
A Appendix1

We provide more discussion on the classic solvers for placement and routing in Sec. A.1. We further2

design and implement an RL-based router (regarded as our implementation of the router [1]) for3

additional comparison with our generative router in Sec. A.2, which shows its efficacy.4

A.1 Related Work on Classic Solvers for Placement and Routing5

Classic Solvers for Placement. Global placement solvers have been studied for a long history [2, 3],6

as basically in three categories: partitioning-based methods, stochastic/hill-climbing methods, and7

analytic solvers. Partition-based approaches utilize the divide-and-conquer strategy in the early8

years, after which multi-level partitioning algorithms [4] are devised, with many stochastic methods9

using annealing [5]. When regarding to analytic solvers, force-directed algorithms [6] and non-linear10

optimizers [7, 8] are extensively adopted. Modern analytical placers, e.g. ePlace [9] and RePlAce [10],11

have recently introduced an electrostatics-based system that contains global-smooth density cost12

function and nonlinear optimizers, which are accelerated by DREAMPlace [11] later based on deep13

neural network. Mixed-size placement attracts attention for its practical value. Hierarchical [12] and14

constraint graph-based [13] are proposed to place large scale mixed size designs.15

Classic Solvers for Routing. According to the way for solving global routing, there are two types16

of classic methods: concurrent and sequential solvers. Concurrent approaches attempt to handle17

numerous nets simultaneously. BoxRouter [14] develops progressive integer linear programming18

(ILP) and adaptive maze routing to diffuse the congestion. BoxRouter 2.0 [15] further provides a19

more systematic way of eliminating congestion and assigning layers to wires. GRIP [16, 17], built on20

a partitioning strategy in a 3D manner, obtains the ideal wirelength but leads to prohibitive runtime.21

While sequential approaches typically employ net decomposition [18], maze routing [19], pattern22

routing [20], or negotiation-based rip-up and rerouting (NR&R), and solely route a 2-pin net every23

time (e.g. [21, 22, 23, 24]). The sequential methods have been often shown faster than the concurrent24

approaches, but they may rely on the ordering of the nets and thus leading to sub-optimal solutions.25

A.2 Implementation of an RL-based Router26

We further devise an additional RL-based router following [1] which only gives limited result on27

small-scale dataset that is generated randomly additional routing methods for comparison.28

The RL-based router in our experiment is based on recent work [1] that decides actions of the29

routing direction, i.e. going north, south, etc in each step. In our implementation, we enlarge the30

grid size from 8 × 8 to 16 × 16 while ignoring different layers in routing, as we concentrate on31

calculating the final wirelength in more realistic cases. The structure of our Q-network consists of32

three fully-connected layers with 128 hidden units in each layer. Reward is set as −1 for all valid33

actions, except that the reward of finding terminal pin is 50 and a penalty of −50 is supposed to pay34

for invalid action which makes the capacity of routing path smaller than zero.

Figure 1: Pins of net1 , net2 and net3 are dyed red, blue and orange, respectively. The block that
exactly surrounds each net is the bounding box of the net. The bounding box of net1 overlaps with
the bounding box of net2, while the bounding box of net3 is independent of the above two.

35

1



Table 1: Loss function w.r.t Correctness Rate (CrrtR) and Wirelength Ratio (WLR) on Route-small
dataset (80K samples). We use our conditional generative network as the base model. “L2” is short
for L2 loss, “FL” is short for focal loss, and “EL” denotes the enhanced loss in Eq. 3.

Loss Route-small

CrrtR↑ WLR↓
L2 0.648 1.020
FL 0.756 1.091
L2+FL 0.674 1.035
EL 0.735 1.018

A.3 Additional Experimental Results36

A.3.1 Ablation Study for Loss Function of the Routing Model37

In this experiment, we utilize our conditional generative routing network as the base model and verify38

the effectiveness of the enhanced loss function. Our adversarial loss is39

Ladv(G,D) =
∑
i=1,2

λi (Ex,y [logDi(x, y)] + Ex [log(1−Di(x,G(x)))]) , (1)

where we set λ1 = λ2 = 0.5 by default. While our focal loss is40

LFL(G) = −Ex,y

[
1

N

N∑
i=1

α [yi(1− gi)
γ log gi + (1− yi)g

γ
i log(1− gi)]

]
, (2)

where we set α = 0.5 and γ = 2 by default. For the enhanced loss, it can be expressed as41

min
G

((
max
D

Ladv(G,D)
)
+ µFLLFL(G) + µL2LL2(G) + µrLr(G)

)
, (3)

where we set µFL = µL2 = 5× 103 and µr = 0.1 in all our experiments.42

In Table 1, focal loss delivers the best correctness rate while introducing higher wirelength. In43

contrast, the L2 loss is opposite of the focal loss. The enhanced loss combines the advantages of44

these two loss functions and obtains a competitive correctness rate and the best wirelength ratio.45

A.3.2 Input-size-Adapting vs. Non-Input-size-Adapting46

Table 2: Correctness Rate (CrrtR) and Wirelength Ratio (WLR) on Route-large dataset (100K
128×128 samples). “Non-ISA” is the non-input-size-adapting network. “ISA” is the input-size-
adapting network, and “0/50/100” refer to the amount of pre-training epochs for the filling network.

Variants Params Route-large

CrrtR↑ WLR↓
Non-ISA 15M 0.657 1.023
ISA-0 12M 0.777 1.011
ISA-50 12M 0.784 1.010
ISA-100 12M 0.780 1.013

We explore the performance difference between our input-size-adapting network (represented by47

ISA) and a non-input-size-adapting variant (represented by Non-ISA). The Non-ISA follows the48

structure of our basic generator. Its convolutional front-end contains one more layer, and it has three49

additional residual blocks. The ISA utilizes the well-trained basic generator in part as the guiding50

network to obtain a feature map, and it further uses another convolutional front-end as the filling51

network to acquire another feature map. Then the element-wise sum of the feature maps are fed into52

a series of residual blocks and a decoder to generate the output. We compare the Non-ISA with 353

variants of our ISA (without pre-training the filling network, pre-training the filling network for 5054

epochs and pre-training the filling network for 100 epochs). The ISA outperforms the Non-ISA as55

illustrated in Table 2, while the variants pre-trained for different number of epochs behave similarly.56

2



Figure 2: Training curves of the Non-ISA generator, the ISA generator and the basic generator. The
variants of the ISA pre-trained for different amounts of epochs hold similar training curves.

Table 3: Evaluation of different backbones w.r.t. correctness rate (CrrtR) and wirelength ratio (WLR)
for the routing on: Route-small-extension. cGAN: the vanilla cGAN model with a single realness
discriminator; bcGAN: the bi-discriminator version. EL: enhanced loss in Eq. 3.

our router w/ different generative models Route-small–extension

CrrtR↑ WLR↓
CVAE*(CNN) [25] 0.597 1.073
CVAE*-cGAN(CNN) 0.535 1.081
CVAE*-bcGAN(CNN) 0.647 1.023

U-Net* [26] 0.728 1.014
cGAN(U-Net*) [27] 0.572 1.077
bcGAN(U-Net*) 0.731 1.022

ResNet [28] 0.743 1.273
cGAN(ResNet) 0.632 1.017
bcGAN(ResNet) 0.757 1.010
bcGAN(ResNet)+EL (full version of our router) 0.795 1.007

Fig. 2 shows the training plot for the Non-ISA, the ISA and the basic generator. The variants of the57

ISA pre-trained for diverse amounts of epochs share similar training curves. The training of all the58

networks is stable, and the ISA converges faster than the Non-ISA and achieves a better result since it59

partly inherits the well-trained basic generator and the filling network has also been pre-trained.60

A.3.3 Additional Experiments of Generative Backbones61

We extend the dataset Route-small to a larger dataset named Route-small-extension that contains62

650k instances from 3 circuits as the training set and 200k samples from another circuit as the test63

set. We conduct additional experiments of generative routing models on Route-small-extension with64

results shown in Table 3, which is an extension to Table 2 in the main text.65

A.3.4 Additional Experiments of Classical Router66

We secure source code of Labyrinth 1.1 [20] and run it on our machine, then we obtain the results67

in Table 4. We set Num_Reroute as 500 and two-terminal as True. All experiments are run on a68

AMD Ryzen 5 4600H CPU with 2G RAM. Circuit ibm05 is a trivial case due to the sufficient routing69

resources, so that it requires fewer iterations in the rip-up and reroute phase and runtime is relatively70

shorter.71

1https://kastner.ucsd.edu/ryan/labyrinth-a-global-router-and-routing-development-tool

3



Table 4: Evaluation of wirelength (WL), overflow (OF) and runtime (time) for Labyrinth 1.1 on
ISPD-98 routing benchmarks. The experiments are performed on our machine with a AMD Ryzen 5
4600H CPU and 2G RAM. Source code is obtained from 1.

Circuits WL↓ OF ↓ Time(s)↓

ibm01 74413 292 12.3
ibm02 199687 384 49.5
ibm03 183923 122 39.0
ibm04 197405 1124 47.6
ibm05 427303 0 19.0
ibm06 345583 502 96.7

Table 5: Comparison w.r.t wirelength (WL), overflow (OF) and runtime (time) for our conditional
generative routing model and RL-based router on circuit adaptec1 from ISPD-2005 benchmark.
Note the maximal grid size that RL router can deal with is 16× 16, so the positions of macros for
both methods are scaled to [0, 16) for a fair comparison.

Method WL↓ OF ↓ Time(s)↓

Generative Router (ours) 5240 0 1.805
RL Router 4951 157 11.528

A.3.5 Comparison with RL-based Router72

Table 5 compares the results between our conditional generative routing model and RL-based router73

on circuit adaptec1 from ISPD-2005 benchmark. Our conditional generative router is much more74

efficient than the RL-based router, achieving approximately 10× speedup. In addition, the overflow75

of RL-based router is greater than zero, which degrades the performance of wirelength in the long76

run. Note the maximal grid size that RL router can deal with is 16× 16 while our generative routing77

model is still applicable for grids larger than 64 × 64. Such limitation on size and extremely low78

efficiency make RL-based router not an option in neural macro placement and routing pipeline.79

A.3.6 Additional Visualization of Mixed-size Placement80

Despite circuit bigblue1, two additional visualization of our mixed-size placer and DeepPlace on81

circuits adaptec2 and adaptec4 are elaborated in Fig. 3.82

(a) DeepPlace on
adaptec2.

(b) Our mixed-size
placer on adaptec2.

(c) DeepPlace on
adaptec4.

(d) Our mixed-size
placer on adaptec4.

Figure 3: Visualization of macro (in orange) /standard cell (in blue) placement by DeepPlace [29]
and our mixed-size placer on circuits adaptec2 and adaptec4. On circuit adaptec4, the density of
macros makes it difficult to fill standard cells into the center of canvas for DeepPlace, while our
mixed-size placer eliminates the problem via reducing overlap.

References83

[1] H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada, and L. Burak Kara, “A deep reinforcement84

learning approach for global routing,” Journal of Mechanical Design, 2020.85

4



[2] M. A. Breuer, “A class of min-cut placement algorithms,” in DAC, 1977.86

[3] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network partitions,”87

in DAC. IEEE, 1982.88

[4] A. R. Agnihotri, S. Ono, and P. H. Madden, “Recursive bisection placement: Feng shui 5.089

implementation details,” in ISPD, 2005.90

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science,91

1983.92

[6] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Kraftwerk2—a fast force-directed quadratic93

placement approach using an accurate net model,” TCAD, 2008.94

[7] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, “Ntuplace3: An analytical95

placer for large-scale mixed-size designs with preplaced blocks and density constraints,” TCAD,96

2008.97

[8] A. B. Kahng and Q. Wang, “Implementation and extensibility of an analytic placer,” TCAD,98

2005.99

[9] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and C.-K. Cheng, “eplace:100

Electrostatics-based placement using fast fourier transform and nesterov’s method,” TODAES,101

2015.102

[10] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing solution quality and103

routability validation in global placement,” TCAD, 2018.104

[11] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan, “Dreamplace: Deep105

learning toolkit-enabled gpu acceleration for modern vlsi placement,” TCAD, 2020.106

[12] T. Taghavi, X. Yang, and B. Choi, “Dragon2005: Large-scale mixed-size placement tool,” in107

ISPD, 2005.108

[13] H. Chen, Y. Chuang, Y.-W. Chang, and Y. Chang, “Constraint graph-based macro placement for109

modern mixed-size circuit designs,” in ICCAD, 2008.110

[14] M. Cho and D. Z. Pan, “Boxrouter: A new global router based on box expansion and progressive111

ilp,” TCAD, 2007.112

[15] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “Boxrouter 2.0: A hybrid and robust global router with113

layer assignment for routability,” TODAES, 2009.114

[16] T.-H. Wu, A. Davoodi, and J. T. Linderoth, “Grip: Scalable 3d global routing using integer115

programming,” in DAC, 2009.116

[17] T.-H. Wu, A. Davoodi, and J. T, Linderoth, “A parallel integer programming approach to global117

routing,” in DAC. IEEE, 2010.118

[18] C. Chu and Y.-C. Wong, “Flute: Fast lookup table based rectilinear steiner minimal tree119

algorithm for vlsi design,” TCAD, 2007.120

[19] C. Y. Lee, “An algorithm for path connections and its applications,” IRE Transactions on121

Electronic Computers, 1961.122

[20] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern routing: Use and theory for increasing123

predictability and avoiding coupling,” TCAD, 2002.124

[21] M. D. Moffitt, “Maizerouter: Engineering an effective global router,” TCAD, 2008.125

[22] M. M. Ozdal and M. D. Wong, “Archer: A history-based global routing algorithm,” TCAD,126

2009.127

[23] H.-Y. Chen, C.-H. Hsu, and Y.-W. Chang, “High-performance global routing with fast overflow128

reduction,” in ASP-DAC. IEEE, 2009.129

[24] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “Nctu-gr 2.0: Multithreaded collision-aware130

global routing with bounded-length maze routing,” TCAD, 2013.131

[25] D. Utyamishev and I. Partin-Vaisband, “Late breaking results: A neural network that routes ics,”132

in DAC. IEEE, 2020.133

[26] R. O, F. P, and B. T, “U-net: Convolutional networks for biomedical image segmentation,” in134

MICAAI, 2015.135

5



[27] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional136

adversarial networks,” CVPR 2017, pp. 5967–5976, 2017.137

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR,138

2016.139

[29] R. Cheng and J. Yan, “On joint learning for solving placement and routing in chip design,”140

NeurIPS, 2021.141

6


	Appendix
	Related Work on Classic Solvers for Placement and Routing
	Implementation of an RL-based Router
	Additional Experimental Results
	Ablation Study for Loss Function of the Routing Model
	Input-size-Adapting vs. Non-Input-size-Adapting
	Additional Experiments of Generative Backbones
	Additional Experiments of Classical Router
	Comparison with RL-based Router
	Additional Visualization of Mixed-size Placement



