, E/R is the ratio of reaction activation energy to the universal
gas constant in K and T is the reaction mixture temperature in K.

Similarly, an energy balance can be conducted to obtain the following energy balance equation
dT

dt
=

qin
πr2h

(Tf − T ) +
−∆H

ρcp
k0 exp(−

E

RT
)cA +

2U

rρcp
(Tc − T ), (2)

where Tf is the temperature of the feed stream in K, ∆H is the heat of reaction in kJ/kmol, ρ is the
density of the reaction mixture in kg/m3, cp is the specific heat capacity of the reaction mixture in
kJ/kg ·K, U is the heat transfer coefficient in kJ/min ·m2 ·K and Tc is the coolant temperature.

Finally, deriving an overall material balance around the reactor leads to the following equation
dh

dt
=

qin − qout
πr2

, (3)

where qout is the volumetric flow rate of the contents out of the reactor in m3/min.

A summary of the parameter values used in this project is presented in Table 3.

Table 3: Table of parameter values

Parameter Unit Value
qin m3/min 0.1
r m 0.219

cAf kmol/m3 1.0
Tf K 76.85
E/R K 8750.0
k0 min−1 7.2× 1010

−∆H J/mol 5.0× 104

U kJ/min ·m2 ·K 5.0× 104

cp kJ/kg ·K 0.239
ρ kg/m3 1000.0

In the CSTR process model described above, cA, T and h are the state variables. The controlled
variables are cA and h while the manipulated variables are qout and Tc.

A.2 AtropineEnv

A description of the streams in Figure 4 is summarized in Table 4.

The mixing in the mixers is assumed to occur instantaneously which implies zero dynamics. Thus,
the mixer is modeled by the following set of algebraic equations

ṁout,i =

ns∑
k=1

ṁin,i,k (4)

where m denotes the mass flow rate in xx and ns is the number of streams. In Equation (4), the
subscripts i, k, out, in refer to species, stream number, reactor outlet and reactor inlet respectively.
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Figure 4: Process flow diagram of the continuous manufacturing process

Table 4: Description of streams in Figure 4

Stream Description
S 1 Tropine in dimethylformamide (2 M)
S 2 Phenylacetylchloride (pure)
S 3 Formaldehyde (37 wt%)
S 4 Sodium hydroxide (4 M)
S 5 Buffer solution
S 6 Organic solvent (Toluene)
S 7 Product
S 8 Waste

Each reactor is described by the following partial differential equations obtained from their mass
balance

∂ci,z
∂t

= −Qtot
∂c

∂V

∣∣∣∣
i,z

+ ri,z (5)

Equation 5 can be converted to ordinary differential equations using the method of lines (MOL) [54]
to obtain

dci,j
dt

= −Qtot
ci,j − ci,j−1

∆V
+ ri,j (6)

. In Equations 5 and 6, Qtot is the total volumetric flow rate inside the reactor in mL/min, r is the
rate of reaction and ∆V is the volume of a segment of the reactor. The subscripts i is as previously
defined and j is the volume of a segment of the reactor in mL. The temperature dynamics in each
reactor are assumed to be fast and therefore the energy balances are not required. The liquid-liquid
separator is described by both ordinary differential equations and algebraic equations which results in
a differential-algebraic equation (DAE) system of index 1. More details of the process model can be
found in [23] and the references therein. A summary of the key process parameters is shown in Table
5.

Table 5: Key process parameters

Parameter Description Value [units]
V1 Volume of Reactor 1 2 [mL]
V2 Volume of Reactor 2 9.5 [mL]
V3 Volume of reactor 3 9.5 [mL]
V4 Volume of Liquid-liquid separator 110 [mL]
T1 Temperature of Reactor 1 373.15 [K]
T2 Temperature of Reactor 2 373.15 [K]
T3 Temperature of Reactor 3 323.15 [K]
q5 Volumetric flow rate of S5 0.2 [mL/min]
q6 Volumetric flow rate of S6 0.5 [mL/min]
log(D9) Separation coefficient of atropine -2 [-]

In the continuous-flow manufacturing process, the volumetric flow rates of streams S1–S4 are
manipulated to control the production of atropine while the volumetric flow rates of streams S5 and
S6 are kept constant.
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A.2.1 Process control with MPC

The entire system of DAEs described in the previous section can be written in the form

ẋ(t) = f(x(t), z(t), u(t))

0 = g(x(t), z(t), u(t))

y(t) = h(x(t), z(t), u(t)),

where ẋ(t) ∈ R1694 is the velocity of the state vector x(t) ∈ R1694 at time t ∈ R+, u(t) ∈ R4 is the
vector of inputs, z(t) ∈ R30 is the vector of algebraic states and y(t) ∈ R is the output.

The control objective is to maximize atropine production while minimizing the waste produced. This
metric is known as the environmental factor (E-factor) and is defined as

E-factor =
Mass of waste produced (excluding water)

Mass of product obtained
.

The above DAE system of equations, when used in a model-based controller such as MPC will result
in a large-scale nonlinear and possibly non-convex optimization problem which is in general difficult
to solve. Thus, to reduce the complexity of the controller, a simple linear model was identified from
data and used to make predictions in the controller. A linear discrete-time subspace model relating the
inputs to the output (E-factor) was obtained and used in the controller. Since the states of the linear
subspace model have no physical meaning, a steady-state Kalman filter was designed to estimate
the initial state from the inputs and outputs. A schematic diagram of the control system is shown in
Figure 5. In the 5, r(t) is the reference signal to be tracked (usually obtained from a higher decision
making body such as Real-Time Optimizer (RTO)) and x̂(t) is the initial state estimate for the linear
model in the controller. It is worth mentioning that the linear model in the controller may have to be
re-identified if the new reference is far from the current reference point.

MPC Process

State Estimator

Figure 5: Schematic diagram of the control system

The parameters for the identified model are

x(k + 1) =

[
0.8543 −0.1164
0.0195 0.8576

]
x(k) +

[
−0.0382 −0.0547 0.0103 0.1290
−0.0051 0.0072 0.0020 0.0078

]
u(k)

y(k) = [−148.6124 −46.8132]x(k)

with the associated optimal steady-state Kalman filter gain being

K =

[
−0.0093
0.0115

]
.

A summary of the steady-state values as well as the system constraints are presented in Table 6.

A.3 mAbEnv

A.3.1 Mathematical model development

In this section, we present a physics-based mathematical model of the Monoclonal Antibody (mAb)
production process. The mAb production process consists of two sub-processes referred to in this
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Table 6: Summary of the input and output constraints, and their steady-state values

Input Description Steady state value [units] Bounds
q1 Volumetric flow rate of S1 0.4078 [mL] [0, 5]
q2 Volumetric flow rate of S2 0.1089 [mL] [0, 5]
q3 Volumetric flow rate of S3 0.3888 [mL] [0, 5]
q4 Volumetric flow rate of S4 0.2126 [mL] [0, 5]
y E-factor 13.057 [kg/kg] unbounded

work as the upstream and downstream processes. The upstream model presented here is primarily
based on the works by Kontoravdi et al. [55, 56] as well as other works in literature and the
downstream model is mainly based on the works by Gomis-Fons et al. [57]. We begin the section by
first describing the mAb production process. Subsequently, we present the mathematical models of
the various units in the mAb production process.

A.3.1.1 Process description As mentioned earlier, the mAb production process consists of the
upstream and the downstream processes. In the upstream process, mAb is produced in a bioreactor
which provides a conducive environment for mAb growth. The downstream process on the other
hand recovers the mAb from the upstream process for storage. In the upstream process for mAb
production, fresh media is fed into the bioreactor where a conducive environment is provided for the
growth of mAb. A cooling jacket in which a coolant flows is used to control the temperature of the
reaction mixture. The contents exiting the bioreactor are passed through a microfiltration unit which
recovers part of the fresh media in the stream. The recovered fresh media is recycled back into the
bioreactor while the stream with a high amount of mAb is sent to the downstream process for further
processing. A schematic diagram of the upstream process is shown in Figure 6.

Figure 6: A schematic diagram of the upstream process for mAb production

The objective of the downstream process for mAb production is to purify the stream with a high
concentration of mAb from the upstream and obtain the desired product. The configuration of
the downstream is adopted from Gomis-Fons’ work [57]. It is composed of a set of fractionating
columns, for separating mAb from impurities, and holdup loops, for virus inactivation (VI) and pH
conditioning. The schematic diagram of the downstream process is shown in Figure 7. Three main
steps are considered in the scheme: capture, virus inactivation, and polish. It is worth mentioning
that the ultrafiltration preparing the final product is not considered in this work, and hence is not
included in the diagram. The capture step serves as the main component in the downstream and the
majority of mAb is recovered in this step. Protein A chromatography columns are usually utilized to
achieve this goal. The purpose of VI is to disable the virus and prevent further mAb degradation. At
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last, the polish step further removes the undesired components caused by VI and cation-exchange
chromatography (CEX) and anion-exchange chromatography (AEX) are generally used. In order to
obtain a continuous manufacturing process, the perfusion cell culture, a continuous mAb culturing
process is used in the upstream, however, the nature of chromatography is discontinuous. Therefore, a
twin-column configuration is implemented in the capture step. According to the diagram, column A is
connected to the stream from the upstream and loaded with the solutions. Simultaneously, column B
is connected to the remaining components of the downstream and conducts further mAb purification.
According to Gomis-Fons, et al. [57], the time needed for loading is designed as the same as the time
required for the remaining purification steps. Hence, when column A is fully loaded, column B is
empty and the resin inside is regenerated. Then, the roles of these two columns will be switched
in the new configuration, meaning column B will be connected to the upstream and column A will
be connected to the remaining components in downstream. In conclusion, a continuous scheme of
downstream is achieved by implementing the twin-column configuration in the capture step.

A

B

Figure 7: A schematic diagram of the downstream process for mAb production

A.3.1.2 Bioreactor modeling The mathematical model of the bioreactor can be divided into
three parts, namely cell growth and death, cell metabolism, and mAb synthesis and production.
Papathanasiou and coworkers described a simplified metabolic network of GN-NS0 cells using a
Monod kinetic model [58]. In the study by Villiger et al. [59], while the specific productivity of
mAb was observed to be constant with respect to viable cell density, it varied with respect to the
extracellular pH. By considering these two models, we proposed one simplified model to describe
the continuous upstream process. The following assumptions were used in developing the dynamic
model of the bioreactor in the continuous production of the mAb process.

• The contents of the bioreactor are perfectly mixed

• The dilution effect is negligible

• The enthalpy change due to cell death is negligible

• There is no heat loss to the external environment

• The temperature of the recycle stream and the temperature of the reaction mixture are equal

A.3.1.2.1 Cell growth and death An overall material balance on the bioreactor yields the equation

dV1

dt
= Fin + Fr − Fout. (7)

In Equation (7), V is the volume in L, and Fin, Fr, and Fout are the volumetric flow rate of the fresh
media into the reactor, the volumetric flow rate of the recycle stream and the volumetric flow rate out
of the bioreactor respectively in L/min. Throughout this report, the subscripts 1 and 2 represent the
bioreactor and the microfiltration unit respectively.
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The conversion of the viable and total cells within the culture can be described using a component
balance on the viable and total number of cells as shown in Equations (8) and (9)

dXv1

dt
= µXv1 − µdXv1 −

Fin

V1
Xv1 +

Fr

V1
(Xvr −Xv1) (8)

dXt1

dt
= µXv1 −

Fin

V1
Xt1 +

Fr

V1
(Xtr −Xt1), (9)

where X is the cell concentration in cells/L, µ is the specific growth rate in min−1 and µd is the
specific death rate in min−1. The subscripts v and t denote the viable and total cells respectively.

The specific cell growth rate is determined by the concentrations of the two key nutrients namely
glucose and glutamine, the two main metabolites namely lactate and ammonia and temperature
following the Monod kinetics

µ = µmaxflimfinh (10)

flim = (
[GLC]1

Kglc + [GLC]1
)(

[GLN ]1
Kgln + [GLN ]1

) (11)

finh = (
KIlac

KIlac + [LAC]1
)(

KIamn

KIamn + [AMN ]1
). (12)

In Equation (10), µmax is the maximum specific growth rate in min−1, flim and finh are the nutrient
limitation function and the product inhibition function which are described in Equations (11) and
(12), respectively. In Equations (11) and (12), [GLC], [GLN ], [LAC] and [AMM ] stand for the
concentrations of glucose, glutamine, lactate and ammonia in mM , and Kglc, Kgln, KIlac and
KIamm represent the Monod constant for glucose, glutamine, lactate and ammonia respectively in
mM .

The specific death rate is determined based on the assumption that cell death is only a function of the
concentration of ammonia accumulating in the culture, and is shown as follows:

µd =
µd,max

1 + (
Kd,amm

[AMM ]1
)n

, n > 1. (13)

In Equation (13), n is assumed to be greater than 1 to give a steeper increase of specific death as
ammonia concentration increases.

Temperature is a key factor in the maintenance of cell viability and productivity in bioreactors. It
is expected that the growth and death of the mAb-producing cells will be affected by temperature.
The effect of temperature on the specific growth and death rates is achieved through the maximum
specific growth and death rates. In this study, standard linear regression of data available in literature
[60] was used to obtain a linear relationship between the temperature and the maximum cell growth
rate µmax.

µmax = 0.0016T − 0.0308. (14)
Similarly, a linear relationship was obtained for the maximum cell death rate as shown in

µd,max = −0.0045T + 0.1682. (15)

In (14) and (15), T is the temperature of the bioreactor mixture in ◦C. The data was obtained for
the maximum specific growth and death rates at 33 ◦C and 37 ◦C. Therefore, the Equations (14) and
(15) are valid only within this temperature range. A heat balance on the bioreactor together with the
following above assumptions leads to the following ordinary differential equation:

dT

dt
=

Fin

V1
(Tin − T ) +

−∆H

ρcp
(µXv1) +

U

V1ρcp
(Tc − T ). (16)

In Equation (16), Tin is the temperature of the fresh media in ◦C, ∆H is the heat of reaction due to
cell growth in J/mol, ρ is the density of the reaction mixture in g/L, cp is the specific heat capacity
of the reaction in J/(g ◦ C), U is the overall heat transfer coefficient in J/(hr◦C)), and Tc is the
temperature of fluid in the jacket in ◦C.

The first term of Equation (16) represents the heat transfer due to the inflow of the feed and the
second term represents the heat consumption due to the growth of the cells. The final term describes
the external heat transfer to the bioreactor due to the cooling jacket.
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A.3.1.2.2 Cell metabolism A mass balance on glucose, glutamine, lactate and ammonia around
the bioreactor results in the following equations [58]:

d[GLC]1
dt

= −QglcXv1 +
Fin

V1
([GLC]in − [GLC]1) +

Fr

V1
([GLC]r − [GLC]1) (17)

Qglc =
µ

YX,glc
+mglc (18)

d[GLN ]1
dt

= −QglnXv1 −Kd,gln[GLN ]1 +
Fin

V1
([GLN ]in − [GLN ]1)−

Fr

V1
([GLC]1 − [GLN ]1)

(19)

Qgln =
µ

YX,gln
+mgln (20)

mgln =
α1[GLN ]1

α2 + [GLN ]1
(21)

d[LAC]1
dt

= QlacXv1 −
Fin

V1
[LAC]1 +

Fr

V1
([LAC]r − [LAC]1) (22)

Qlac = Ylac,glcQglc (23)
d[AMM ]1

dt
= QammXv1 +Kd,gln[GLN ]1 −

Fin

V1
[AMM ]1 +

Fr

V1
([AMM ]r − [AMM ]1) (24)

Qamm = Yamm,glnQgln. (25)

A.3.1.2.3 MAb production The rate of mAb production is described as

d[mAb]1
dt

= Xv1QmAb −
Fin

V1
[mAb]1 +

Fr

V1
([mAb]r − [mAb]1) (26)

QmAb = Qmax
mAbexp[−

1

2
(
pH − pHopt

ωmAb
)2]. (27)

In Equation (27), Qmax
mAb is the maximum specific productivity with unit mg/cell/min, and ωmAb is

the pH-dependent productivity constant. pHopt is the optimal culture pH as shown in [59]. The pH
value is assumed as a function of state and shown in Section A.3.1.3.2.

A.3.1.3 Mircofiltration

A.3.1.3.1 Cell separation In the cell separation process, a external hollow fiber (HF) filter is used
as cell separation device. It is assumed that no reactions occur in the separation process. Hence, the
concentration of each variable in recycle stream is shown as follows:

Xvr = ηrecXv1
F1

Fr
(28)

Xtr = ηrecXt1
F1

Fr
(29)

[GLC]r = ηret[GLC]1
F1

Fr
(30)

[GLN ]r = ηret[GLN ]1
F1

Fr
(31)

[LAC]r = ηret[LAC]1
F1

Fr
(32)

[AMM ]r = ηret[AMM ]1
F1

Fr
(33)

[mAb]r = ηret[mAb]1
F1

Fr
. (34)
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According to [61], the cell recycle rate (ηrec) is assumed to be 92% and the retention rates of glucose,
glutamine, lactate, ammonia, and mAb (ηret) are assumed to be 20%.

The material balance around the separation device is shown as:

dV2

dt
= F1 − F2 − Fr. (35)

The mass balance for concentrations of glucose, glutamine, lactate, ammonia, and mAb can be
described as:

dXv2

dt
=

F1

V2
(Xv1 −Xv2)−

Fr

V2
(Xvr −Xv2) (36)

dXt2

dt
=

F1

V2
(Xt1 −Xt2)−

Fr

V2
(Xtr −Xt2) (37)

d[GLC]2
dt

=
F1

V2
([GLC]1 − [GLC]2)−

Fr

V2
([GLC]r − [GLC]2) (38)

d[GLN ]2
dt

=
F1

V2
([GLN ]1 − [GLN ]2)−

Fr

V2
([GLN ]r − [GLN ]2) (39)

d[LAC]2
dt

=
F1

V2
([LAC]1 − [LAC]2)−

Fr

V2
([LAC]r − [LAC]2) (40)

d[AMM ]2
dt

=
F1

V2
([AMM ]1 − [AMM ]2)−

Fr

V2
([AMM ]r − [AMM ]2) (41)

d[mAb]2
dt

=
F1

V2
([mAb]1 − [mAb]2)−

Fr

V2
([mAb]r − [mAb]2). (42)

A.3.1.3.2 pH value pH is defined as the decimal logarithm of the reciprocal of the hydrogen ion
activity in a solution. We assume our pH model as follows:

pH = θ1 − log10(θ2[AMM ] + θ3). (43)

After applying nonlinear regression method, we fit the model as:

pH = 7.1697− log10(0.074028[AMM ] + 0.968385). (44)

A.3.1.4 Downstream modeling The mathematical model of the downstream is constructed based
on each unit operation. Specifically, two different models are utilized to describe the loading mode
and elution mode of the Protein A chromatography column separately. The models for CEX and
AEX share the same mathematical structure with different parameters and the models for VI and
holdup loop share the same structures and parameters. A detailed explanation of each model is shown
in the following subsections.

A.3.1.4.1 Protein A chromatography column loading mode A schematic diagram [62] depict-
ing a general chromatography column is shown in Figure 8. The column is packed with the porous
media which have the binding sites with mAb. The porous media is defined as the stationary phase
and the fluid which contains mAb and flows through the column is considered as the mobile phase.
Three types of mass transfers are usually considered inside of the column. From the top of the figure,
the convection caused by the bulk fluid movement is portrayed. Then by only considering a control
volume of the column, which is illustrated in the second subfigure, the dispersion of mAb along the
axial direction is shown. Within the beads, there is intra-particle diffusion and in the last subfigure,
mAbs are adsorbed on the binding sites of beads.

The general rate model (GRM) simulates the mass transfer in a chromatography column, with the
assumption that the transfer along the radial direction of the column is negligible and the transfer
along the axial direction of the column and the radial direction in the beads is considered.

In this work, the GRM identified by Perez-Almodovar and Carta [63] is used to describe the loading
mode of the Protein A chromatography column. The mass transfer along the axial coordinate is
described below:
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Convection

Dispersion

Intra-partical diffusion

Surface diffusion

Figure 8: A schematic diagram of the chromatography column

∂c

∂t
= Dax

∂2c

∂z2
− v

ϵc

∂c

∂z
− 1− ϵc

ϵc

3

rp
kf (c− cp|r=rp), (45)

where c denotes the mAb concentration in the mobile phase, changing with time (t) and along with
the axial coordinates of columns (z). Dax is the axial dispersion coefficient, v is the superficial fluid
velocity, ϵc is the extra-particle column void, rp is the radius of particles and kf is the mass transfer
coefficient.

On the right-hand side of Equation (45), there are three terms. The first term, ∂2c
∂z2 , models the

dispersion of mAb. In other words, it describes the movement of mAb caused by the concentration
difference in the column. The second term ∂c

∂z denotes the change of concentration of mAb caused by
the convection flow. The last term kf (c− cp|r=rp) describes the mass transfer between the mobile
phase c and the surface of the beads cp|r=rp .

The boundary conditions of Equation (45) are shown below:

∂c

∂z
=

v

ϵcDax
(c− cF ) at z = 0 (46a)

∂c

∂z
= 0 at z = L, (46b)

where cF stands for the harvest mAb concentration from the upstream process.

The concentration of mAb along radial coordinate in the beads (cp) is the second component of GRM
and the mass balance for protein diffusion inside the porous particles is shown in Equation (47) with
boundary conditions in Equations (48a) and (48b)

∂cp
∂t

= Deff
1

r2
∂

∂r
(r2

∂cp
∂r

)− 1

ϵp

∂(q1 + q2)

∂t
(47)

∂cp
∂r

= 0 at r = 0 (48a)

∂cp
∂r

=
kf

Deff
(c− cp) at r = rp, (48b)
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where Deff is the effective pore diffusivity, r is the distance from the current location to the center
of the particle, and ϵp is the particle porosity.

At last, the description of adsorbed mAb concentration (q1 and q2) is shown as follows:

∂qi
∂t

= ki[(qmax,i − qi)cp|r=rp − qi
K

] for i = 1, 2, (49)

where ki is the adsorption kinetic constant, qmax is the column capacity, and K is the Langmuir
equilibrium constant. The reason for having two ∂q

∂t is because there are two adsorption sites on the
beads and one of them is a fast binding site and another one is the slow one.

A.3.1.4.2 Protein A chromatography column elution mode An adsorption kinetic model,
convective-dispersive equation with adsorption, is used to describe the elution of the Protein A
chromatography column. The setup of boundary conditions for this model can take Equations (46a)
and (46b) as the reference, at the same time keeping the inlet and outlet conditions of elution mode in
mind. The model is shown as follows:

∂c

∂t
= Dax

∂2c

∂z2
− v

ϵ

∂c

∂z
+

1− ϵc
ϵ

∂q

∂t
(50)

∂q

∂t
= k[H0c

−β
s (1− q

qmax
)c− q] (51)

∂cs
∂t

= Dax
∂2cs
∂z2

− v

ϵ

∂cs
∂z

, (52)

where c is the mAb concentration in the mobile phase, cs stands for the modifier concentration, q is
the adsorbed mAb concentration. k is the adsorption/desorption rate, H0 is the Henry equilibrium
constant, β is the equilibrium modifier-dependence parameter, and ϵ is the total column void.

On the right hand side of Equation (50), the first two terms are similar with those in Equation (45).
The third term ∂q

∂t is detailed expressed in Equation (51), which is a Langmuir isotherm describing
the adsorption and desorption of mAb on beads. This mass transfer is affected by the concentration
of the modifier cs whose dynamics are described in Equation (52).

A.3.1.4.3 CEX and AEX chromatography The adsorption kinetic model shown in Equa-
tions (50), (51) and Equation (52) can also be used to describe the CEX and AEX chromatography
process. The same rule applies to the boundary conditions. Since the AEX column is in flow-through
mode as described in [63], the product mAb is not adsorbed on the beads and the kinetic constant k is
supposed to be zero.

A.3.1.4.4 Virus inactivation and holdup pool Equation (53) shows the model of loop for VI
and holdup, which is modeled as a one-dimensional dispersive-convective transport, with boundary
conditions in Equations (46a) and (46b). Since the loop is not packed, there is no intra-particle
diffusion or mass transfer between mAb outside of particles and on the surface of the particles.

∂c

∂t
= Dax

∂2c

∂z2
− v

∂c

∂z
. (53)

A.3.2 Control problem formulation and controller design

In this chapter, we present preliminary results of implementing advanced process control (APC)
techniques in the operation of the continuous mAb production process. Specifically, two variants of
APC algorithms, namely model predictive control (MPC) and economic model predictive control
(EMPC) were designed and tested on the mAb production process. We begin the chapter by presenting
the control problem to be addressed. Subsequently, we present the various controller designs. Finally,
we compare the results of MPC and EMPC.

A.3.2.1 Control problem formulation

24



A.3.2.1.1 Upstream process Before we begin this section, let us rewrite the model of the upstream
mAb production process in the state space form

ẋ(t) = f(x(t), u(t)), (54)

where ẋ(t) ∈ R15 is the velocity of the state vector x ∈ R15 at time t and u(t) ∈ R7 is the input
vector. The variables in the input vector will be defined later in this section. For practical reasons, we
assume that the state and input are constrained to be in the spaces X and U respectively.

The primary control objective in this work is to ensure that safety and environmental regulations are
adhered to during the operation of the mAb production process. From an economic point of view,
it is essential to maximize the production of mAb in the upstream process. Thus, two secondary
economic objectives are considered. The first is the maximization of the mAb flow rate from the
bioreactor while the second is the maximization of the mAb flow rate in the separator (microfiltration
unit). These objectives are given as

ℓbioreactor = mAb concentration in bioreactor × flow out of the bioreactor (55)

ℓseparator = mAb concentration in separator × flow out of the separator. (56)
Combining the two economic objectives, the following economic objective is obtained:

ℓe(x, u) = ℓbioreactor + ℓseparator. (57)

To achieve these objectives, we manipulate (as input variables) the flow rates Fin, Fr, F1 and F2, the
coolant temperature Tc together with the concentration of ammonia and glucose in the fresh media
stream. Considering the objectives, advanced process control (APC) algorithms that consider the
complex system interaction while ensuring constraint satisfaction must be used.

Let us define the steady-state economic optimization with respect to the economic objective ℓe as

(xs, us) = argmin − ℓe(x, u) (58a)
subject to 0 = f(x, u) (58b)

x ∈ X (58c)
u ∈ U, (58d)

where Equation (58b) is the system model defined in Equation (54) with zero state velocity, and
Equations (58c) and (58d) are the the constraints on the state and the input respectively. The negative
economic cost function converts the maximization problem to a minimization problem. The optimal
value function in (58) is used as the setpoint for MPC to track.

A.3.2.2 Controller design

A.3.2.2.1 Tracking Model Predictive Control (MPC) MPC is a multivariable advanced process
control algorithm which has gained significant attention in the process control community. This
is because of its ability to handle the complex system interactions and constraints in the controller
design. At each sampling time tk, the following dynamic optimization problem is solved:

min
u

∫ tk+N∆

tk

(x(t)− xs)
TQ(x(t)− xs) + (u(t)− us)

TR(u(t)− us)dt (59a)

subject to ẋ(t) = f(x(t), v(t)) (59b)
x(tk) = x(tk) (59c)
x(t) ∈ X (59d)
u(t) ∈ U. (59e)

In the optimization problem (59) above, Equation (59b) is the model constraint which is used to
make predictions into the future, Equation (59c) is the initial state constraint, ∆ is the sampling
time, N is the prediction and control horizons, Equations (59d) and (59e) are the constraints on the
state and input respectively, and Q and R are matrices of appropriate dimensions which represent
the weights on the deviation of states and the inputs from the setpoint. The setpoint is obtained by
solving the steady-state optimization problem in (60). The decision variable u in (59) is the optimal
input sequence for the process. The first input u(tk) is applied to the system and the optimization
problem is solved again after one sampling time.
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A.3.2.2.2 Economic Model Predictive Control (EMPC) The MPC described in Section
A.3.2.2.1 uses a quadratic cost in its formulation. However, in recent years MPC with a gen-
eral objective is known as economic MPC (EMPC) has received significant attention. The objective
function in an EMPC generally reflects some economic performance criterion such as profit maxi-
mization or heat minimization. This is in contrast with the tracking MPC described earlier where the
objective is a positive definite quadratic function. The integration of process economics directly in
the control layer makes EMPC of interest in many areas, especially in the process industry. There
have been numerous applications of EMPC.

At each sampling time tk, the following optimization problem is solved

min
u

∫ tk+N∆

tk

−ℓe(x(t), u(t))dt (60a)

subject to ẋ(t) = f(x(t), u(t)) (60b)
x(tk) = x(tk) (60c)
x(t) ∈ X (60d)
u(t) ∈ U. (60e)

In the optimization problem (60) above, the constraints are the same as the optimization problem in
(59). However, a general cost function is used in place of the quadratic cost function. The benefits of
EMPC over MPC will be demonstrated in the results section.

A.3.2.3 Simulation settings After conducting extensive open-loop tests, the control and predic-
tion horizons N for both controllers were fixed at 100. This implies that at a sampling time of 1
hour, the controllers plan 100 hours into the future. The weights on the deviation of the states and
input from the setpoint were identifying matrices. As mentioned earlier, the setpoint for the tracking
MPC was determined by solving the optimization problem in (58). The optimization problems were
implemented using the modeling environment casadi [64] in Python.

A.3.3 Model parameters

Table 7: Parameters for the upstream process model

Parameter Unit Value
Kd,amm mM 1.76
Kd,gln min−1 0.00016
Kglc mM 0.75
Kgln mM 0.038
KIamm mM 28.48
KIlac mM 171.76
mglc mmol/(cell ·min) 8.2× 10−16

Qmax
mAb mg/(cell ·min) 1.1× 10−11

Yamm,gln mmol/mmol 0.45
Ylac,glc mmol/mmol 2.0
YX,glc cell/mmol 2.6× 108

YX,gln cell/mmol 8.0× 108

α1 (mM · L)/(cell ·min) 5.7× 10−15

α2 mM 4.0
−∆H J/mol 5.0× 105

rho g/L 1560.0
cp J/(g◦C) 1.244
U J/(h◦C) 4× 102

Tin
◦C 37.0

The parameters of the downstream model are obtained from the work of Gomis-Fons et al. [57] and
several parameters are modified because the process is upscaled from lab scale to industrial scale.
They are summarized in Table 8.
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A.3.4 Market value and importance

Drugs based on monoclonal antibodies (mAbs) play an indispensable role in the biopharmaceutical
industry in aspects of therapeutic and market potential. In therapy and diagnosis applications, mAbs
are widely used for the treatment of autoimmune diseases, cancer, etc. According to a recent
publication, mAbs also show promising results in the treatment of COVID-19 [24]. Until September
22, 2020, 94 therapeutic mAbs have been approved by U.S. Food & Drug Administration (FDA)
[65] and the number of mAbs approved within 2010-2020 is three times more than those approved
before 2010 [66]. In terms of its market value, it is expected to reach a value of $198.2 billion in
2023. Thus, with the fact that Canada is an active and competitive contributor to the development
of high capacity mAb manufacturing processes [67], increasing the production capacity of mAb
manufacturing processes is immediately necessary due to the explosive growth in the mAb market.
Integrated continuous manufacturing of mAbs represents the state-of-the-art in mAb manufacturing
and has attracted a lot of attention because of the steady-state operations, high volumetric productivity,
and reduced equipment size and capital cost, etc. [68].

A.4 PenSimEnv

In this section, we briefly describe the mathematical model of the PenSimEnv as presented in Goldrick
and coworkers [25]. The model of the fermenter consists of the growth, production, morphology and
generation of the biomass. The following key equations describe the four regions in the fermenter,
namely growing regions, non-growing regions, degenerated regions and autolysed regions.

dA0

dt
= rb − rdiff − FinA0

V
(61)

dA1

dt
= re − rb + rdiff − rdeg

FinA1

V
(62)

dA3

dt
= rdeg − ra −

FinA3

V
(63)

dA4

dt
= ra −

FinA4

V
(64)

Equations (61) – (64) describe the four regions respectively. In these equations, rb is the rate of
branching, rdiff denotes the rate of differentiation, re is the rate of extension, rdeg is the rate of
degeneration, ra is the rate of autolysis, P is the rate of product formation, h is the rate of hydrolysis,
rm is the rate of maintenance, Ai where i = 0, 1, 2, 3, 4 refers to the actively growing regions,
non-growing regions, degenerated regions formed through vocuolation and autolysed regions, t is the
batch time, Fin refers to all the inputs to the process and V is the volume of the fermenter. The total
biomass in the system is given as

∑4
i=0 Ai.

The product formation, substrate consumption, and the volume of the fermentation mixture is
described in Equations 65 – 67:

dP

dt
= rp − rh − FinP

V
(65)

ds

dt
= −Ys/Xre − Ys/Xrb −msrm − Ys/P rP +

Fscs
V

+
Foilcoil

V
(66)

dV

dt
= Fs + Foil + FPAA + Fa + Fb + Fw − Fevp − Fdis (67)

where s is a combined oil and sugar as a single substrate, Ys/X and Ys/P denotes the substrate yield
coefficients of biomass and penicillin respectively, ms refers to the substrate maintenance coefficient,
Foil and coil denotes the feed flow rate and concentration of soya bean oil respectively, Fs and cs
denotes the feed flow rate and concentration of sugar respectively, FPAA is refers to the flow rate of
phenylacetic acid, Fa and Fb refers to the to flow rates of the acid and base respectively, Fw is the
flow rate of injection water, Fevap is the rate of evaporation of the fermenter and Fdis is the rate of
discharge from the fermenter during production.

Several other equations such as the component balance on the oxygen and nitrogen in the fermenter
is also present in the model. A more detailed description can be found in [25].
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A.5 BeerFMTEnv

The fermentation unit is a critical component in the beer manufacturing process. The dynamic
model of the beer fermentation process, as presented in the work by Rodman et al. [69] and de
Andres-Toro et al. [70] is described by 7 ordinary differential equations and several temperature
dependent parameters. The equations are derived based on the component balances

d[XA]

dt
= µx[XA]− µDT [XA] + µL[XL] (68)

d[XL]

dt
= −µL[XL] (69)

d[XD]

dt
= µSD[XD] + µDT [XA] (70)

d[S]

dt
= µS [XA] (71)

d[EtOH]

dt
= fµEtOH [XA] (72)

d[DY ]

dt
= µDY [S][XA]− µAB [DY ][EtOH] (73)

d[EA]

dt
= YEAµX [XA] (74)

In Equations 68 – 74, the symbol [·] represents the concentration of a component, XA denotes the
active cells, XL denotes the latent cells, XD refers to the dead cells, S represents sugar, EtOH
denotes ethanol, DY denotes diacetyls and EA represents ethyl acetate. The parameter µ denotes
the rates, f is the inhibition factor. More details about the parameters can be found in [69].

Appendix B Compute

The compute is an RTX 3090 GPU, an RTX 2070 GPU and a GTX 1080 GPU with i9-12900k CPU
for a total of 5380 GPU hours.
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Table 8: Parameters of digital twin of downstream

Step Parameter Unit Value
Capture qmax,1 mg/mL 36.45

k1 mL/(mg min) 0.704
qmax,2 mg/mL 77.85
k2 mL/(mg min) 2.1 · 10−2

K mL/mg 15.3
Deff cm2/min 7.6 · 10−5

Dax cm2/min 5.5 · 10−1v
kf cm/min 6.7 · 10−2v0.58

rp cm 4.25 · 10−3

L cm 20
V mL 105

ϵc − 0.31
ϵp − 0.94
qmax,elu mg/mL 114.3
kelu min−1 0.64
H0,elu Mβ 2.2 · 10−2

βelu − 0.2
Loop Dax cm2/min 2.9 · 102v

L cm 600
V mL 5 · 105

CEX qmax mg/mL 150.2
k min−1 0.99
H0 Mβ 6.9 · 10−4

β − 8.5
Dapp cm2/min 1.1 · 10−1v
L cm 10
V mL 5 · 104
ϵc − 0.34

AEX Dapp cm2/min 1.6 · 10−1v
k min−1 0
L cm 10
V mL 5 · 104
ϵc − 0.34
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