
Elucidating the Design Space of Diffusion-Based
Generative Models

Tero Karras
NVIDIA

tkarras@nvidia.com

Miika Aittala
NVIDIA

maittala@nvidia.com

Timo Aila
NVIDIA

taila@nvidia.com

Samuli Laine
NVIDIA

slaine@nvidia.com

Abstract

We argue that the theory and practice of diffusion-based generative models are
currently unnecessarily convoluted and seek to remedy the situation by presenting
a design space that clearly separates the concrete design choices. This lets us
identify several changes to both the sampling and training processes, as well as
preconditioning of the score networks. Together, our improvements yield new
state-of-the-art FID of 1.79 for CIFAR-10 in a class-conditional setting and 1.97 in
an unconditional setting, with much faster sampling (35 network evaluations per
image) than prior designs. To further demonstrate their modular nature, we show
that our design changes dramatically improve both the efficiency and quality ob-
tainable with pre-trained score networks from previous work, including improving
the FID of a previously trained ImageNet-64 model from 2.07 to near-SOTA 1.55,
and after re-training with our proposed improvements to a new SOTA of 1.36.

1 Introduction

Diffusion-based generative models [45] have emerged as a powerful new framework for neural image
synthesis, in both unconditional [16, 36, 48] and conditional [17, 35, 36, 38, 39, 41, 42, 48] settings,
even surpassing the quality of GANs [13] in certain situations [9]. They are also rapidly finding use
in other domains such as audio [27, 37] and video [19] generation, image segmentation [4, 54] and
language translation [34]. As such, there is great interest in applying these models and improving
them further in terms of image/distribution quality, training cost, and generation speed.

The literature on these models is dense on theory, and derivations of sampling schedule, training
dynamics, noise level parameterization, etc., tend to be based as directly as possible on theoretical
frameworks, which ensures that the models are on a solid theoretical footing. However, this approach
has a danger of obscuring the available design space — a proposed model may appear as a tightly
coupled package where no individual component can be modified without breaking the entire system.

As our first contribution, we take a look at the theory behind these models from a practical standpoint,
focusing more on the “tangible” objects and algorithms that appear in the training and sampling
phases, and less on the statistical processes from which they might be derived. The goal is to obtain
better insights into how these components are linked together and what degrees of freedom are
available in the design of the overall system. We focus on the broad class of models where a neural
network is used to model the score [22] of a noise level dependent marginal distribution of the training
data corrupted by Gaussian noise. Thus, our work is in the context of denoising score matching [51].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

σ=0 0.2 0.5 1 2 3 5 7 10 20 50 σ=0 0.2 0.5 1 2 3 5 7 10 20 50

(a) Noisy images drawn from p(x;σ) (b) Ideal denoiser outputs D(x;σ)

Figure 1: Denoising score matching on CIFAR-10. (a) Images from the training set corrupted with
varying levels of additive Gaussian noise. High levels of noise lead to oversaturated colors; we
normalize the images for cleaner visualization. (b) Optimal denoising result from minimizing Eq. 2
analytically (see Appendix B.3). With increasing noise level, the result approaches dataset mean.

Our second set of contributions concerns the sampling processes used to synthesize images using
diffusion models. We identify the best-performing time discretization for sampling, apply a higher-
order Runge–Kutta method for the sampling process, evaluate different sampler schedules, and
analyze the usefulness of stochasticity in the sampling process. The result of these improvements is a
significant drop in the number of sampling steps required during synthesis, and the improved sampler
can be used as a drop-in replacement with several widely used diffusions models [36, 48].

The third set of contributions focuses on the training of the score-modeling neural network. While
we continue to rely on the commonly used network architectures (DDPM [16], NCSN [47]), we
provide the first principled analysis of the preconditioning of the networks’ inputs, outputs, and loss
functions in a diffusion model setting and derive best practices for improving the training dynamics.
We also suggest an improved distribution of noise levels during training, and note that non-leaking
augmentation [25] — typically used with GANs — is beneficial for diffusion models as well.

Taken together, our contributions enable significant improvements in result quality, e.g., leading to
record FIDs of 1.79 for CIFAR-10 [28] and 1.36 for ImageNet [8] in 64×64 resolution. With all key
ingredients of the design space explicitly tabulated, we believe that our approach will allow easier
innovation on the individual components, and thus enable more extensive and targeted exploration of
the design space of diffusion models. Our implementation and pre-trained models are available at
https://github.com/NVlabs/edm

2 Expressing diffusion models in a common framework

Let us denote the data distribution by pdata(x), with standard deviation σdata, and consider the family
of mollified distributions p(x;σ) obtained by adding i.i.d. Gaussian noise of standard deviation σ to
the data. For σmax ≫ σdata, p(x;σmax) is practically indistinguishable from pure Gaussian noise. The
idea of diffusion models is to randomly sample a noise image x0 ∼ N (0, σ2

maxI), and sequentially
denoise it into images xi with noise levels σ0 = σmax > σ1 > · · · > σN = 0 so that at each noise
level xi ∼ p(xi;σi). The endpoint xN of this process is thus distributed according to the data.

Song et al. [48] present a stochastic differential equation (SDE) that maintains the desired distribution
p as sample x evolves over time. This allows the above process to be implemented using a stochastic
solver that both removes and adds noise at each iteration. They also give a corresponding “probability
flow” ordinary differential equation (ODE) where the only source of randomness is the initial noise
image x0. Contrary to the usual order of treatment, we begin by examining the ODE, as it offers a
fruitful setting for analyzing sampling trajectories and their discretizations. The insights carry over to
stochastic sampling, which we reintroduce as a generalization in Section 4.

ODE formulation. A probability flow ODE [48] continuously increases or reduces noise level of
the image when moving forward or backward in time, respectively. To specify the ODE, we must first
choose a schedule σ(t) that defines the desired noise level at time t. For example, setting σ(t) ∝

√
t

is mathematically natural, as it corresponds to constant-speed heat diffusion [12]. However, we will
show in Section 3 that the choice of schedule has major practical implications and should not be
made on the basis of theoretical convenience.

The defining characteristic of the probability flow ODE is that evolving a sample xa ∼ p
(
xa;σ(ta)

)
from time ta to tb (either forward or backward in time) yields a sample xb ∼ p

(
xb;σ(tb)

)
. Following

previous work [48], this requirement is satisfied (see Appendix B.1 and B.2) by

dx = −σ̇(t) σ(t)∇x log p
(
x;σ(t)

)
dt, (1)

2

https://github.com/NVlabs/edm

Table 1: Specific design choices employed by different model families. N is the number of ODE
solver iterations that we wish to execute during sampling. The corresponding sequence of time
steps is {t0, t1, . . . , tN}, where tN = 0. If the model was originally trained for specific choices
of N and {ti}, the originals are denoted by M and {uj}, respectively. The denoiser is defined as
Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ

(
cin(σ)x; cnoise(σ)

)
; Fθ represents the raw neural network layers.

VP [48] VE [48] iDDPM [36] + DDIM [46] Ours (“EDM”)
Sampling (Section 3)
ODE solver Euler Euler Euler 2nd order Heun

Time steps ti<N 1 + i
N−1 (ϵs − 1) σ2

max

(
σ2

min/σ
2
max

) i
N−1 u⌊j0+M−1−j0

N−1 i+ 1
2 ⌋

, where

uM = 0

uj−1=

√
u2
j+1

max(ᾱj−1/ᾱj ,C1)
−1

(
σmax

1
ρ +

i
N−1 (σmin

1
ρ −σmax

1
ρ)
)ρ

Schedule σ(t)
√

e
1
2βdt2+βmint−1

√
t t t

Scaling s(t) 1
/√

e
1
2βdt2+βmint 1 1 1

Network and preconditioning (Section 5)
Architecture of Fθ DDPM++ NCSN++ DDPM (any)
Skip scaling cskip(σ) 1 1 1 σ2

data/
(
σ2 + σ2

data

)
Output scaling cout(σ) −σ σ −σ σ · σdata/

√
σ2

data + σ2

Input scaling cin(σ) 1/
√
σ2 + 1 1 1/

√
σ2 + 1 1/

√
σ2 + σ2

data

Noise cond. cnoise(σ) (M − 1) σ−1(σ) ln(12σ) M−1−argminj |uj − σ| 1
4 ln(σ)

Training (Section 5)
Noise distribution σ−1(σ) ∼ U(ϵt, 1) ln(σ)∼U(ln(σmin), σ = uj , j ∼ U{0,M−1} ln(σ) ∼ N (Pmean, P

2
std)

ln(σmax))
Loss weighting λ(σ) 1/σ2 1/σ2 1/σ2 (note: ∗)

(
σ2+σ2

data

)
/(σ · σdata)

2

Parameters βd = 19.9, βmin = 0.1 σmin = 0.02 ᾱj = sin2(π
2

j
M(C2+1)

) σmin = 0.002, σmax = 80

ϵs = 10−3, ϵt = 10−5 σmax = 100 C1 = 0.001, C2 = 0.008 σdata = 0.5, ρ = 7

M = 1000 M = 1000, j0 = 8† Pmean= −1.2, Pstd = 1.2
∗ iDDPM also employs a second loss term Lvlb

† In our tests, j0 = 8 yielded better FID than j0 = 0 used by iDDPM

where the dot denotes a time derivative. ∇x log p(x;σ) is the score function [22], a vector field that
points towards higher density of data at a given noise level. Intuitively, an infinitesimal forward step
of this ODE nudges the sample away from the data, at a rate that depends on the change in noise level.
Equivalently, a backward step nudges the sample towards the data distribution.

Denoising score matching. The score function has the remarkable property that it does not depend
on the generally intractable normalization constant of the underlying density function p(x;σ) [22],
and thus can be much easier to evaluate. Specifically, if D(x;σ) is a denoiser function that minimizes
the expected L2 denoising error for samples drawn from pdata separately for every σ, i.e.,

Ey∼pdataEn∼N (0,σ2I)∥D(y + n;σ)− y∥22, then ∇x log p(x;σ) =
(
D(x;σ)− x

)
/σ2, (2, 3)

where y is a training image and n is noise. In this light, the score function isolates the noise
component from the signal in x, and Eq. 1 amplifies (or diminishes) it over time. Figure 1 illustrates
the behavior of ideal D in practice. The key observation in diffusion models is that D(x;σ) can be
implemented as a neural network Dθ(x;σ) trained according to Eq. 2. Note that Dθ may include
additional pre- and post-processing steps, such as scaling x to an appropriate dynamic range; we will
return to such preconditioning in Section 5.

Time-dependent signal scaling. Some methods (see Appendix C.1) introduce an additional scale
schedule s(t) and consider x = s(t)x̂ to be a scaled version of the original, non-scaled variable x̂.
This changes the time-dependent probability density, and consequently also the ODE solution
trajectories. The resulting ODE is a generalization of Eq. 1:

dx =

[
ṡ(t)

s(t)
x− s(t)2 σ̇(t) σ(t)∇x log p

(
x

s(t)
;σ(t)

)]
dt. (4)

Note that we explicitly undo the scaling of x when evaluating the score function to keep the definition
of p(x;σ) independent of s(t).

Solution by discretization. The ODE to be solved is obtained by substituting Eq. 3 into Eq. 4 to
define the point-wise gradient, and the solution can be found by numerical integration, i.e., taking

3

NFE=8 16 32 64 128 256 512 1024
2
3
5

10

20

50

100

200
FID

35

8 32 128 512 2048 8192
2
3
5
10
20

50
100
200

500
FID

27
8 16 32 64 128 256 512 1024

2

3

5

10

20
FID

79

Original sampler
Our reimplementation
+ Heun & our {ti}
+ Our σ(t) & s(t)

Black-box RK45

(a) Uncond. CIFAR-10, VP ODE (b) Uncond. CIFAR-10, VE ODE (c) Class-cond. ImageNet-64, DDIM

Figure 2: Comparison of deterministic sampling methods using three pre-trained models. For each
curve, the dot indicates the lowest NFE whose FID is within 3% of the lowest observed FID.

finite steps over discrete time intervals. This requires choosing both the integration scheme (e.g.,
Euler or a variant of Runge–Kutta), as well as the discrete sampling times {t0, t1, . . . , tN}. Many
prior works rely on Euler’s method, but we show in Section 3 that a 2nd order solver offers a better
computational tradeoff. For brevity, we do not provide a separate pseudocode for Euler’s method
applied to our ODE here, but it can be extracted from Algorithm 1 by omitting lines 6–8.

Putting it together. Table 1 presents formulas for reproducing deterministic variants of three
earlier methods in our framework. These methods were chosen because they are widely used and
achieve state-of-the-art performance, but also because they were derived from different theoretical
foundations. Some of our formulas appear quite different from the original papers as indirection
and recursion have been removed; see Appendix C for details. The main purpose of this reframing
is to bring into light all the independent components that often appear tangled together in previous
work. In our framework, there are no implicit dependencies between the components — any choices
(within reason) for the individual formulas will, in principle, lead to a functioning model. In other
words, changing one component does not necessitate changes elsewhere in order to, e.g., maintain the
property that the model converges to the data in the limit. In practice, some choices and combinations
will of course work better than others.

3 Improvements to deterministic sampling

Improving the output quality and/or decreasing the computational cost of sampling are common
topics in diffusion model research (e.g., [10, 24, 30, 31, 32, 36, 43, 50, 52, 53, 56]). Our hypothesis
is that the choices related to the sampling process are largely independent of the other components,
such as network architecture and training details. In other words, the training procedure of Dθ should
not dictate σ(t), s(t), and {ti}, nor vice versa; from the viewpoint of the sampler, Dθ is simply a
black box [52, 53]. We test this by evaluating different samplers on three pre-trained models, each
representing a different theoretical framework and model family. We first measure baseline results
for these models using their original sampler implementations, and then bring these samplers into our
unified framework using the formulas in Table 1, followed by our improvements. This allows us to
evaluate different practical choices and propose general improvements to the sampling process that
are applicable to all models.

We evaluate the “DDPM++ cont. (VP)” and “NCSN++ cont. (VE)” models by Song et al. [48]
trained on unconditional CIFAR-10 [28] at 32×32, corresponding to the variance preserving (VP) and
variance exploding (VE) formulations [48], originally inspired by DDPM [16] and SMLD [47]. We
also evaluate the “ADM (dropout)” model by Dhariwal and Nichol [9] trained on class-conditional Im-
ageNet [8] at 64×64, corresponding to the improved DDPM (iDDPM) formulation [36]. This model
was trained using a discrete set of M = 1000 noise levels. Further details are given in Appendix C.

We evaluate the result quality in terms of Fréchet inception distance (FID) [15] computed between
50,000 generated images and all available real images. Figure 2 shows FID as a function of neural
function evaluations (NFE), i.e., how many times Dθ is evaluated to produce a single image. Given
that the sampling process is dominated entirely by the cost of Dθ, improvements in NFE translate
directly to sampling speed. The original deterministic samplers are shown in blue, and the reimple-
mentations of these methods in our unified framework (orange) yield similar but consistently better
results. The differences are explained by certain oversights in the original implementations as well
as our more careful treatment of discrete noise levels in the case of DDIM; see Appendix C. Note
that our reimplementations are fully specified by Algorithm 1 and Table 1, even though the original
codebases are structured very differently from each other.

4

Algorithm 1 Deterministic sampling using Heun’s 2nd order method with arbitrary σ(t) and s(t).
1: procedure HEUNSAMPLER(Dθ(x;σ), σ(t), s(t), ti∈{0,...,N})
2: sample x0 ∼ N

(
0, σ2(t0) s

2(t0) I
)

▷ Generate initial sample at t0
3: for i ∈ {0, . . . , N − 1} do ▷ Solve Eq. 4 over N time steps

4: di ←
(
σ̇(ti)

σ(ti)
+

ṡ(ti)

s(ti)

)
xi −

σ̇(ti)s(ti)

σ(ti)
Dθ

(
xi

s(ti)
;σ(ti)

)
▷ Evaluate dx/dt at ti

5: xi+1 ← xi + (ti+1 − ti)di ▷ Take Euler step from ti to ti+1

6: if σ(ti+1) ̸= 0 then ▷ Apply 2nd order correction unless σ goes to zero

7: d ′
i ←

(
σ̇(ti+1)

σ(ti+1)
+

ṡ(ti+1)

s(ti+1)

)
xi+1 −

σ̇(ti+1)s(ti+1)

σ(ti+1)
Dθ

(
xi+1

s(ti+1)
;σ(ti+1)

)
▷ Eval. dx/dt at ti+1

8: xi+1 ← xi + (ti+1 − ti)
(
1
2
di +

1
2
d ′
i

)
▷ Explicit trapezoidal rule at ti+1

9: return xN ▷ Return noise-free sample at tN

Discretization and higher-order integrators. Solving an ODE numerically is necessarily an
approximation of following the true solution trajectory. At each step, the solver introduces truncation
error that accumulates over the course of N steps. The local error generally scales superlinearly with
respect to step size, and thus increasing N improves the accuracy of the solution.

The commonly used Euler’s method is a first order ODE solver with O(h2) local error with respect
to step size h. Higher-order Runge–Kutta methods [49] scale more favorably but require multiple
evaluations of Dθ per step. Linear multistep methods have also been recently proposed for sampling
diffusion models [30, 56]. Through extensive tests, we have found Heun’s 2nd order method [2]
(a.k.a. improved Euler, trapezoidal rule) — previously explored in the context of diffusion models by
Jolicoeur-Martineau et al. [24] — to provide an excellent tradeoff between truncation error and NFE.
As illustrated in Algorithm 1, it introduces an additional correction step for xi+1 to account for change
in dx/dt between ti and ti+1. This correction leads to O(h3) local error at the cost of one additional
evaluation of Dθ per step. Note that stepping to σ = 0 would result in a division by zero, so we revert
to Euler’s method in this case. We discuss the general family of 2nd order solvers in Appendix D.2.

The time steps {ti} determine how the step sizes and thus truncation errors are distributed between
different noise levels. We provide a detailed analysis in Appendix D.1, concluding that the step size
should decrease monotonically with decreasing σ and it does not need to vary on a per-sample basis.
We adopt a parameterized scheme where the time steps are defined according to a sequence of noise
levels {σi}, i.e., ti = σ−1(σi). We set σi<N = (Ai+B)ρ and select the constants A and B so that
σ0 = σmax and σN−1 = σmin, which gives

σi<N =
(
σmax

1
ρ + i

N−1 (σmin
1
ρ − σmax

1
ρ)
)ρ

and σN = 0. (5)

Here ρ controls how much the steps near σmin are shortened at the expense of longer steps near σmax.
Our analysis in Appendix D.1 shows that setting ρ = 3 nearly equalizes the truncation error at each
step, but that ρ in range of 5 to 10 performs much better for sampling images. This suggests that
errors near σmin have a large impact. We set ρ = 7 for the remainder of this paper.

Results for Heun’s method and Eq. 5 are shown as the green curves in Figure 2. We observe consistent
improvement in all cases: Heun’s method reaches the same FID as Euler’s method with considerably
lower NFE.

Trajectory curvature and noise schedule. The shape of the ODE solution trajectories is defined
by functions σ(t) and s(t). The choice of these functions offers a way to reduce the truncation errors
discussed above, as their magnitude can be expected to scale proportional to the curvature of dx/dt.
We argue that the best choice for these functions is σ(t) = t and s(t) = 1, which is also the choice
made in DDIM [46]. With this choice, the ODE of Eq. 4 simplifies to dx/dt =

(
x−D(x; t)

)
/t and

σ and t become interchangeable.

An immediate consequence is that at any x and t, a single Euler step to t = 0 yields the denoised
image Dθ(x; t). The tangent of the solution trajectory therefore always points towards the denoiser
output. This can be expected to change only slowly with the noise level, which corresponds to largely
linear solution trajectories. The 1D ODE sketch of Figure 3c supports this intuition; the solution
trajectories approach linear at both large and small noise levels, and have substantial curvature in
only a small region in between. The same effect can be seen with real data in Figure 1b, where the

5

0.0 0.2 0.4 0.6 0.8
2

1

0

1

2
x

0 200 400 600
40

20

0

20

40
x

0 5 10 15 20 25
40

20

0

20

40
x

t= t= t=

(a) Variance preserving ODE [48] (b) Variance exploding ODE [48] (c) DDIM [46] / Our ODE

Figure 3: A sketch of ODE curvature in 1D where pdata is two Dirac peaks at x = ±1. Horizontal t
axis is chosen to show σ ∈ [0, 25] in each plot, with insets showing σ ∈ [0, 1] near the data. Example
local gradients are shown with black arrows. (a) Variance preserving ODE of Song et al. [48] has
solution trajectories that flatten out to horizontal lines at large σ. Local gradients start pointing
towards data only at small σ. (b) Variance exploding variant has extreme curvature near data and the
solution trajectories are curved everywhere. (c) With the schedule used by DDIM [46] and us, as
σ increases the solution trajectories approach straight lines that point towards the mean of data. As
σ → 0, the trajectories become linear and point towards the data manifold.

change between different denoiser targets occurs in a relatively narrow σ range. With the advocated
schedule, this corresponds to high ODE curvature being limited to this same range.

The effect of setting σ(t) = t and s(t) = 1 is shown as the red curves in Figure 2. As DDIM already
employs these same choices, the red curve is identical to the green one for ImageNet-64. However,
VP and VE benefit considerably from switching away from their original schedules.

Discussion. The choices that we made in this section to improve deterministic sampling are
summarized in the Sampling part of Table 1. Together, they reduce the NFE needed to reach high-
quality results by a large factor: 7.3× for VP, 300× for VE, and 3.2× for DDIM, corresponding to
the highlighted NFE values in Figure 2. In practice, we can generate 26.3 high-quality CIFAR-10
images per second on a single NVIDIA V100. The consistency of improvements corroborates our
hypothesis that the sampling process is orthogonal to how each model was originally trained. As
further validation, we show results for the adaptive RK45 method [11] using our schedule as the
dashed black curves in Figure 2; the cost of this sophisticated ODE solver outweighs its benefits.

4 Stochastic sampling

Deterministic sampling offers many benefits, e.g., the ability to turn real images into their corre-
sponding latent representations by inverting the ODE. However, it tends to lead to worse output
quality [46, 48] than stochastic sampling that injects fresh noise into the image in each step. Given
that ODEs and SDEs recover the same distributions in theory, what exactly is the role of stochasticity?

Background. The SDEs of Song et al. [48] can be generalized [20, 55] as a sum of the probability
flow ODE of Eq. 1 and a time-varying Langevin diffusion SDE [14] (see Appendix B.5):

dx± = −σ̇(t)σ(t)∇x log p
(
x;σ(t)

)
dt︸ ︷︷ ︸

probability flow ODE (Eq. 1)

± β(t)σ(t)2∇x log p
(
x;σ(t)

)
dt︸ ︷︷ ︸

deterministic noise decay

+
√
2β(t)σ(t) dωt︸ ︷︷ ︸
noise injection︸ ︷︷ ︸

Langevin diffusion SDE

, (6)

where ωt is the standard Wiener process. dx+ and dx− are now separate SDEs for moving forward
and backward in time, related by the time reversal formula of Anderson [1]. The Langevin term can
further be seen as a combination of a deterministic score-based denoising term and a stochastic noise
injection term, whose net noise level contributions cancel out. As such, β(t) effectively expresses the
relative rate at which existing noise is replaced with new noise. The SDEs of Song et al. [48] are
recovered with the choice β(t) = σ̇(t)/σ(t), whereby the score vanishes from the forward SDE.

This perspective reveals why stochasticity is helpful in practice: The implicit Langevin diffusion
drives the sample towards the desired marginal distribution at a given time, actively correcting for
any errors made in earlier sampling steps. On the other hand, approximating the Langevin term

6

Algorithm 2 Our stochastic sampler with σ(t) = t and s(t) = 1.
1: procedure STOCHASTICSAMPLER(Dθ(x;σ), ti∈{0,...,N}, γi∈{0,...,N−1}, Snoise)
2: sample x0 ∼ N

(
0, t20 I

)
3: for i ∈ {0, . . . , N − 1} do ▷ γi =

{
min

(
Schurn
N

,
√
2−1

)
if ti∈[Stmin,Stmax]

0 otherwise4: sample ϵi ∼ N
(
0, S2

noise I
)

5: t̂i ← ti + γiti ▷ Select temporarily increased noise level t̂i
6: x̂i ← xi +

√
t̂2i − t2i ϵi ▷ Add new noise to move from ti to t̂i

7: di ←
(
x̂i −Dθ(x̂i; t̂i)

)
/t̂i ▷ Evaluate dx/dt at t̂i

8: xi+1 ← x̂i + (ti+1 − t̂i)di ▷ Take Euler step from t̂i to ti+1

9: if ti+1 ̸= 0 then
10: d ′

i ←
(
xi+1 −Dθ(xi+1; ti+1)

)
/ti+1 ▷ Apply 2nd order correction

11: xi+1 ← x̂i + (ti+1 − t̂i)
(
1
2
di +

1
2
d ′
i

)
12: return xN

with discrete SDE solver steps introduces error in itself. Previous results [3, 24, 46, 48] suggest that
non-zero β(t) is helpful, but as far as we can tell, the implicit choice for β(t) in Song et al. [48] enjoys
no special properties. Hence, the optimal amount of stochasticity should be determined empirically.

Our stochastic sampler. We propose a stochastic sampler that combines our 2nd order deterministic
ODE integrator with explicit Langevin-like “churn” of adding and removing noise. A pseudocode is
given in Algorithm 2. At each step i, given the sample xi at noise level ti (= σ(ti)), we perform two
sub-steps. First, we add noise to the sample according to a factor γi ≥ 0 to reach a higher noise level
t̂i = ti + γiti. Second, from the increased-noise sample x̂i, we solve the ODE backward from t̂i to
ti+1 with a single step. This yields a sample xi+1 with noise level ti+1, and the iteration continues.
We stress that this is not a general-purpose SDE solver, but a sampling procedure tailored for the
specific problem. Its correctness stems from the alternation of two sub-steps that each maintain the
correct distribution (up to truncation error in the ODE step). The predictor-corrector sampler of Song
et al. [48] has a conceptually similar structure to ours.

To analyze the main difference between our method and Euler–Maruyama, we first note a subtle
discrepancy in the latter when discretizing Eq. 6. One can interpret Euler–Maruyama as first adding
noise and then performing an ODE step, not from the intermediate state after noise injection, but
assuming that x and σ remained at the initial state at the beginning of the iteration step. In our
method, the parameters used to evaluate Dθ on line 7 of Algorithm 2 correspond to the state after
noise injection, whereas an Euler–Maruyama -like method would use xi; ti instead of x̂i; t̂i. In the
limit of ∆t approaching zero there may be no difference between these choices, but the distinction
appears to become significant when pursuing low NFE with large steps.

Practical considerations. Increasing the amount of stochasticity is effective in correcting errors
made by earlier sampling steps, but it has its own drawbacks. We have observed (see Appendix E.1)
that excessive Langevin-like addition and removal of noise results in gradual loss of detail in the
generated images with all datasets and denoiser networks. There is also a drift toward oversaturated
colors at very low and high noise levels. We suspect that practical denoisers induce a slightly non-
conservative vector field in Eq. 3, violating the premises of Langevin diffusion and causing these
detrimental effects. Notably, our experiments with analytical denoisers (such as the one in Figure 1b)
have not shown such degradation.

If the degradation is caused by flaws in Dθ(x;σ), they can only be remedied using heuristic means
during sampling. We address the drift toward oversaturated colors by only enabling stochasticity
within a specific range of noise levels ti ∈ [Stmin, Stmax]. For these noise levels, we define γi =
Schurn/N , where Schurn controls the overall amount of stochasticity. We further clamp γi to never
introduce more new noise than what is already present in the image. Finally, we have found that the
loss of detail can be partially counteracted by setting Snoise slightly above 1 to inflate the standard
deviation for the newly added noise. This suggests that a major component of the hypothesized
non-conservativity of Dθ(x;σ) is a tendency to remove slightly too much noise — most likely due to
regression toward the mean that can be expected to happen with any L2-trained denoiser [29].

Evaluation. Figure 4 shows that our stochastic sampler outperforms previous samplers [24, 36, 48]
by a significant margin, especially at low step counts. Jolicoeur-Martineau et al. [24] use a standard

7

NFE=16 32 64 128 256 512 1024 2048

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2
FID

2.27

Deterministic Stmin,tmax = [0,∞]

Stmin,tmax + Snoise = 1 Optimal settings
Snoise = 1 Original sampler
Jolicoeur-Martineau et al. [24]

16 32 64 128 256 512 1024 2048

2.0

2.5

3.0

3.5

4.0

4.5
FID

2.23

16 32 64 128 256 512 1024 2048

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

FID

1.55

(a) Uncond. CIFAR-10, VP (b) Uncond. CIFAR-10, VE (c) Class-cond. ImageNet-64

Figure 4: Evaluation of our stochastic sampler (Algorithm 2). The purple curve corresponds to
optimal choices for {Schurn, Stmin, Stmax, Snoise}; orange, blue, and green correspond to disabling the
effects of Stmin,tmax and/or Snoise. The red curves show reference results for our deterministic sampler
(Algorithm 1), equivalent to setting Schurn = 0. The dashed black curves correspond to the original
stochastic samplers from previous work: Euler–Maruyama [48] for VP, predictor-corrector [48] for
VE, and iDDPM [36] for ImageNet-64. The dots indicate lowest observed FID.

higher-order adaptive SDE solver [40] and its performance is a good baseline for such solvers in
general. Our sampler has been tailored to the use case by, e.g., performing noise injection and ODE
step sequentially, and it is not adaptive. It is an open question if adaptive solvers can be a net win
over a well-tuned fixed schedule in sampling diffusion models.

Through sampler improvements alone, we are able to bring the ImageNet-64 model that originally
achieved FID 2.07 [9] to 1.55 that is very close to the state-of-the-art; previously, FID 1.48 has been
reported for cascaded diffusion [17], 1.55 for classifier-free guidance [18], and 1.52 for StyleGAN-
XL [44]. While our results showcase the potential gains achievable through sampler improvements,
they also highlight the main shortcoming of stochasticity: For best results, one must make several
heuristic choices — either implicit or explicit — that depend on the specific model. Indeed, we had
to find the optimal values of {Schurn, Stmin, Stmax, Snoise} on a case-by-case basis using grid search
(Appendix E.2). This raises a general concern that using stochastic sampling as the primary means of
evaluating model improvements may inadvertently end up influencing the design choices related to
model architecture and training.

5 Preconditioning and training

There are various known good practices for training neural networks in a supervised fashion. For
example, it is advisable to keep input and output signal magnitudes fixed to, e.g., unit variance, and to
avoid large variation in gradient magnitudes on a per-sample basis [5, 21]. Training a neural network
to model D directly would be far from ideal — for example, as the input x = y +n is a combination
of clean signal y and noise n ∼ N (0, σ2I), its magnitude varies immensely depending on noise
level σ. For this reason, the common practice is to not represent Dθ as a neural network directly, but
instead train a different network Fθ from which Dθ is derived.

Previous methods [36, 46, 48] address the input scaling via a σ-dependent normalization factor and
attempt to precondition the output by training Fθ to predict n scaled to unit variance, from which the
signal is then reconstructed via Dθ(x;σ) = x− σFθ(·). This has the drawback that at large σ, the
network needs to fine-tune its output carefully to cancel out the existing noise n exactly and give the
output at the correct scale; note that any errors made by the network are amplified by a factor of σ.
In this situation, it would seem much easier to predict the expected output D(x;σ) directly. In the
same spirit as previous parameterizations that adaptively mix signal and noise (e.g., [10, 43, 50]),
we propose to precondition the neural network with a σ-dependent skip connection that allows it to
estimate either y or n, or something in between. We thus write Dθ in the following form:

Dθ(x;σ) = cskip(σ) x+ cout(σ) Fθ

(
cin(σ) x; cnoise(σ)

)
, (7)

where Fθ is the neural network to be trained, cskip(σ) modulates the skip connection, cin(σ) and
cout(σ) scale the input and output magnitudes, and cnoise(σ) maps noise level σ into a conditioning in-
put for Fθ. Taking a weighted expectation of Eq. 2 over the noise levels gives the overall training loss
Eσ,y,n

[
λ(σ) ∥D(y + n;σ)− y∥22

]
, where σ ∼ ptrain, y ∼ pdata, and n ∼ N (0, σ2I). The probabil-

ity of sampling a given noise level σ is given by ptrain(σ) and the corresponding weight is given by

8

Table 2: Evaluation of our training improvements. The starting point (config A) is VP & VE using
our deterministic sampler. At the end (configs E,F), VP & VE only differ in the architecture of Fθ.

CIFAR-10 [28] at 32×32 FFHQ [26] 64×64 AFHQv2 [7] 64×64
Conditional Unconditional Unconditional Unconditional

Training configuration VP VE VP VE VP VE VP VE
A Baseline [48] (∗pre-trained) 2.48 3.11 3.01∗ 3.77∗ 3.39 25.95 2.58 18.52
B + Adjust hyperparameters 2.18 2.48 2.51 2.94 3.13 22.53 2.43 23.12
C + Redistribute capacity 2.08 2.52 2.31 2.83 2.78 41.62 2.54 15.04
D + Our preconditioning 2.09 2.64 2.29 3.10 2.94 3.39 2.79 3.81
E + Our loss function 1.88 1.86 2.05 1.99 2.60 2.81 2.29 2.28
F + Non-leaky augmentation 1.79 1.79 1.97 1.98 2.39 2.53 1.96 2.16

NFE 35 35 35 35 79 79 79 79

λ(σ). We can equivalently express this loss with respect to the raw network output Fθ in Eq. 7:

Eσ,y,n

[
λ(σ) cout(σ)

2︸ ︷︷ ︸
effective weight

∥∥Fθ

(
cin(σ) · (y + n); cnoise(σ)

)︸ ︷︷ ︸
network output

− 1
cout(σ)

(
y − cskip(σ) · (y + n)

)︸ ︷︷ ︸
effective training target

∥∥2
2

]
. (8)

This form reveals the effective training target of Fθ, allowing us to determine suitable choices for the
preconditioning functions from first principles. As detailed in Appendix B.6, we derive our choices
shown in Table 1 by requiring network inputs and training targets to have unit variance (cin, cout), and
amplifying errors in Fθ as little as possible (cskip). The formula for cnoise is chosen empirically.

Table 2 shows FID for a series of training setups, evaluated using our deterministic sampler from
Section 3. We start with the baseline training setup of Song et al. [48], which differs considerably
between the VP and VE cases; we provide separate results for each (config A). To obtain a more
meaningful point of comparison, we re-adjust the basic hyperparameters (config B) and improve the
expressive power of the model (config C) by removing the lowest-resolution layers and doubling the
capacity of the highest-resolution layers instead; see Appendix F.3 for further details. We then replace
the original choices of {cin, cout, cnoise, cskip} with our preconditioning (config D), which keeps the
results largely unchanged — except for VE that improves considerably at 64×64 resolution. Instead
of improving FID per se, the main benefit of our preconditioning is that it makes the training more
robust, enabling us to turn our focus on redesigning the loss function without adverse effects.

Loss weighting and sampling. Eq. 8 shows that training Fθ as preconditioned in Eq. 7 incurs
an effective per-sample loss weight of λ(σ)cout(σ)

2. To balance the effective loss weights, we set
λ(σ) = 1/cout(σ)

2, which also equalizes the initial training loss over the entire σ range as shown in
Figure 5a (green curve). Finally, we need to select ptrain(σ), i.e., how to choose noise levels during
training. Inspecting the per-σ loss after training (blue and orange curves) reveals that a significant
reduction is possible only at intermediate noise levels; at very low levels, it is both difficult and
irrelevant to discern the vanishingly small noise component, whereas at high levels the training targets
are always dissimilar from the correct answer that approaches dataset average. Therefore, we target
the training efforts to the relevant range using a simple log-normal distribution for ptrain(σ) as detailed
in Table 1 and illustrated in Figure 5a (red curve).

Table 2 shows that our proposed ptrain and λ (config E) lead to a dramatic improvement in FID
in all cases when used in conjunction with our preconditioning (config D). In concurrent work,
Choi et al. [6] propose a similar scheme to prioritize noise levels that are most relevant w.r.t. forming
the perceptually recognizable content of the image. However, they only consider the choice of λ in
isolation, which results in a smaller overall improvement.

Augmentation regularization. To prevent potential overfitting that often plagues diffusion models
with smaller datasets, we borrow an augmentation pipeline from the GAN literature [25]. The pipeline
consists of various geometric transformations (see Appendix F.2) that we apply to a training image
prior to adding noise. To prevent the augmentations from leaking to the generated images, we provide
the augmentation parameters as a conditioning input to Fθ; during inference we set the them to zero
to guarantee that only non-augmented images are generated. Table 2 shows that data augmentation
provides a consistent improvement (config F) that yields new state-of-the-art FIDs of 1.79 and 1.97
for conditional and unconditional CIFAR-10, beating the previous records of 1.85 [44] and 2.10 [50].

9

σ=0.005 0.02 0.1 0.5 1 2 5 10 20 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

loss
Loss after init CIFAR-10
Distribution of σ FFHQ-64

Schurn=0 10 20 30 40 50 60 70 80 90 100

2.0

2.5

3.0

3.5

4.0

FID
VP, original VP, our model
VE, original VE, our model

Schurn=0 10 20 30 40 50 60 70 80 90 100

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

FID

1.57

1.36

2.66

2.22

Original Our model

(a) Loss & noise distribution (b) Stochasticity on CIFAR-10 (c) Stochasticity on ImageNet-64

Figure 5: (a) Observed initial (green) and final loss per noise level, representative of the the 32×32
(blue) and 64×64 (orange) models considered in this paper. The shaded regions represent the standard
deviation over 10k random samples. Our proposed training sample density is shown by the dashed
red curve. (b) Effect of Schurn on unconditional CIFAR-10 with 256 steps (NFE = 511). For the
original training setup of Song et al. [48], stochastic sampling is highly beneficial (blue, green), while
deterministic sampling (Schurn = 0) leads to relatively poor FID. For our training setup, the situation
is reversed (orange, red); stochastic sampling is not only unnecessary but harmful. (c) Effect of Schurn
on class-conditional ImageNet-64 with 256 steps (NFE = 511). In this more challenging scenario,
stochastic sampling turns out to be useful again. Our training setup improves the results for both
deterministic and stochastic sampling.

Stochastic sampling revisited. Interestingly, the relevance of stochastic sampling appears to
diminish as the model itself improves, as shown in Figure 5b,c. When using our training setup in
CIFAR-10 (Figure 5b), the best results were obtained with deterministic sampling, and any amount
of stochastic sampling was detrimental.

ImageNet-64. As a final experiment, we trained a class-conditional ImageNet-64 model from
scratch using our proposed training improvements. This model achieved a new state-of-the-art FID of
1.36 compared to the previous record of 1.48 [17]. We used the ADM architecture [9] with no changes,
and trained it using our config E with minimal tuning; see Appendix F.3 for details. We did not find
overfitting to be a concern, and thus chose to not employ augmentation regularization. As shown
in Figure 5c, the optimal amount of stochastic sampling was much lower than with the pre-trained
model, but unlike with CIFAR-10, stochastic sampling was clearly better than deterministic sampling.
This suggests that more diverse datasets continue to benefit from stochastic sampling.

6 Conclusions

Our approach of putting diffusion models to a common framework exposes a modular design. This
allows a targeted investigation of individual components, potentially helping to better cover the viable
design space. In our tests this let us simply replace the samplers in various earlier models, drastically
improving the results. For example, in ImageNet-64 our sampler turned an average model (FID 2.07)
to a challenger (1.55) for the previous SOTA model (1.48) [17], and with training improvements
achieved SOTA FID of 1.36. We also obtained new state-of-the-art results on CIFAR-10 while using
only 35 model evaluations, deterministic sampling, and a small network. The current high-resolution
diffusion models rely either on separate super-resolution steps [17, 35, 39], subspace projection [23],
very large networks [9, 48], or hybrid approaches [38, 41, 50] — we believe that our contributions are
orthogonal to these extensions. That said, many of our parameter values may need to be re-adjusted
for higher resolution datasets. Furthermore, we feel that the precise interaction between stochastic
sampling and the training objective remains an interesting question for future work.

Societal impact. Our advances in sample quality can potentially amplify negative societal effects
when used in a large-scale system like DALL·E 2, including types of disinformation or emphasizing
sterotypes and harmful biases [33]. The training and sampling of diffusion models needs a lot of
electricity; our project consumed ∼250MWh on an in-house cluster of NVIDIA V100s.

Acknowledgments. We thank Jaakko Lehtinen, Ming-Yu Liu, Tuomas Kynkäänniemi, Axel Sauer,
Arash Vahdat, and Janne Hellsten for discussions and comments, and Tero Kuosmanen, Samuel
Klenberg, and Janne Hellsten for maintaining our compute infrastructure.

10

References
[1] B. D. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications,

12(3):313–326, 1982.
[2] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-

Algebraic Equations. Society for Industrial and Applied Mathematics, 1998.
[3] F. Bao, C. Li, J. Zhu, and B. Zhang. Analytic-DPM: an analytic estimate of the optimal reverse variance in

diffusion probabilistic models. In Proc. ICLR, 2022.
[4] D. Baranchuk, A. Voynov, I. Rubachev, V. Khrulkov, and A. Babenko. Label-efficient semantic segmenta-

tion with diffusion models. In Proc. ICLR, 2022.
[5] C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, USA, 1995.
[6] J. Choi, J. Lee, C. Shin, S. Kim, H. Kim, and S. Yoon. Perception prioritized training of diffusion models.

In Proc. CVPR, 2022.
[7] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha. StarGAN v2: Diverse image synthesis for multiple domains. In Proc.

CVPR, 2020.
[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image

database. In Proc. CVPR, 2009.
[9] P. Dhariwal and A. Q. Nichol. Diffusion models beat GANs on image synthesis. In Proc. NeurIPS, 2021.

[10] T. Dockhorn, A. Vahdat, and K. Kreis. Score-based generative modeling with critically-damped Langevin
diffusion. In Proc. ICLR, 2022.

[11] J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. Journal of computational
and applied mathematics, 6(1):19–26, 1980.

[12] J. B. J. Fourier, G. Darboux, et al. Théorie analytique de la chaleur, volume 504. Didot Paris, 1822.
[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

Generative adversarial networks. In Proc. NIPS, 2014.
[14] U. Grenander and M. I. Miller. Representations of knowledge in complex systems. Journal of the Royal

Statistical Society: Series B (Methodological), 56(4):549–581, 1994.
[15] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two time-scale

update rule converge to a local Nash equilibrium. In Proc. NIPS, 2017.
[16] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Proc. NeurIPS, 2020.
[17] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans. Cascaded diffusion models for high

fidelity image generation. Journal of Machine Learning Research, 23, 2022.
[18] J. Ho and T. Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep Generative

Models and Downstream Applications, 2021.
[19] J. Ho, T. Salimans, A. A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models. In

Proc. ICLR Workshop on Deep Generative Models for Highly Structured Data, 2022.
[20] C.-W. Huang, J. H. Lim, and A. C. Courville. A variational perspective on diffusion-based generative

models and score matching. In Proc. NeurIPS, 2021.
[21] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao. Normalization techniques in training DNNs:

Methodology, analysis and application. CoRR, abs/2009.12836, 2020.
[22] A. Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine

Learning Research, 6(24):695–709, 2005.
[23] B. Jing, G. Corso, R. Berlinghieri, and T. Jaakkola. Subspace diffusion generative models. In Proc. ECCV,

2022.
[24] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas. Gotta go fast when

generating data with score-based models. CoRR, abs/2105.14080, 2021.
[25] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila. Training generative adversarial

networks with limited data. In Proc. NeurIPS, 2020.
[26] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks.

In Proc. CVPR, 2018.
[27] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro. DiffWave: A versatile diffusion model for audio

synthesis. In Proc. ICLR, 2021.
[28] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of

Toronto, 2009.
[29] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila. Noise2Noise:

Learning image restoration without clean data. In Proc. ICML, 2018.
[30] L. Liu, Y. Ren, Z. Lin, and Z. Zhao. Pseudo numerical methods for diffusion models on manifolds. In

Proc. ICLR, 2022.
[31] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. DPM-Solver: A fast ODE solver for diffusion

probabilistic model sampling in around 10 steps. In Proc. NeurIPS, 2022.
[32] E. Luhman and T. Luhman. Knowledge distillation in iterative generative models for improved sampling

speed. CoRR, abs/2101.02388, 2021.

11

[33] P. Mishkin, L. Ahmad, M. Brundage, G. Krueger, and G. Sastry. DALL·E 2 preview – risks and limitations.
OpenAI, 2022.

[34] E. Nachmani and S. Dovrat. Zero-shot translation using diffusion models. CoRR, abs/2111.01471, 2021.
[35] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and M. Chen. GLIDE:

Towards photorealistic image generation and editing with text-guided diffusion models. In Proc. ICML,
2022.

[36] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Proc. ICML, volume
139, pages 8162–8171, 2021.

[37] V. Popov, I. Vovk, V. Gogoryan, T. Sadekova, and M. Kudinov. Grad-TTS: A diffusion probabilistic model
for text-to-speech. In Proc. ICML, volume 139, pages 8599–8608, 2021.

[38] K. Preechakul, N. Chatthee, S. Wizadwongsa, and S. Suwajanakorn. Diffusion autoencoders: Toward a
meaningful and decodable representation. In Proc. CVPR, 2022.

[39] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image generation
with CLIP latents. Technical report, OpenAI, 2022.

[40] A. J. Roberts. Modify the improved Euler scheme to integrate stochastic differential equations. CoRR,
abs/1210.0933, 2012.

[41] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models. In Proc. CVPR, 2022.

[42] C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho, T. Salimans, D. J. Fleet, and M. Norouzi. Palette:
Image-to-image diffusion models. In Proc. SIGGRAPH, 2022.

[43] T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models. In Proc. ICLR, 2022.
[44] A. Sauer, K. Schwarz, and A. Geiger. StyleGAN-XL: Scaling StyleGAN to large diverse datasets. In Proc.

SIGGRAPH, 2022.
[45] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning using

nonequilibrium thermodynamics. In Proc. ICML, pages 2256–2265, 2015.
[46] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In Proc. ICLR, 2021.
[47] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In Proc.

NeurIPS, 2019.
[48] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative

modeling through stochastic differential equations. In Proc. ICLR, 2021.
[49] E. Süli and D. F. Mayers. An Introduction to Numerical Analysis. Cambridge University Press, 2003.
[50] A. Vahdat, K. Kreis, and J. Kautz. Score-based generative modeling in latent space. In Proc. NeurIPS,

2021.
[51] P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation,

23(7):1661–1674, 2011.
[52] D. Watson, W. Chan, J. Ho, and M. Norouzi. Learning fast samplers for diffusion models by differentiating

through sample quality. In Proc. ICLR, 2022.
[53] D. Watson, J. Ho, M. Norouzi, and W. Chan. Learning to efficiently sample from diffusion probabilistic

models. CoRR, abs/2106.03802, 2021.
[54] J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia, and P. C. Cattin. Diffusion models for implicit image

segmentation ensembles. In Medical Imaging with Deep Learning, 2022.
[55] Q. Zhang and Y. Chen. Diffusion normalizing flow. In Proc. NeurIPS, 2021.
[56] Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator. CoRR,

abs/2204.13902, 2022.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Section 6. The main limitations

of the analysis relate to the set of tested datasets and their limited resolution.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [No] We follow
common application-specific assumptions about the probability distributions, functions
and other components, but do not exhaustively specify them, or consider pathological
corner cases.

(b) Did you include complete proofs of all theoretical results? [No] Our equations and
algorithms build on previously known results, and highlight their practical aspects
through mostly readily verifiable algebraic manipulations (Appendix B). We do not
explicitly present all details of the derivations, and assume that the previous results are
sufficiently rigorously proven in the respective literature.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Our implemen-
tation and pre-trained models are available at https://github.com/NVlabs/edm

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Appendix F.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Shaded regions in Figures 4 and 5.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Section 6.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Appendix F.5.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

https://github.com/NVlabs/edm

	Introduction
	Expressing diffusion models in a common framework
	Improvements to deterministic sampling
	Stochastic sampling
	Preconditioning and training
	Conclusions

