
This is the appendix for “Convergence of piggyback differentiation of nonsmooth iterative solvers”.
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A Reminder on conservative calculus

For the sake of completeness, we recall important definitions and results from [12] on conservative
calculus which are extensively used throughout the paper.

Definitions: We first collect the necessary definitions and details for Equation (4). We then collect
important results from [12], which will be used throughout the paper. Recall from multivariable
calculus that the Jacobian of a differentiable function f : Rn

Ñ Rm is given by

Bf

Bx
:“

»

—–

Bf1
Bx1

. . .
Bf1
Bxn

...
. . .

...
Bfm
Bx1

. . .
Bfm
Bxn

fi

�fl .

Definition 1 (Absolutely continuous curves) A continuous function � : R Ñ Rn is an absolutely
continuous curve if it has a derivative 9�ptq, for almost all t P R, which furthermore satisfies

�ptq ´ �p0q “

tª

0

9�p⌧qd⌧

for all t P R.

The graph of a set-valued mapping D : Rn Ñ Rm is the set graph D :“ tpx, zq : x P Rn
, z P

Dpxqu.

Definition 2 (Closed graphs) A set-valued mapping D : Rn Ñ Rm has closed graph or is graph
closed if graph D is a closed subset of Rn`m or, equivalently, if, for any convergent sequences
pxkqkPN and pzkqkPN with zk P Dpxkq for all k P N, it holds

lim
kÑ8

zk P Dp lim
kÑ8

xkq.
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Definition 3 (Locally bounded set-valued mappings) A set-valued mapping D : Rn Ñ Rm is
locally bounded if for all x P Rn, there exists a neighborhood U of x and M ° 0 such that, for all
u P U , for all y P Dpuq, }y} † M .

We provide an equivalent alternative to Definition Equation (4) see [12, Lemma 2].

Definition 4 (Conservative Jacobians) The set-valued J : Rp Ñ Rmˆp is a conservative Jacobian
if J has a closed graph, is locally bounded and nowhere empty with

ª
t“1

t“0
Jp�ptqq 9�ptqdt “ 0 (15)

for any � : r0, 1s Ñ Rp absolutely continuous with respect to the Lebesgue measure such that
�p0q “ �p1q.

Given such a J , the potential f as in Equation (4) can be reconstructed up to a constant using
integration along absolutely continuous through.

fp�p1qq ´ fp�p0qq “

ª
t“1

t“0
Jp�ptqq 9�ptqdt, (16)

where the value of the integral does not depend on the choice of � provided that the endpoints are
fixed.

First results and examples : We have the following results, see [12, Theorem 1, Corollary 2].

Theorem 3 Let F : Rp
Ñ Rm be locally Lipschitz. Then F is path differentiable if and only if

Jac c
F in (3) is a conservative Jacobian. In this case, setting J : Rp Ñ Rmˆp any conservative

Jacobian for F , we have

• J pxq “ tJac F pxqu for Lebesgue almost all x.

• Jac c
pxq Ä convpJ pxqq for all x.

Example of path differentiable functions include

• Convex or concave functions
• Clarke regular functions
• Prox regular functions

we refer to [46] for details on these classes of functions. Another relevant class is that of semi-
algebraic or more generally definable functions, see [17, 18]. Beyond technical definition, this class
is relevant because it contains the vast majority of operations used in applications, independently
of smoothness. These include: the relu function, the absolute value function, the max-pooling
operation, `1 and `8 norms, any polynomial or piecewise polynomial function such sorting a vector
by increasing coordinates order, the operator norm, the rank function . . . . Furthermore, the class of
semi-algebraic functions is closed under many operations, as for instance:

• usual arithmetic operations `, ˆ, ´, {

• functional composition
• differentiation
• partial minimization
• more broadly, any functional operation which can be described with a first order logical

formula: a boolean formula with quantification on variables only (not sets), see [17].

Conservative Jacobians and calculus: The main reason for the introduction of conservative
Jacobians in [12] is the lack of an efficient differential calculus for Clarke Jacobians (recall (3)). For
example, if f “ | ¨ | and g “ ´| ¨ |, we have

B
c
pf ` gqp0q “ B

c
pt fiÑ 0qp0q “ t0u ‰ r´2, 2s “ B

c
fp0q ` B

c
gp0q.

On the contrary, conservative Jacobians have an appealing calculus.
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Lemma 1 [12, Lemma 5] Let F1 : Rp
fiÑ Rm and F2 : Rm

fiÑ Rl be locally Lipschitz continuous
mappings. Let J1 : Rp Ñ Rmˆp be a conservative mapping for F1 and J2 : Rp Ñ Rlˆm be a
conservative mapping for F2. Then the product mapping J2 ¨ J1 is a conservative mapping for
F2 ˝ F1.

as a consequence, beyond composition, conservative gradients are compatible with basic arithmetic
operations, such as addition. In general conservative gradients and Jacobian provide a variational
meaning to the formal application of the rules of differential calculus to generalized derivatives
arising in nonsmooth analysis, this goes beyond simple arithmetic operations and composition, for
example with implicit differentiation [10].

Optimization: Let D be a conservative gradient, v is called a selection in D if for all x, vpxq P

Dpxq. Selection conservative gradients can be used as surrogate gradients, or subgradients, while
preserving convergence guaranties, examples are given in [12, 11, 10].

B Properties of affine iterations on compact subsets

B.1 Banach–Picard theorem: Proof of Theorem 1

For a compact set, Z we denote by }Z}sup the maximal norm of elements in Z:
}Z}sup “ sup

zPZ
}z}.

In order to prove our fixed point result, we need first the following lemma.

Lemma 2 (Bounding Hausdorff distances) Let X , Y, Z Ä Rp be nonempty compact sets, such
that X Ä Y ` Z and Y Ä X ` Z then

distpX , Yq § }Z}sup.

Proof : The first inclusion says that for any x P X , there is ypxq P Y , zpxq P Z such that
x “ ypxq ` zpxq. We deduce that for any x P X

min
yPY

}x ´ y} “ min
yPY

}ypxq ´ zpxq ´ y} § }zpxq} § max
zPZ

}z}

Therefore, maxxPX minyPY }x ´ y} § maxzPZ }z}. Symmetrically, maxyPY minxPX }x ´ y} §

maxzPZ }z} and the result follows. l
We now prove Theorem 1.

Proof of Theorem 1: Recall that the action of J on matrices is defined in (6) and by A and B the
projections of J on the first p and last l columns respectively, that is A “ tA, DB, rA, Bs P J u and
similarly for B. Note that A is a compact set and that all matrices in A have an operator norm of
at most ⇢. We claim that the restriction of J to compact subsets is a strict contraction in Hausdorff
metric. Indeed, for any X , Y compact subsets of Rpˆm, we have by using Lemma 2 and noting that
J preserves the inclusion,

J pX q Ä J pY ` distpX , YqBq Ä J pYq ` distpX , YqAB Ä J pYq ` ⇢distpX , YqB
J pYq Ä J pX ` distpX , YqBq Ä J pX q ` distpX , YqAB Ä J pX q ` ⇢distpX , YqB

where the last inclusion follows because AB Ä ⇢B, where B is the unit ball (for the Euclidean norm)
of p ˆ m matrices, since by assumption all square matrices in A have operator norm at most ⇢. We
deduce that distpJ pX q, J pYqq § ⇢distpX , Yq using Lemma 2, that is the action of J on subsets of
p ˆ m matrices is ⇢ Lipschitz with respect to Hausdorff metric.

Let us show that pXkqkPN remains in a bounded set, we have for all k

}Xk`1}sup § }AXk ` B}sup § }AXk}sup ` }B}sup § ⇢}Xk}sup ` }B}sup,

which entails

}Xk`1}sup ´
}B}sup

1 ´ ⇢
§ ⇢

ˆ
}Xk}sup ´

}B}sup

1 ´ ⇢

˙
.

We distinguish two cases
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• if }Xk}sup °
}B}sup

1´⇢
, then }Xk`1}sup gets either closer to }B}sup

1´⇢
or below it, in particular it

decreases.
• if }Xk}sup §

}B}sup

1´⇢
then }Xk`1}sup §

}B}sup
1´⇢

and we remain below this threshold for all k.

All in all, for all k P N,

}Xk`1}sup § max

"
}Xk}sup,

}B}sup

1 ´ ⇢

*
§ . . . § max

"
}X0}sup,

}B}sup

1 ´ ⇢

*
,

and lim sup
k

}Xk}sup §
}B}sup

1´⇢
.

We have shown that the sequence remains in a bounded set so that the recursion actually takes place
in a compact set C Ä Rpˆm which contains all the iterates in its interior, we consider the restriction
of the topology to this subset. By [4, Theorem 3.85], the closed subsets form a complete metric space.
The result is an application of Banach-Picard theorem (for example [47, Section 10.3]). In particular
(see [4, Theorem 3.88]), L is the unique fixed point of J and it is closed and bounded, hence compact.
Note that we can consider larger compact sets to take into account larger initializations, the fixed
point remains the same. Indeed for a larger compact C̃ containing C, L is in the interior of C and is
still a fixed point of J when the topology is restricted to C̃ and this fixed point must be unique. l

B.2 Properties of the fixed-set mapping

We now equip the set of matrices Rpˆppˆmq with the norm }rA, Bs}p,m “ maxt}A}op, }B}u

where A P Rpˆp and B P Rpˆm. The set of compact subsets of Rpˆpp`mq is endowed with the
corresponding Hausdorff distance.

Definition 5 (Affine contraction sets) For ⇢ P r0, 1q, we denote by C⇢, the set of compact subsets of
matrices in Rpˆpp`mq such that for all S Ä Rpˆpp`mq, S Ä C⇢ and all M P S , we have }A}op § ⇢

where A P Rpˆp is the matrix made of the first p columns of M .

Given J P C⇢, we denote by fixpJ q the unique fixed point of the corresponding iteration mapping as
defined in Theorem 1. We have the following

Proposition 5 (Monotonicity of the fixed set) Given J P C⇢ and J̃ P C⇢ (as in Definition 5), such
that J Ä J̃ , we have

fixpJ q Ä fixpJ̃ q.

Proof : Setting X0 “ fixpJ q, we have
X0 “ J pX0q Ä J̃ pX0q,

and the result follows by the same argument as in the last paragraph of the proof of Theorem 1. l

Proposition 6 (The fixed-set mapping is locally Lipschitz continuous) The function fix is locally
Lipschitz continuous on C⇢ (as in Definition 5). More precisely, for any J0 P C⇢ and J P C⇢,

dist pfixpJ0q, fixpJ qq §

ˆ
1

1 ´ ⇢
`

suprA0,B0sPJ0
}B0}

p1 ´ ⇢q2

˙
distpJ0, J q

Proof : Given J0 P C⇢ and J P C⇢, we remark that J Ä J0 ` distpJ0, J qBpm, where dist and
Bpm are considered with respect to the norm } ¨ }pm. This means

J Ä trA0, B0s ` rC, Ds, rA0, B0s P J0, }rC, Ds}p,m § distpJ0, J qu

We have
J pfixpJ0qq “ tAX ` B, rA, Bs P J , X P fixpJ0qu

Ä tA0X ` B0, rA0, B0s P J0, X P fixpJ0qu

` tCX ` D, }rC, Ds}mp § distpJ0, J q, X P fixpJ0qu

“ J0pfixpJ0qq ` tCX ` D, }rC, Ds}mp § distpJ0, J q, X P fixpJ0qu

“ fixpJ0q ` tCX ` D, }rC, Ds}mp § distpJ0, J q, X P fixpJ0qu .
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This sets one inclusion. Similarly, we have

fixpJ0q “ J0pfixpJ0qq

Ä J pfixpJ0qq ` tCX ` D, }rC, Ds}mp § distpJ0, J q, X P fixpJ0qu .

Recall that }rC, Ds}mp “ maxt}C}op, }D}u, we have for any rC, Ds with }rC, Ds}mp §

distpJ0, J q and X P fixpJ0q,

}CX ` D} § }C}op}fixpJ0q}sup ` }D} § distpJ0, J qp1 ` }fixpJ0q}supq.

We deduce using Lemma 2 that distpfixpJ0q, J pfixpJ0qqq § distpJ0, J qp1` }fixpJ0q}supq. Setting
X0 “ fixpJ0q, invoking Theorem 1 with J and k “ 0, we have

distpfixpJ0q, fixpJ qq §
distpJ0, J qp1 ` }fixpJ0q}supq

1 ´ ⇢

§ distpJ0, J q
p1 ´ ⇢` suprA0,B0sPJ0

}B0}q

p1 ´ ⇢q2
.

l

B.3 Perturbed iterations

The following proposition shows that the linear convergence property is actually stable to pertur-
bations. It will be useful to show that all potential limits of unrolling algorithmic differentiation
recursions are contained in the corresponding fixed point set.

Proposition 7 (Perturbed set sequences) Let ⇢ † 1 and ✏ ° 0 such that ⇢ ` ✏ † 1. Let pJkqkPN
be a sequence in C⇢`✏ and J̄ P C⇢ (as in Definition 5). Assume that for all k P N

gap
pm

pJk, J̄ q § ✏

or in other words Jk Ä J̄ ` ✏Bpm where Bpm is the unit ball of the norm } ¨ }pm. Then the recursion
on compact sets

Xk`1 “ JkpXkq

satisfies for all k P N
gappXk, fixpJ qq

§ p⇢` ✏q
k

p1 ` ⇢` ✏q}X0}sup ` suprA,BsPJ̄ }B} ` ✏

1 ´ ⇢´ ✏
` ✏

p1 ´ ⇢` suprA,BsPJ̄ }B}q

p1 ´ ⇢q2
.

In other words, Xk Ä fixpJ̄ q ` Cp⇢, ✏, kqB where Cp⇢, ✏, kq is the constant above.

Proof : Set J✏ :“ tJ ` rC, Ds, J P J̄ , }rC, Ds}mp § ✏u. Denote by pX̃kqkPN the sequence
satisfying the recursion, X̃k`1 “ J✏pX̃kq with X0 “ X̃0. We have

X1 “ J̄ pX0q Ä J✏pX0q “ X̃1

and by recursion Xk Ä X̃k for all k P N. By Theorem 1, we have

distpX̃k, fixpJ✏qq § p⇢` ✏q
k
distpX0, J✏pX0qq

1 ´ ⇢´ ✏
.

We deduce from Proposition 6 that for all k P N,

distpX̃k, fixpJ̄ qq

§ distpX̃k, fixpJ✏qq ` distpfixpJ✏q, fixpJ̄ qq

§ p⇢` ✏q
k
distpX0, J✏pX0qq

1 ´ ⇢´ ✏
`

p1 ´ ⇢` suprA,BsPJ̄ }B}q

p1 ´ ⇢q2
distpJ✏, J̄ q

§ p⇢` ✏q
k

p1 ` ⇢` ✏q}X0}sup ` suprA,BsPJ̄ }B} ` ✏

1 ´ ⇢´ ✏
`

p1 ´ ⇢` suprA,BsPJ̄ }B}q

p1 ´ ⇢q2
✏.
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And the result follows because
max
XPXk

min
LPfixpJ̄ q

}X ´ L} § max
XPX̃k

min
LPfixpJ̄ q

}X ´ L} § distpX̃k, fixpJ̄ qq.

l
This allows to obtain explicit convergence results as follows

Corollary 4 (Limit of iterations with vanishing perturbations) Let ⇢ † 1 and J̄ P C⇢ (as in
Definition 5). Let pJkqkPN be a sequence of matrices such that for all k P N

gap
pm

pJk, J̄ q § ✏k

where p✏kqkPN is a positive sequence such that there exists a constant a ° 0 such that ✏k § a⇢
k for

all k P N. Then for the recursion on compact sets of p ˆ m matrices
Xk`1 “ JkpXkq

There are constants C, c ° 0 such that for all k P N
gappXk, fixpJ qq § Ce

´ck
.

Furthermore, one can take c “ log
´

1?
⇢`✏

¯
for arbitrary ✏ ° 0.

Proof : We consider K P N such that ✏k § ✏ for all k P N where ✏ ` ⇢ † 1. Without loss of
generality, we may assume that K “ 0. Using the same notations as in the proof of Proposition 7,
we have Xk Ä X̃k for all k P N. Furthermore, it follows from the same arguments as in the proof of
Theorem 1 that

}Xk}sup § }X̃k}sup § M, (17)
for a constant M ° 0. Now choose k P N, applying Proposition 7 shifting the initialization 0 to k,
we have for all m P N

max
XPXk`m

min
LPfixpJ q

}X ´ L}

§ p⇢` ✏kq
m

p1 ` ⇢` ✏kq}Xk}sup ` suprA,BsPJ̄ }B} ` ✏k

1 ´ ⇢´ ✏k
` ✏k

p1 ´ ⇢` suprA,BsPJ̄ }B}q

p1 ´ ⇢q2

§ p⇢` ✏q
m

p1 ` ⇢` ✏qM ` suprA,BsPJ̄ }B} ` ✏

1 ´ ⇢´ ✏
` a⇢

k
p1 ´ ⇢` suprA,BsPJ̄ }B}q

p1 ´ ⇢q2
,

where we have used the bound (17) and the fact that ✏k § ✏ and ✏k § a⇢
k. Setting u “

p1`⇢`✏qM`suprA,BsPJ̄ }B}`✏

1´⇢´✏
and v “ a

p1´⇢`suprA,BsPJ̄ }B}q
p1´⇢q2 we have

max
XPX2k

min
LPfixpJ q

}X ´ L} § up⇢` ✏q
k

` v⇢
k

§ pu ` vqp⇢` ✏q
2k{2

§
u ` v

p⇢` ✏q1{2 p⇢` ✏q
2k{2

,

max
XPX2k`1

min
LPfixpJ q

}X ´ L} § up⇢` ✏q
k`1

` v⇢
k

§
u ` v

p⇢` ✏q1{2 p⇢` ✏q
p2k`1q{2

.

Since k was arbitrary, this proves the desired result. l

C Existence of a conservative Jacobian for autodiff

C.1 Regularity of J
pb
x̄

We recall the main notations and elements of Assumption 1. We assume that F is locally Lipschitz,
path differentiable, and denote by JF : Rp`m Ñ Rpˆpp`mq a conservative Jacobian for F . Now
assume that any pair rA, Bs P JF px, ✓q is such that the operator norm of A is at most ⇢ † 1, that is
for all x and ✓, JF px, ✓q P C⇢ (as in Definition 5). Define the following set-valued map

J
pb
x̄ : ✓ Ñ fix rJF px̄p✓q, ✓qs .

Here, x̄p✓q “ fixpF✓q is the unique fixed point of the algorithmic recursion, so that we actually have

J
pb
x̄ : ✓ Ñ fix rJF pfixpF✓q, ✓qs .

We have the following
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Lemma 3 (Regularity of J
pb
x̄ ) The mapping J

pb
x̄ is nonempty valued, locally bounded and has a

closed graph.

Proof : The fact that J
pb
x̄ is locally bounded and nonempty valued comes from the fact that JF is

locally bounded with nonempty values and x̄ is locally Lipschitz combined with Theorem 1.

By local Lipschitz continuity of x̄ and the fact that JF has a closed graph, the set-valued map
✓ Ñ JF px̄p✓q, ✓q also has a closed graph. By continuity of fixpJ q with respect to the Hausdorff
distance, see Proposition 6, J

pb
x̄ has a closed graph. l

C.2 Proof of Theorem 2

Proof : Following Remark 3, we consider

J
imp
x̄ : ✓ Ñ

 
pI ´ Aq

´1
B, rA, Bs P JF px̄p✓q, ✓q

(
,

a conservative Jacobian for x̄ and L0 “ J
imp
x̄ . Now, define by recursion for all k P N

Lk`1 : ✓ Ñ JF px̄p✓q, ✓qpLkp✓qq.

Recall that this means that for all ✓ P Rm and k P N

Lk`1p✓q “ tAL ` B, rA, Bs P JF px̄p✓q, ✓q, L P Lkp✓qu.

Since F px̄p✓q, ✓q “ x̄p✓q for all ✓, JF is conservative for F and L0 is conservative for x̄, we have by
induction that for all k P N, Lk is conservative for x̄.

Fix l : Rm
Ñ Rm an arbitrary Borel measurable selection in J

pb
x̄ , that is lp✓q P J

pb
x̄ p✓q for all ✓ P Rm.

Such a selection exist by [4, Theorem 18.20] because J
pb
x̄ has a closed graph by Lemma 3. Consider

for all k P N, a measurable selection

lk : ✓ Ñ arg min
zPLkp✓q

}z ´ lp✓q}.

The function pz, ✓q Ñ }z ´ lp✓q} is Caratheodory (continuous in z, measurable in ✓), so such a
selection exists (Aliprantis Theorem 18.19). By Theorem 1, we have that distpLkp✓q, J

pb
x̄ p✓qq tends

to 0 as k grows, for all ✓ P Rm, where the convergence is in Hausdorff distance. Actually since all
set-valued objects are locally bounded, the convergence occurs uniformly on every compact. This
implies in particular that lk converges pointwise to l.

Fix an absolutely continuous path � : r0, 1s Ñ Rm. We have for all k P N, by conservativity,

x̄p�p1qq ´ x̄p�p0qq “

ª 1

0
lkp�ptqq 9�ptqdt.

Furthermore, lk˝� is measurable, converges pointwise to l˝� and lk˝� can be uniformly bounded, let
K be such a bound. The integrable function g : t fiÑ K} 9�ptq} dominates the integrand and lk ˝ � ˆ 9�
converges pointwise to l ˝ � ˆ 9�. By the dominated convergence theorem (see [47, Section 4.4] ), we
have

x̄p�p1qq ´ x̄p�p0qq “

ª 1

0
lp�ptqq 9�ptqdt.

L has a Castaing representation with a dense sequence of measurable selection [4, Theorem 18.14].
Since l was an arbitrary measurable selection in L, conservativity of L follows by [38, Lemma 8]. l

C.3 Proof of Corollary 1

Proof : Fix ✓. We have xkp✓q Ñ x̄p✓q, so that for any ✏ ° 0, there exists K P N such that
JF pxkp✓q, ✓q Ä JF px̄p✓q, ✓q ` ✏B for all k • K. The result is then a consequence of Proposition
7, letting ✏ Ñ 0. The last part is due to the conservativity of J

pb
x̄ which must be a singleton almost

everywhere, equal to the classical Jacobian. l
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C.4 Proof of Corollary 3

Proof : Define pLkqkPN, a sequence of conservative Jacobians for x̄ as in the begining of the proof
of Theorem 2 in Appendix C.2. By [12, Theorem 1], for each k P N, there is a full measure set
Sk Ä Rm such that Lkp✓q “

 Bx̄
B✓ p✓q

(
for all ✓ P Sk. Similarly, there exists a full measure set

S´1 Ä Rm such that J
pb
x̄ p✓q “

 Bx̄
B✓ p✓q

(
for all ✓ P S´1. Setting S “ X

`8
i“´1Si, S has full measure

and for all ✓ P S and for all k P N,

J
pb
x̄ p✓q “

"
Bx̄

B✓
p✓q

*
Lkp✓q “

"
Bx̄

B✓
p✓q

*
.

Following the proof of Theorem 2 in Appendix C.2, Lk converges to J
pb
x̄ in Hausdorff distance, which

means that convergence occurs in the classical sense since all sets in the sequence are singletons. l

C.5 Proof of Proposition 1

Proof : Under the setting of Corollary 2, for almost all ✓ P Rm, recursion (PB) or (5) reduce to the
following, and all k P N

Jk`1 “ AkJk ` Bk (18)

where Jk “
Bxk
B✓ , Ak “

BF
Bx pxk, ✓q and Bk “

BF
B✓ pxk, ✓q are classical Jacobians and Jk converges to

the classical Jacobian of Bx̄
B✓ p✓q. Fix such a ✓ P Rm and k P N, k • 1. With the notation of Algorithm

1, for the forward mode, multiplying (18) on the right by 9✓, we have for all i P 1, . . . k

Ji
9✓ “ Ai´1Ji´1

9✓ ` Bi´1
9✓.

Setting 9xi “ Ji
9✓, this is exactly the recursion implemented by Algorithm 1 in forward mode.

Corollary 2 and the result follows from convergence of Jk.

As for the backward mode a simple recursion shows that

Jk “ Ak´1Ak´2 . . . A0J0

` Ak´1Ak´2 . . . A1B0

` . . .

` Ak´1Ak´2 . . . AiBi´1

` . . .

` Ak´1Bk´2

` Bk´1. (19)

Setting B´1 “ J0, we may rewrite equivalently,

Jk “ Bk´1 `

k´1ÿ

i“0

˜
iπ

j“k´1

Aj

¸
Bi´1. (20)

Transposing and multiplying on the right by w̄k, we have

J
T

k
w̄k “ B

T

k´1w̄k `

k´1ÿ

i“0

B
T

i´1

˜
k´1π

j“i

A
T

j

¸
w̄k. (21)

We set for all i “ 0, . . . , k ´ 1,

w̄i “

k´1π

j“i

A
T

j
w̄k. (22)

We have the backward recursion relation, for i “ k, . . . , 1

w̄i´1 “ A
T

i´1w̄i,
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which is the recursion implemented by Algorithm 1 in reverse mode. Combining (21) and (22), we
obtain

J
T

k
w̄k “ B

T

k´1w̄k `

k´1ÿ

i“0

Bi´1w̄i “

kÿ

i“1

B
T

i´1w̄i ` J
T

0 w̄0,

which is the quantity accumulated in ✓̄k in Algorithm 1. This proves that ✓̄T
k

returned by the backward
mode is indeed equal to w̄

T

k
Jk and the convergence follows from convergence of both w̄k and Jk as

k Ñ 8. l

D Connection with implicit differentiation

Recall that for all ✓

J
imp
x̄ p✓q “

 
pI ´ Aq

´1
B, rA, Bs P JF px̄p✓q, ✓q

(

“ tM, DrA, Bs P JF px̄p✓q, ✓q M “ AM ` Bu .

Setting J “ JF px̄p✓q, ✓q, we have therefore that J
imp
x̄ p✓q Ä J pJ

imp
x̄ p✓qq. By recursion, for all k P N,

J
imp
x̄ p✓q Ä J k

pJ
imp
x̄ p✓qq and passing to the limit using Theorem 1, J

imp
x̄ p✓q Ä fixpJ q “ J

pb
x̄ p✓q. In

particular, if F is continuously differentiable, then (PB) with classical Jacobians converges towards a
classical implicit derivative.

However, the inclusion J
imp
x̄ p✓q Ä J

pb
x̄ p✓q may be strict as the following example shows.

Example 1 Set J “ trA, Bs, A P A, B P Bu, where

A “

"ˆ
�`1
4 0
0 2´�

4

˙
, � P r0, 1s

*
B “

"ˆ
1
1

˙*
.

We set

T “ pI ´ Aq
´1B “

"ˆ 4
3´�
4

2`�

˙
, � P r0, 1s

*
.

As already observed, we have T Ä AT ` B, but the inclusion is strict. Therefore T is not a fixed
point of the affine iteration and it is only contained in it.

Indeed, we have
ˆ

1`1
4 0
0 2´1

4

˙ ˆ 4
3´0
4

2`0

˙
`

ˆ
1
1

˙
“

ˆ
5
3
3
2

˙
P AT ` B.

However solving for �
ˆ

5
3
3
2

˙
“

ˆ 4
3´�
4

2`�

˙
,

the first equation requires � “
3
5 while the second requires � “

2
3 which shows that the given vector

does not belong to T .

E Semialgebraic Lipschitz gradient selection functions

E.1 Lipschitz property of conservative Jacobians of selections

Lemma 4 (Conservative Jacobians of selections are Lipschitz-like) Let F be continuous, semi-
algebraic with Lipschitz gradient selection. Then for each x0 P Rp, there exists R ° 0 such
that

gappJ
s

F
pxq, J

s

F
px0qq § L}x ´ x0}, @x, }x ´ x0} § R,

where L is the Lipschitz constant given by the selection structure of F .
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Proof : Fix x0 P Rp and consider the function g which associates to r ° 0 a subset of t1, . . . , mu

defined as
gprq “ Y}x´x0}§r Ipxq.

The function g is semialgebraic and therefore it admits a limit as r Ñ 0. The function g is actually
piecewise constant so that the limit is reached for some R ° 0 by semialgebraicity. This means that
there is R ° 0 and an index set I Ä t1, . . . , mu such that Ipxq Ä I for all x such that }x ´ x0} § R.
Furthermore, for each i P I and all 0 † r § R, there exists x such that }x ´ x0} § r and
Fipxq “ F pxq. By continuity of each component Fi, we have for each i P I , Fipx0q “ F px0q, that
is I Ä Ipx0q.

We deduce that for each x such that }x ´ x0} § R and i P Ipxq, we have

min
V PJs

F px0q

››››V ´
BFi

Bx
pxq

›››› §

››››
BFi

Bx
px0q ´

BFi

Bx
pxq

›››› § L}x ´ x0}.

Fix any Z P J
s

F
pxq, it is a convex combination of BFi

Bx pxq for i P Ipxq so by convexity of the distance,
we have

min
V PJs

F px0q
}V ´ Z} § L}x ´ x0},

which proves the result since this allows to bound the supremum over Z P J
s

F
pxq by the desired

quantity. l

E.2 Proof of Corollary 3

Proof : This is a consequence of linear convergence of the recursion xk`1 “ F pxk, ✓q combined
with Lemma 4 and Corollary 4. l

F Proximal splitting algortihms in convex optimization

F.1 Proof of Proposition 2

Proof : We consider the gradient step operation H↵ : px, ✓q fiÑ x ´ ↵rxfpx, ✓q. We have for all
px, ✓q,

F↵px, ✓q “ G↵pH↵px, ✓q, ✓q.

By Assumption 2, both G↵ and H↵ are 1-Lipschitz in x for fixed ✓ and we are going to show that if
either f or g satisfy the strong convexity condition, the corresponding map is a strict contraction in x

for fixed ✓. Furthermore, the mapping Jac c

H↵
: px, ✓q Ñ

!
rI ´ ↵A, ´↵Bs, rA, Bs P J

2
f

px, ✓q

)
is

the Clarke Jacobian of H↵. By Assumption 2, all the functions are path-differentiable [12] and one
may obtain a conservative jacobian for F by applying differential calculus rules [12]. We set for all
px, ✓q a conservative Jacobian for F↵,

JF↵px, ✓q “
 

rCpI ´ ↵Aq, ´↵CB ` Ds, rA, Bs P J
2
f

px, ✓q, rC, Ds P JG↵px ´ ↵rxfpx, ✓q, ✓q
(

(23)
Whenever rxf is differentiable at px, ✓q, the first p columns of its Jacobian form a symmetric positive
definite square matrix with eigenvalues at most L. This implies that the matrix pI ´ ↵Aq in (23)
is symmetirc with eignevalues in r´1, 1s and strictly greater than ´1. Similarly, whenever G↵ is
differentiable, since it is 1-Lipschitz in x for fixed ✓ and the gradient of a C

1 function, the first p

columns of its Jacobian form a symmetric positive definite square matrix with eigenvalues at most 1.
This implies that the matrix C in (23) is symmetric with eignevalues in r0, 1s. In addition, we have
the following;

• Assume that for all ✓, f is µ-strongly convex. In this case, similarly as above the matrix
pI ´ ↵Aq in (23) has eigenvalue in p´1, 1q for all px, ✓q.

• Assume that for all ✓, g is µ-strongly convex. In this case, similarly as above the matrix C

in (23) has eigenvalue in r0, 1{p1 ` ↵µqs for all px, ✓q [6, Proposition 23.13].

In both cases, the product CpI ´ ↵Aq in (23) has operator norm strictly smaller than 1 and Assump-
tion 1 holds. l
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F.2 Proof of Proposition 3

Proof : From [6, Proposition 23.11], both R↵f and R↵g are 1-Lipschitz. We are going to show that
R↵f is a strict contraction and the result will follow. Since f is C

1,1 in x, we have for all ✓ P Rm,

z “ prox
↵fp¨,✓qpxq ô z ` ↵rxfpz, ✓q ´ x “ 0

Set H↵pz, x, ✓q “ z ` ↵rxfpz, ✓q ´ x, we have that

Jac c

H↵
pz, x, ✓q Ñ trI ` ↵A, ´I, ↵Bsu (24)

is the Clarke Jacobian of H↵. Similarly as in Appendix F.1, by strong convexity of f , the matrix
I ` ↵A in (24) is symmetric with eigenvalues strictly greater than 0 and smaller than 1. By implicit
differential calculus rule in [10, Theorem 2], the mapping

Jprox↵fp¨,✓q px, ✓q Ñ
!

rpI ` ↵Aq
´1

, ´↵pI ` ↵Aq
´1

Bs, rA, Bs P J
2
f

pprox
↵fp¨,✓q, ✓q

)
(25)

is conservative for px, ✓q fiÑ prox
↵fp¨,✓q. Furthermore, the matrix pI ` ↵Aq

´1 in (25) is symmetric
eigenvalues in p0, 1q. This entails that the mapping

JR↵fp¨,✓q px, ✓q Ñ
!

r2pI ` ↵Aq
´1

´ I, ´2↵pI ` ↵Aq
´1

B ´ Is, rA, Bs P J
2
f

pprox
↵fp¨,✓q, ✓q

)

(26)

is conservative for R↵fp¨,✓q and the matrix 2pI `↵Aq
´1

´I is symmetric with eigenvalues in p´1, 1q.

Similarly, the mapping

JR↵gp¨,✓q px, ✓q Ñ
!

r2C ´ I, 2D ´ Is, rC, Ds P Jprox↵gpx,✓q

)
(27)

is the Clarke Jacobian of R↵gp¨,✓q and the matrix 2C ´ I in (27) is symmetric with eigenvalues
in r´1, 1s. One may combine JR↵fp¨,✓q and JR↵g¨,✓q , using differential calculus rule to obtain a
conservative Jacobian JF↵ for F↵, such that for all px, ✓q and rE, F s P JF↵px, ✓q, the square matrix
E is of the form I

2 ` ppI ` ↵Aq
´1

´ Iqp2C ´ Iq where A is from (26) and C is from (27). Such a
matrix E has operator norm strictly smaller than 1 which is Assumption 1. l

F.3 Equivalence between ADMM and dual Douglas–Rachford

We need the following lemma.

Lemma 5 Let F, G two convex, lower semicontinuous and closed functions and h defined by

hpxq “ F
˚

p´A
J
xq ` G

˚
pxq.

Then, h is convex, lower semicontinuous, closed, and

prox
↵h

pxq “ x ` ↵pAû ´ v̂q (28)

where
pû, v̂q P arg min

u,v

!
F puq ` Gpvq ` x

J
pAu ´ vq `

↵

2
}Au ´ v}

2
2

)
.

The material contained in this section is already known in the litterature accross several papers and
lecture notes, but for the sake of completeness, we include a full derivation of the equivalence.

In this appendix, we drop the dependency to the variable ✓ since we are only concerned on the
behaviour with respect to x. We recall that the iteration of Douglas–Rachford are defined by an
initialization y0 and the recursion

xk`1 “ prox
f

pykq

yk`1 “ yk ` prox
g
p2xk`1 ´ ykq ´ xk`1.

(29)

By denoting x̃k “ xk`1 and ỹk “ yk, we can rewrite the updates of Douglas–Rachford (given x̃0

and ỹ0) as

ỹk`1 “ ỹk ` prox
g
p2x̃k ´ ỹkq ´ x̃k.

x̃k`1 “ prox
f

pỹk`1q
(30)
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Introducing the variable r̂ “ prox
g
p2x̂ ´ ŷq, this is also equivalent to

r̂k`1 “ prox
g
p2x̂k ´ ŷkq

x̂k`1 “ prox
f

pŷk ` r̂k`1 ´ x̂kq

ŷk`1 “ ŷk ` r̂k`1 ´ x̂k

(31)

Using the change of variable ŵk “ x̂k ´ ŷk, we have

r̂k`1 “ prox
g
px̂k ` ŵkq

x̂k`1 “ prox
f

pr̂k`1 ´ ŵkq

ŵk`1 “ ŵk ` x̂k`1 ´ r̂k`1.

(32)

This formulation will be convenient to show how to retrieve the equations of ADMM (13).

The dual problem of (12) is given by (14)

max
x

´fpxq ´ gpxq. (33)

where fpxq “ �
‹
p´Axq ` c

J
x and gpxq “  p´Bxq

We consider the update rules given by (32), i.e.,

r̂ “ prox
↵g

px ` wq (34)
x̂ “ prox

↵f
pr̂ ´ wq (35)

ŵ “ w ` x̂ ´ r̂. (36)

Applying Lemma 5 to F “ � and G “ ◆c, we rewrite (34) by

r̂ “ x ` w ` ↵pAû ´ cq

where
û “ arg min

u

!
�pxq ` x

J
pAu ´ vq `

↵

2
}Au ´ c ` w{↵}

2
2

)
.

Using the same lemma to F “  and G “ 0, we rewrite (35) by

x̂ “ x ` ↵pAû ` Bv̂ ´ cq

where
v̂ “ arg min

v

!
 pvq ` x

J
Bv `

↵

2
}Aû ` Bv ´ c

)
.

Finaly, combining the expression of r̂ and x̂, we obtain

ŵ “ ↵Bv̂.

G Inertial methods

Let us first recall notations from Section 5. Consider a function f : Rp
ˆ Rm

Ñ R, and � ° 0,
for simplicity, when the second argument is fixed we write f✓ : x fiÑ fpx, ✓q. Set for all x, y, ✓,
F px, y, ✓q “ px ´ rf✓pxq ` �px ´ yq, xq, consider the Heavy-Ball algorithm pxk`1, yk`1q “

F pxk, yk, ✓q for k P N. If f✓ is µ-strongly convex with L-Lipschitz gradient, then, choosing ↵ “ 1{L

and � †
1
2

ˆ
µ

2L `

b
µ2

4L2 ` 2

˙
, the algorithm will converge globally at a linear rate to the unique

solution,

G.1 Failure of Forward differentiation for C
1,1 objectives

The Jacobian of F for the Heavy-Ball agorithm (in x, y) is of the form

JacF px, y, ✓q “

ˆ
pI ´ ↵r2

f✓pxqq ` �I ´�I

I 0

˙
, (37)

when f is C
2. If f is C

1,1, then the Hessian can be replaced by a set-valued conservative Jacobian of
the gradient: Jrf✓ .
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Proof of Proposition 4:
Recall that the function f : R2

Ñ R is given by

f : px, ✓q fiÑ

#
x
2

2 if x • 0
x
2

8 if x † 0.

We have f
1
pxq “ x for t • 0 and f

1
pxq “

x

4 for t † 0, therefore, f
1 is 1-Lipschitz. The Clarke

subdifferential of f
1 is t

1
4u for t † 0, t1u for t ° 0 and the segment

“
1
4 , 1

‰
at t “ 0. Finally, f is

µ “
1
4 strongly convex and has L “ 1 Lipschitz gradient and the unique fixed point of the Heavy-Ball

algorithm applied to fp¨, ✓q is x “ y “ ✓. Choosing ↵ “ 1, � “ 0.75, we have

� †
1

2

˜
µ

2L
`

c
µ2

4L2
` 2

¸
“

1

2

˜
1

8
`

c
1

64
` 2

¸
» 0.77.

Therefore, the heavy ball algorithm with this choice of parameter converges linearly to the unique
solution which is 0, a fixed point of the iteration mapping.

Set

F px, y, ✓q “ px ´ rxfpx, ✓q ` �px ´ yq, xq.

At p0, 0, 0q, the last column of the Jacobian of F is p0, 0q and the first two columns are given by

J “ conv tM1, M2u ,

where

M1 “

ˆ
3
2 ´

3
4

1 0

˙
M2 “

ˆ
3
4 ´

3
4

1 0

˙
.

Therefore, the Clarke Jacobian of F (with respect to x, y) at p0, 0, 0q is given by

JF p0, 0, 0q “ convtM1, M2u, M1 “

ˆ
3
2 ´

3
4

1 0

˙
, M2 “

ˆ
3
4 ´

3
4

1 0

˙
.

We have

M1M1M2M2 “
´1

32

ˆ
36 0
27 9

˙
,

which has two eigenvalues ´9
8 † ´1 and ´9

32 . Setting for any ✓ P R x0p✓q “ ✓, y0p✓q “ ✓, we have
for all k P N xkp✓q “ ykp✓q “ ✓, in other words, this is the unique fixed point of the Heavy-Ball
algorithm.

l
Given l P N, the forward propagation recursion in (PB) presented in Figure 3 satisfies for k “ 8l

pM1M1M2M2q
2l

ˆ
1
1

˙

This products will diverge diverge due to the eigenvalue of pM1M1M2M2q
2 strictly above 1. In other

words, for all k, Jx8k given by (PB) contains elements which magnitude diverges at a geometric rate.
We conclude that, for all k P N, Jxk contains elements which magnitude diverge at a geometric rate.

This illustrates the failure of forward derivative propagation on fp¨, ✓q: the Heavy Ball algorithm is
stable and globally linearly convergent, its fixed point is differentiable (it is actually constant in ✓), yet
there is a parametric initialization xp✓q, yp✓q such that forward propagation of derivatives produces
diverging elements for ✓ “ 0. Note that implicit differentiation provides the correct derivative,
which is 0, since xp✓q “ 0 is the unique fixed point of the gradient iterations. Forward derivative
propagation on the gradient descent algorithms also results in the limit in 0 derivative since it only
contains element which converge to 0 at a geometric rate.

Le us emphasize again that such pathology would not happen if f was C
2. Indeed, in this case,

J
2
f

would be single valued and the divergence phenomenon would not appear. This illustrate a
fundamental difference between C

1,1 and C
2 objectives in terms of forward derivative propagation

for second order inertial methods.
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H Experiments details

All the experiments where run on a MacBook M1 Pro (arm64), on Python 3.9 and numpy 1.21 for
a compute time inferior to one hour. They are repeated 100 times, and we report the median as a
blue line and the first and last deciles as a blue shaded area. The solutions are computed with 2000
iterations, and the curves are reported for the 1000 first iterations. The differentiation of all methods
is performed in forward-mode with jacfwd of the module jax.

Forward–Backward for the Ridge. The dimensions of the problem are n “ 500, p “ 300.
The design matrix is Gaussian, i.e., Xi,j

i.i.d
„ N p0, 1q and the observations yi

i.i.d
„ N p0, 1q. The

regularization parameter is set to ✓ “ 0.05.

Forward–Backward algorithm for the Lasso. The dimensions of the problem are n “ 50,
p “ 500. The design matrix is Gaussian, i.e., Xi,j

i.i.d
„ N p0, 1q and the observations yi

i.i.d
„ N p0, 1q.

The regularization parameter is set to ✓ “ 0.2 ˆ ✓max where ✓max “ }X
J
y}8.

Douglas–Rachford for the Sparse Inverse Covariance Selection. We consider covariance ma-
trices of size n ˆ n where n “ 50 and ✓ “ 0.1. The matrix C is generated as C “ V

J
V where

Vi,j

i.i.d
„ N p0, 1q.

ADMM for Trend Filtering. We consider the cyclic 1D Total Variation n “ p “ 75 and � “ 3.0.
Here ✓ i.i.d

„ N p0, 1q.

I Assets used

Our numerical experiments rely on:

• numpy [30], released under BSD-3 license.
• matplotlib [31], released under PSF license.
• jax [13], released under Apache-2.0 license.
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