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Abstract

Graph Neural Networks (GNNs) have become a prevailing tool for learning physi-
cal dynamics. However, they still encounter several challenges: 1) Physical laws
abide by symmetry, which is a vital inductive bias accounting for model generaliza-
tion and should be incorporated into the model design. Existing simulators either
consider insufficient symmetry, or enforce excessive equivariance in practice when
symmetry is partially broken by gravity. 2) Objects in the physical world possess
diverse shapes, sizes, and properties, which should be appropriately processed by
the model. To tackle these difficulties, we propose a novel backbone, Subequivari-
ant Graph Neural Network, which 1) relaxes equivariance to subequivariance by
considering external fields like gravity, where the universal approximation ability
holds theoretically; 2) introduces a new subequivariant object-aware message pass-
ing for learning physical interactions between multiple objects of various shapes in
the particle-based representation; 3) operates in a hierarchical fashion, allowing for
modeling long-range and complex interactions. Our model achieves on average
over 3% enhancement in contact prediction accuracy across 8 scenarios on Phys-
ion and 2× lower rollout MSE on RigidFall compared with state-of-the-art GNN
simulators, while exhibiting strong generalization and data efficiency. Code and
videos are available at our project page: https://hanjq17.github.io/SGNN/.

1 Introduction

Learning and predicting the complicated physical dynamics and interactions between objects are vital
to many tasks including physical reasoning [8, 38, 7, 19], scene understanding [3], and model-based
planning and control [20, 23, 24, 37, 1]. Several learning-based differentiable simulators [31, 30,
22, 27] have been proposed, and they obtain promising achievements in simulating various kinds of
interacting objects including rigid and fluids. The success mainly relies on the prevalence of graph
neural networks [14, 30, 15], which are desirable tools for physical simulation, by modeling particles
as nodes, physical relations as edges, and their interactions as the message passing thereon.
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Notably, physical world exhibits certain symmetries. For example, the way dominoes fall from left to
right will exactly be preserved when the system is rotated horizontally to another direction. Inherently,
humans reason about the dynamics with the preservation of such symmetry, and this inductive bias
has been endorsed by the physical laws that also abide by the symmetries in our 3D world. Yet,
regardless of this inductive bias, current differentiable simulators like GNS [30] and DPI [22] would
fail to learn the real dynamics that can generalize to all directions. In the example of dominoes, if
the data in training are positioned from left to right, GNS can predict well during testing when the
dominoes also fall in the same direction, but performs poorly if the scene is rotated horizontally (see
demo in the Supplementary Video). This observation implies that GNS overfits training samples
without learning the true dynamics that obey the symmetry, limiting its generalization.

With this consideration, there have been a number of works, named geometrically equivariant graph
neural networks [16], that leverage symmetry as an inductive bias in learning to simulate. These
models are designed such that their outputs will rotate/translate/reflect in the same way as the inputs,
hence retaining the symmetry. However, models like EGNN [32] and GMN [17] are exerted E(3)-
equivariance, the full symmetry of the 3D Euclidean space. Such constraint is so strong that it
penalizes all directions in the 3D space, which cannot be applied to scenarios with external fields, like
gravity. The existence of gravity breaks the symmetry in the vertical direction, reducing E(3) to its
subgroup. We formally characterize this phenomenon of equivariance relaxation as subequivariance.

In general, simulating physics on datasets like Physion [4] are highly challenging, due to the scale
of the system (on average thousands of particles per system), the diversity of the interactions (e.g.,
collision, friction, gravity), as well as multiple shapes, materials, or even rigidness of the objects.
These factors require unique efforts in designing the simulators, which brings another weakness
of current GNN-based methods: From a practical point of view, they seldom explicitly involve the
geometric object information into message passing. Moreover, when modeling multiple interacting
objects of different shapes, the interactions between or within objects are usually different. For
example, the former aims to exchange momentum or energy across objects, while the latter usually
accounts for the geometrical constraint. It is thus important to involve objectness to distinguish
interactions between particles within objects from those across objects.

In this work, we propose Subequivariant Graph Neural Networks (SGNN) that consist of several
features to tackle the above challenges. 1. We relax equivariance to subequivariance and design
subequivariant functions to physical scenarios with the existence of gravity, and excitingly, we have
proved that our designed form inherits the approximation universality. 2. We formulate a novel
subequivariant object-aware message passing framework for modeling dynamics and interactions
between objects of varying shapes. 3. We incorporate the subequivariant message passing into a
hierarchical model to deal with long-range and complicated object interactions. We demonstrate the
efficacy of our SGNN for learning physical dynamics on a large-scale challenging dataset Physion
with 8 different scenarios, and a 3-object RigidFall dataset. Experimental results show that our model
is capable of yielding more accurate dynamics prediction, is highly data-efficient, and has strong
generalization compared with the state-of-the-art learning-based differentiable physical simulators.

2 Related Work

GNN-based physical dynamics simulators. There have been many works that employ graph
neural networks as physical simulators of dynamical systems [2, 26, 18]. Graph Network Simulator
(GNS) proposed by [30] has been showcased a simple yet powerful tool in simulating large systems
in particle-based representation of rigid and fluids by dynamically constructing interaction graph
and performing multiple steps of information propagation. DPI [22] adds one-level of hierarchy
to the rigid and predicts the rigid transformation via generalized coordinates, with applications
to manipulation. There are also works that incorporate strong physical priors like Hamiltonian
mechanics [29, 39], geometrical constraints [28] and shapes [27]. Despite the promising empirical
results, these works have not given sufficient considerations on symmetry especially when external
force like gravity presents, leaving room for enhancing their generalization to unseen testing data.

Geometrically equivariant graph neural networks. Equivariant graph neural networks [16] are
a family of GNNs that are specifically designed to meet the constraint of certain symmetry, mostly
involving translations, rotations, and/or reflections in Euclidean space. This goal is approached by
several measures, including solving group convolution with irreducible representation [34, 12] or
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leveraging invariant scalarization [35] like taking the inner product [32, 17]. Our approach also
belongs to the scalarization family together with EGNN [32] and GMN [17]. Specifically, EGNN
models the interaction with the invariant distance as input, computed as an inner product of the
relative positions, and GMN generalizes to a multi-channel version by taking into consideration a
stack of multiple vectors. These equivariant GNNs operate on particle graphs or point clouds, while
we additionally consider a combination of both particle- and object-level information for physical
simulation. More importantly, they are assumed a full Euclidean symmetry with strong equivariance
constraint, while we elaborate how to relax the constraint in the existence of external fields like
gravity by leveraging subequivariance.

Equivariance on subgroups. E(n)-Steerable CNNs [36, 6] develop convolutional kernels that meet
equivariance on E(3)/E(2) and their subgroups by leveraging restricted representation. EMLP [10]
obtains equivariance on arbitrary matrix groups. However, these approaches require specifying the
particular group/subgroup to perform equivariance, while our goal here is to relax the equivariance on
subgroups of E(3) by considering external force field, having more physical implications. Moreover,
these works rely on computationally expensive operations like irreducible representation or solving
group constraints, while our formulation resorts to scalarization, which is easy to implement, efficient
to compute, and also comes with necessary universality guarantee.

3 Subequivariant Graph Neural Networks

3.1 Background

GNN-based simulators. We start by introducing the mechanism of GNN-based simulators for
learning physical dynamics. We consider the particle-based representation of a physical system with
N particles consisting of M objects. At time t, each particle within the system possesses some
state information, including 1. the position x⃗

(t)
i ∈ R3 and the velocity v⃗

(t)
i ∈ R3, which are both

directional vectors; 2. some attributes hi ∈ Rn without geometric context, such as the rigidness; 3.
the dynamic spatial connections with other particles, where an edge will be constructed if the distance
between two particles is smaller than a threshold r, namely, E(t) = {(i, j) : ∥x⃗(t)

i − x⃗
(t)
j ∥2 < r}. We

denote the object category of particle i as o(i) ∈ Z satisfying o(i) = k if particle i belongs to object k.
The goal here is to predict the position of the next step x⃗

(t+1)
i given the above system information at

time t , which can be favorably modeled by GNNs, i.e., x⃗(t+1)
i = φGNN

(
{x⃗(t)

i }, {v⃗(t)
i }, {hi}, E(t)

)
.

Since the prediction at different time shares the same model, we will henceforth omit the temporal
superscript t for all variables for brevity.

The conventional GNN simulators φGNN [22, 30, 26] offer a favorable solution by leveraging message-
passing on the interaction graph, which computes:

mij = ϕ (x⃗i, v⃗i, x⃗j , v⃗j ,hi,hj) , (1)

x⃗′
i, v⃗

′
i,h

′
i = ψ

(∑
j∈N (i)

mij , x⃗i, v⃗i,hi

)
, (2)

where N (i) = {j : (i, j) ∈ E} is the neighbors of node i, and ϕ, ψ are the edge message function
and node update function, respectively. The prediction is obtained by conducting several iterations of
message passing. Nevertheless, such form does not guarantee the desirable symmetry context with
common choices of ϕ and ψ, and meanwhile the object information has not been elaborated, leaving
room for a more exquisite message passing scheme for learning complex physical dynamics. Recent
works such as EGNN [32] and GMN [17] have actually considered E(3)-equivariance in the design
of the functions ϕ and ψ to pursue symmetry. However, they are not applicable to the case when
symmetry is partially violated by gravity, which motivates our proposal in § 3.2. Prior to introducing
our work, we first provide necessary preliminaries related to equivariance.

Equivariance. In this paper, we basically focus on equivariance in terms of E(3) transformations:
translation, rotation, and reflection. The formal definition is provided below.

Definition 1 (Equivariance and Invariance). We call that the function f : R3×m × Rn → R3×m′

is E(3)-equivariant, if for any transformation g in E(3), f(g · Z⃗,h) = g · f(Z⃗,h), ∀Z⃗ ∈ R3×m,
∀h ∈ Rn. Similarly, f is invariant if f(g · Z⃗,h) = f(Z⃗,h), ∀g ∈ E(3).
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Figure 1: Comparison between different message passing. We omit the scalars hi for simplicity.

In Definition 1, the group action · is instantiated as g · Z⃗ := OZ⃗ for the orthogonal transformation
(rotation and reflection) where O ∈ O(3) := {O ∈ R3×3|O⊤O = I}, and g · Z⃗ := Z⃗ + t for
translation where t ∈ R3. Note that for the input of f , we have added the the right-arrow superscript
on Z⃗ to distinguish it from the scalar h that is unaffected by the transformation, akin to our notations
for the position x⃗i, velocity v⃗i, and attribute hi.

It is non-trivial to derive equivariant function particularly for orthogonal transformations. GMN [17]
proposes a multichannel scalarization form, which yields,

f(Z⃗,h) := Z⃗V , s.t.V = σ(Z⃗⊤Z⃗,h), (3)

where the inner product Z⃗⊤Z⃗ ∈ Rm×m is firstly computed and concatenated with h, the resultant
invariant term is then transformed by a function (usually a Multi-Layer Perceptron (MLP)) σ :

Rm×m+n 7→ Rm×m′
producing V ∈ Rm×m′

, and the directional output is acquired by taking a
matrix multiplication of the basis Z⃗ with V . By joining the analyses in GMN along with [35], we
have the universality of the formulation in Eq. (3), which is provided in Appendix A.

3.2 Subequivariant Object-aware Message Passing

To simultaneously benefit from symmetry and object-aware information, we develop Subequivariant
Object-aware Message Passing (SOMP). It characterizes information aggregation between multi-
channel vectors and scalars, while taking into account both the particle and object information. We
use Z⃗i ∈ R3×m to indicate a stack of m multi-channel 3D vectors; particularly, Z⃗i is initialized
as [x⃗i, v⃗i], 1 ≤ i ≤ N by involving both the position and velocity. We additionally initialize the
object features by pooling its particles: for object k, we have C⃗k = 1

|{i:o(i)=k}|
∑

{i:o(i)=k} Z⃗i, ck =∑
{i:o(i)=k} hi, 1 ≤ k ≤ M . We also introduce a binary operation “⊖” which yields Z⃗i ⊖ Z⃗j =

[Z⃗i − Z⃗j , v⃗i, v⃗j ]. It transforms the translation-equivariant vectors to be invariant and stacks those
invariant vectors together, resulting in a translation-invariant representation while enriching the input
vectors with more channels. The direction of gravity is set to be along the vertical axis.

In a high-level overview, we denote our message passing as the function φ that updates each particle
given the input states of all particles, objects, and graph connectivity:

{(Z⃗ ′
i,h

′
i)}Ni=1 = φ

(
{(Z⃗i,hi)}Ni=1, {(C⃗k, ck)}Mk=1, E

)
. (4)

Specifically, φ is unfolded as the following message passing and aggregation computations:

Z⃗ij = (Z⃗i ⊖ C⃗o(i))∥(Z⃗j ⊖ C⃗o(j))∥(Z⃗i ⊖ Z⃗j), (5)

hij = hi∥co(i)∥hj∥co(j), (6)

M⃗ij ,mij = ϕg⃗

(
Z⃗ij ,hij

)
, (7)

(Z⃗ ′
i,h

′
i) = (Z⃗i,hi) + ψg⃗

(
(
∑

j∈N (i)
M⃗ij)∥(Z⃗i ⊖ C⃗o(i)), (

∑
j∈N (i)

mij)∥hi∥co(i)
)
, (8)

where ∥ is the concatenation along the channel dimension, N (i) = {j : (i, j) ∈ E} is the neighbors
of node i, and both ϕg⃗ and ψg⃗ are subequivariant and will be defined in detail in Eq. (9). In detail, we
first derive the multi-channel vector input Z⃗ij for the interaction between particle i and j in Eq. (5)
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by stacking the three terms along the channel dimension, including the relative information of the
particle with respect to its belonged object: Z⃗i ⊖ C⃗o(i) and Z⃗i ⊖ C⃗o(i), and the relative information
between particles Z⃗i ⊖ Z⃗j . By this means, we arrive at a translation-invariant representation Z⃗ij

with rich object-aware geometric information. For the invariant features we simply concatenate them
in Eq. (6). Subsequently, in Eq. (7) we feed the interactions Z⃗ij and hij into the subequivariant
message function ϕg⃗, yielding the vector message M⃗ij and scalar message mij

2. Finally, Eq. (8)
first performs message aggregation and then updates the states by another subequivariant function
ψg⃗ , obtaining the eventual result. With the updated Z⃗ ′

i and h′
i, one can readily obtain the output with

equivariance or invariance as desired, which, in our case, implies Z⃗ ′
i = [x⃗′

i] by setting m′ = 1.

Comparison with existing GNN-based simulators. The core of satisfying equivariance lies in
taking the invariant inner product before feeding the vectors into the MLP. Such design shares a
similar spirit in nature with existing works including EGNN [32] and GMN [17]. The interaction
modeling of EGNN only considers the relative position x⃗i − x⃗j and its inner product ∥x⃗i − x⃗j∥2,
which might have limited expressivity while tackling complex physical interactions and dynamics
between objects. GMN further extends to a multi-channel interaction Z⃗i ⊖ Z⃗j where Z⃗i = [x⃗i, v⃗i].
Nevertheless, it lacks the necessary object information, while we explicitly involve the particle-object
correlation Z⃗i ⊖ C⃗o(i) in our SOMP. Besides, GNS [30] and DPI [22] only enforces translation
equivariance by directly feeding [x⃗i − x⃗j , v⃗i, v⃗j ] into an MLP without taking the inner product.
They fail to preserve the O(3)-equivariance and consequently have weaker generalization as we will
illustrate in our experiments. Fig. 1 summarizes and compares the message-passing schemes of GNS,
EGNN, GMN and our SOMP. Particularly, our design of SOMP takes careful considerations: 1.
Equivariance is still permitted with both geometric and scalar object features involved; 2. The object
information can also be constantly updated during message passing; 3. The expressivity of SOMP is
enhanced over EGNN and GMN with object information considered. We provide detailed theoretical
comparisons in Appendix A.2 by showing that EGNN and GMN are indeed special cases of SGNN.

We now present the detailed formulations of ϕg⃗ in Eq. (7) and ψg⃗ in Eq. (8). Since the full symmetry
is violated by gravity g⃗ ∈ R3, and the dynamics of the system will naturally preserve a gravitational
acceleration in the vertical direction. By this means, the orthogonal symmetry is no longer maintained
in every direction but only restricted to the subgroup Og⃗(3) := {O ∈ O(3) | Og⃗ = g⃗}, that is, the
rotations/reflections around the gravitational axis. We term such a reduction of equivariance as a
novel notion: subequivariance. To reflect this special symmetry, we augment Eq. (3) by:

fg⃗(Z⃗,h) = [Z⃗, g⃗]Vg⃗, s.t.Vg⃗ = σ([Z⃗, g⃗]⊤[Z⃗, g⃗],h), (9)

where σ : R(m+1)×(m+1) → R(m+1)×m′
is an MLP. Compared with Eq. (3), here we just augment

the directional input with g⃗. Interestingly, such a simple augmentation is universally expressive:

Theorem 1. Let fg⃗(Z⃗,h) be defined by Eq. (9). Then, fg⃗ is Og⃗(3)-equivariant. More importantly,
For any Og⃗(3)-equivariant function f̂(Z⃗,h), there always exists an MLP σ satisfying ∥f̂ − fg⃗∥ < ϵ
for arbitrarily small positive value ϵ.

The proof is non-straightforward and deferred to Appendix A.1. The detailed architectural view of
the proposed SOMP is depicted in Fig. 8 in Appendix A.3. We leverage our designed subequivariant
function with such desirable properties for ϕg⃗ and ψg⃗ in our subequivariant object-aware message
passing. We immediately have the following theorem guaranteeing the validity of our design.
Theorem 2. The message passing φ (Eq. 4) is Og⃗(3)-equivariant.

3.3 Application to Physical Scenes with Hierarchical Modeling

This subsection introduce the entire architecture of our subequivariant GNN. Many physical scenes
are complicated, possibly involving contact, collision, and friction amongst multiple objects. In
light of this, we further incorporate our message passing into a multi-stage hierarchical modeling
framework. One of our interesting findings here is the edge separation. This is indeed motivated
by the consideration that the interactions between or within objects are usually different, similar to

2For both ϕg⃗ and ψg⃗ , we expand more output channels besides Vg⃗ of σ in Eq. (9), and assign it to the
invariant message mij in Eq. (7) and h′

i in Eq. (8), respectively.
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Figure 2: The overall architecture with hierarchical modeling, specified as three stages.

automorphism graph networks [9, 25, 33] where the neighboring objects formulate the isomorphism
group of edges. The former serves as a bridge of exchanging momentum and energy via interaction
forces, while the latter usually accounts for maintaining the rigid or plastic constraints. Therefore, it
would be beneficial to disentangle these two kinds of interactions in message passing, which also
distinguishes our hierarchical modeling from DPI [22]. The overall flowchart is provided in Fig. 2.
To be specific, we alternate between the following three stages that implement φ in Eq. (4) distinctly.

1. Particle-level inter-object message passing. We start by modeling the local interactions from the
particle-level, where we only involve those between different objects. That is,

{(Z⃗ ′
i,h

′
i)}Ni=1 = φ1

(
{(Z⃗i,hi)}Ni=1, {(C⃗k, ck)}Mk=1, Einter

)
, (10)

where Einter = {(i, j) : (i, j) ∈ E , o(i) ̸= o(j)}.

2. Object-level message passing. Given the renewed particle-level information produced by the
first stage, we are now ready to construct the object-level message passing graph. The object-level
message passing is proceeded as

{(C⃗ ′
k, c

′
k)}Mk=1 = φ2

(
{(C⃗k, ck)}Mk=1, {∅}, Eobj

)
, (11)

where Eobj comprises the edges between interacted objects, indicating Eobj = {(k, l) : ∃(i, j) ∈
Einter, o(i) = k, o(j) = l}. As a specific instantiation of φ in Eq. (4), here each object is considered
as a node and the original object information in Eq. (5-8) is omitted (this is why we denote the second
input of φ2 as the empty set ∅). Furthermore, we leverage a pooling of the updated particle-level in-
formation from the first stage as the object-level interactions, or formally, we re-define the calculation
of “⊖” for two different objects indexed by k, l as C⃗k ⊖ C⃗l = Mean-Pool(i,j)∈Einter

(
Z⃗ ′

i ⊖ Z⃗ ′
j

)
, and

similarly, ck∥cl = Mean-Pool(i,j)∈Einter

(
h′
i∥h′

j

)
.

3. Particle-level inner-object message passing. Finally, given the updated object state information,
we carry out the message passing for the particles only along the inner-object edges Einner = {(i, j) :
(i, j) ∈ E , o(i) = o(j)}, namely,

{(Z⃗ ′′
i ,h

′′
i )}Ni=1 = φ3

(
{(Z⃗i,hi)}Ni=1, {(C⃗ ′

k, c
′
k)}Mk=1, Einner

)
. (12)

We use {Z⃗ ′′
i }Ni=1 as the proposal of the positions in the next time step, akin to the way in § 3.2.

4 Experiments

We conduct evaluations on Physion [4] and RigidFall [21]. Physion [4] is a large scale dataset created
by the ThreeDWorld simulator [13], which consists of eight different scenarios, including Dominoes,
Contain, Collide, Drop, Roll, Link, Support, and Drape. These scenarios possess diverse physical
scenes with complicated object interactions, serving as a challenging benchmark for evaluating
dynamics models. Particularly, Drape also involves simulating deformable objects. RigidFall [21] is a
simulation dataset whose scenes involve several cubes falling and colliding under varying magnitude
of gravitational acceleration.
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Table 1: Contact prediction accuracy (%) on Physion. Results are averaged across 3 runs.

Dominoes Contain Link Drape Support Drop Collide Roll

GNS* [30] 78.6±0.9 71.6±1.6 66.7±1.5 58.8±1.0 68.2±1.6 65.3±1.1 86.1±0.5 81.3±1.8

DPI* [22] 82.3±1.3 72.3±1.8 63.7±2.2 53.3±0.9 64.8±2.0 70.7±0.8 84.4±0.7 82.3±0.6

GNS [30] 53.3±1.8 70.7±2.2 58.0±1.7 58.0±1.3 61.3±1.7 65.0±0.7 76.7±1.2 80.0±0.4

DPI [22] 57.3±2.2 71.9±1.3 63.0±1.9 52.3±1.2 58.0±1.1 68.7±0.7 78.7±1.3 80.5±0.8

GNS-Rot [30] 74.7±1.2 72.7±2.0 63.1±2.1 57.3±1.0 65.5±1.3 64.7±1.3 84.0±1.0 79.4±2.1

DPI-Rot [22] 72.7±1.7 69.4±2.1 65.2±2.3 52.8±1.0 66.7±0.8 72.3±0.5 83.2±1.6 80.1±0.5

EGNN [32] 61.3±1.1 66.0±1.9 52.7±1.2 54.7±0.8 60.0±0.5 63.3±0.9 76.7±1.4 79.8±0.4

EGNN-S 72.0±2.1 64.6±1.8 55.3±2.1 55.3±1.0 60.5±1.5 69.3±2.0 79.3±1.5 81.6±0.9

GMN [17] 54.7±0.5 57.6±2.2 54.5±1.6 57.6±1.3 55.1±1.6 54.2±1.1 79.5±1.5 81.3±1.3

GMN-S 55.6±1.3 65.3±1.7 55.1±2.8 57.0±1.8 59.3±2.2 57.3±1.5 81.2±1.2 79.3±1.5

Our SGNN 89.1±1.5 78.1±1.5 73.3±1.1 60.6±0.5 71.2±0.9 74.3±1.0 85.3±1.1 84.2±0.6

Figure 3: The rollout-MSE curves on Dominoes, Link, and Contain. Our model achieves the lowest
MSE. Colored areas indicate 95% confidence intervals. Full results in Appendix C.2.

4.1 Baselines

We compare SGNN with several SOTA particle-based GNN simulators, including two non-equivariant
models GNS [30] and DPI [22], as well as two equivariant models EGNN [32] and GMN [17].
Notably, the data preprocessing provided by Physion [4] for particle-based methods does not consider
the camera-angle for the rotation of 3D coordinates, leading to the situation that in some scenarios, e.g.,
Dominoes, Link, Support, and Collide, there exist a directional bias (from left to right horizontally) in
the trajectories. This motivates us to consider three evaluation protocols: 1. Use the original training
and testing set with directional bias. 2. Train on the original set and test on the randomly-rotated
testing set. 3. Train on the randomly-rotated training set (akin to applying data augmentation of
rotations [5]), and test on the randomly-rotated testing set. Here all rotations are restricted to the ones
around gravity. We dub the results obtained from the three cases GNS*, GNS, and GNS-Rot for GNS,
and similarly for DPI. For EGNN and GMN, we also propose to adapt them to be subequivariant
(EGNN-S and GMN-S) by adding an extra vector along the gravity in their update of velocities.
Details are in Appendix B. Note that EGNNs, GMNs, and our SGNN always produce exactly the
same result in the three scenarios due to their equivariance (or subequivariance). For RigidFall, such
bias is not observed since the cubes are falling vertically driven by gravity.

4.2 Evaluation on Physion

Experimental setup. We strictly follow the training and evaluation protocol proposed in [4] for
the particle-based simulators. We employ two evaluation metrics: 1. Contact prediction accuracy.
This metric, as also adopted by [4], evaluates whether two targeted objects labeled in the dataset will
contact during the model rollout. 2. Rollout MSE, the mean squared error between model rollout
and the ground truth. We reuse the training protocol and hyper-parameters suggested in Physion
for baselines and our model to ensure a fair comparison. In detail, all MLPs are initialized with 3
projection layers and a hidden dimension of 200. The networks are trained with an Adam optimizer,
using an initial learning rate 0.0001 and an early-stopping of 10 epochs on the validation loss. We
use 4 iterations in each message passing of our model. We run RANSAC [11] during testing on
all models to help enforce the rigid constraint as suggested by Physion. More experimental details
including a comparison of computational complexity are deferred to Appendix B.
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Figure 4: Visualization examples on Physion. Our model yields accurate long-term predictions.

Results. We present the average contact prediction accuracy with std in Table 1, and the rollout
MSE in Fig. 3. The detailed MSE on all 8 scenarios is deferred to Appendix C.2 due to space limit.
We interpret our results by answering the following questions. Q1. Is maintaining the symmetry
important to models that learn to simulate? For the non-equivariant models GNS and DPI, their
performance usually encounters a significant drop if they are trained on the original data but tested on
the rotated, particularly on the scenarios with bias in directions. For example, the accuracy of GNS
drops from 78.6% to 53.3% on Dominoes when comparing GNS* with GNS. Such observation also
holds for DPI and on more scenarios like Collide and Support. Using data augmentation would help in
relieving the issue, but is still hard to recover the performance. The accuracy on Dominoes yielded by
GNS-Rot is 74.7%, still worse than 78.6% by GNS*. Our SGNN instead leverages subequivariance
to generalize to all horizontal directions, and is always guaranteed to produce the same prediction
regardless of any rotations around gravity, and there is also no need to apply any data augmentation
of rotations during training. Interestingly, EGNN-S and GMN-S offers improvements over EGNN
and GMN, implying the necessity of subequivariance, but are still outperformed by SGNN by a large
margin. Q2. Does SGNN learn the physics and simulate the dynamics better than other models? As
displayed in Table 1, SGNN achieves the highest prediction accuracy on 7 out of the 8 scenarios,
and is also very competitive on Collide. The improvements are very significant (>5% accuracy
enhancement over the second best) on scenarios including Dominoes, Contain, and Link, where there
are multiple objects contacting, colliding, and interacting. This observation is also supported by the
rollout MSE curves in Fig. 3, showing our SGNN consistently yielding lower prediction error along
the trajectories. Q3. How does SGNN perform compared with other equivariant models? For EGNN
and GMN, enforcing such a strong constraint of E(3)-equivariance leads to inferior performance in
scenes with gravity. For instance, in Dominoes, Contain, and Link, the accuracy of EGNN and GMN
only stays around 60%, while SGNN achieves promising results with subequivariant object-aware
message passing.

Generalization across scenarios. We further evaluate the generalization capability of our model
across various scenarios. To fulfill this goal, we leverage models trained in certain scenarios

GNS Ours

A

B

C

D

A: Drop B: Contain C: Link D: Support

Figure 5: Generalization across tasks. Row/column
indicates the training/testing scenario, respectively.

to test them in others. We summarize the re-
sults in Fig. 5, where the models are trained
in the scenarios indexed by the rows and
evaluated on those indexed by the columns.
It is observed that our model exhibits signif-
icantly stronger generalization than GNS,
the best-performed baseline on Physion.
For example, our model, although trained
with the dynamics of Contain or Link, still
yields a high accuracy (>78%) when tested
on Drop, showcasing that our model is
more advantageous in learning the dynam-
ics and interactions of various objects.
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Table 2: Ablation studies.
Dominoes Contain Drop

SGNN 89.1 78.1 74.1

E(3)-equivariance 79.6 65.3 68.1
w/o object-aware 81.2 68.7 70.1
w/o hierarchy 83.5 72.5 71.3
w/o edge separation 85.0 74.8 72.0

Steer-SE(2)-GNN [36] 59.1 66.7 66.7

Ablation studies. Here we conduct several ab-
lations to inspect how our proposed components
contribute to the overall performance, and the
results are given in Table 2. 1. Subequivariance.
We replace our subequivariant formulation of
ϕg⃗ and ψg⃗ by the E(3)-equivariant counterpart
without gravity. It is clear that, in this way, the
model is restricted by strong equivariance con-
straints, which leads to a significant degradation
in performance. This verifies the necessity of
relaxing the full-equivariant model with our introduced method for physical scenarios with gravity.
Moreover, we extend the Steerable E(2)-CNNs [36, 6] to GNNs as an alternative to obtain equivari-
ance on the SE(2) subgroup (more details are results are in Appendix C.5). Although better than
EGNN, the adapted Steerable SE(2)-GNN is still inferior to SGNN, implying our physics-inspired
SOMP is more advantageous on simulating physical dynamics. 2. Object-aware message passing.
We replace C⃗k and ck in Eq. (10) by zeros, eliminating the object information from message passing.
Without this necessary information, the model might fail to capture useful geometric vectors like
x⃗i − x⃗o(i), which is closely related to physical quantities like torque. 3. Hierarchy. We compare our
model with its counterpart without hierarchy. The flat model encounters an average of 4% drop in the
prediction accuracy, showcasing the advantages of leveraging the particle- and object-level message
passing for modeling complex object interactions in physical scenes. 4. Edge separation. We employ
different sets of edges in the inter-object and inner-object message passing. We argue that it relieves
the learning complexity of the message-passing with different types of relations. It is observed that
removing edge separation leads to detriment in the accuracy in various scenarios.

Generalization toward other rotations. To further investigate whether incorporating our subequiv-
ariance truly helps the model to learn the effect of gravity, we apply a rotation around a non-gravity

Table

Gravity

𝑡

Figure 6: Rotation around a non-gravity axis.

axis, resulting in scenarios in Fig. 6 where domi-
noes are placed on an incline while gravity
still points downwards vertically. Interestingly,
SGNN well generalizes to this novel scenario
and reasonably simulates the effect of gravity.
Particularly, the domino at the bottom starts to
slide down along the table driven by gravity.
More visualizations are provided in the video.

Qualitative comparisons. We provide visual-
ization samples on Physion in Fig. 4. More cases are shown by our Supplementary Video. Our model
consistently yields accurate predictions across various scenarios.

4.3 Evaluation on RigidFall

Table 3: Rollout MSE (×10−2) on RigidFall. |Train| denotes the number of training samples.

|Train| = 200 |Train| = 500 |Train| = 1000 |Train| = 5000
t = 20 t = 40 t = 20 t = 40 t = 20 t = 40 t = 20 t = 40

GNS [30] 2.40±1.32 6.79±3.43 1.89±0.87 5.41±2.78 1.09±0.70 3.38±2.15 0.65±0.43 2.38±1.66

DPI [22] 1.71±0.87 5.37±2.86 1.48±0.78 4.67±2.55 1.24±0.72 3.97±2.35 0.52±0.36 2.40±1.53

EGNN [32] 1.89±1.34 5.66±2.81 1.07±0.71 3.94±2.20 0.95±0.44 2.72±1.75 0.78±0.45 2.63±1.72

GMN [17] 2.74±1.24 7.08±3.37 2.50±0.98 6.34±3.11 1.91±1.10 4.50±2.21 1.36±0.63 3.50±1.98

Our SGNN 0.72±0.60 2.44±1.74 0.39±0.23 1.47±1.26 0.31±0.17 1.09±0.93 0.20±0.14 1.01±0.97

Experimental setup. We use the code provided by [22]. We record the rollout MSE at t = 20 and 40.
To compare the data efficiency of different models, we consider four cases with the size of training
set ranging from 200 to 5000. More details are in Appendix B.

Results. The results are presented in Table 3 and visualized in Fig. 7. Our model consistently yields
the best predictions regardless of the time step t and the size of training set. Notably, the rollout
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Figure 7: Visualization examples on RigidFall. Our SGNN provides accurate simulation trajectories.

error still maintains very low even if only 200 training samples are provided, verifying the strong
data-efficiency and generalization of SGNN.

5 Discussion

Limitations and Future Work. Our model relies on the particle-based representation of the physical
systems, which, in real-world scenarios, might be difficult to obtain, or usually with noise. Our model
does not explicitly consider self-contact. Future directions include augmenting our dynamics model
with strong physical priors like Hamiltonian [29, 39], or combining it with groundings of visual
prior [21] with application to more sophisticated tasks like physical reasoning or robot manipulation.

Conclusion. We propose Subequivariant Graph Neural Networks for modeling physical dynamics
of multiple interacting objects. We inject appropriate symmetry into a hierarchical message passing
framework, and takes into account both particle- and object-level state messages. In particular,
subequivariance is a novel concept for characterizing the relaxation of equivariance from a group to
its subgroup. We show that relaxation from full equivariance to subequivariance can be applied to
systems with gravity involved. Experiments verify that SGNN accurately captures the dynamics with
the guarantee of the desirable symmetry, and exhibits strong generalization with high data-efficiency.
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