
A Further Related Work on Nonsmooth Nonconvex Optimization

To appreciate the difficulty and the broad scope of the research agenda in nonsmooth nonconvex
optimization, we start by describing the existing relevant literature. First, the existing work is mostly
devoted to establishing the asymptotic convergence properties of various optimization algorithms,
including gradient sampling (GS) methods [16–18, 57, 19], bundle methods [56, 40] and subgradient
methods [8, 65, 30, 28, 12]. More specifically, Burke et al. [16] provided a systematic investigation
of approximating the Clarke subdifferential through random sampling and proposed a gradient
bundle method [17]—the precursor of GS methods—for optimizing a nonconvex, nonsmooth and
non-Lipschitz function. Later, Burke et al. [18] and Kiwiel [57] proposed the GS methods by
incorporating key modifications into the algorithmic scheme in Burke et al. [17] and proved that every
cluster point of the iterates generated by GS methods is a Clarke stationary point. For an overview
of GS methods, we refer to Burke et al. [19]. Another line of works extended the bundle methods
to nonsmooth nonconvex optimization by considering either piece-wise linear models embedding
possible downward shifting [56] or a mixture of linear pieces that exhibit a convex or concave
behavior [40]. There has been recent progress on analyzing subgradient methods for nonsmooth
nonconvex optimization; indeed, the classical subgradient method on Lipschitz functions may fail
to asymptotically find any stationary point due to the pathological examples [28]. Under some
additional regularity conditions, Benaïm et al. [8] proved the asymptotic convergence of stochastic
approximation methods from a continuous-time viewpoint and Majewski et al. [65] generalized
these results with proximal and implicit updates. Bolte and Pauwels [12] justify the automatic
differentiation schemes under the nonsmoothness conditions; Davis et al. [30] proved the asymptotic
convergence of classical subgradient methods for a class of Whitney stratifiable functions which
include the functions studied in Majewski et al. [65]. Recently, Zhang et al. [85] modified Goldstein’s
subgradient method [46] to optimize a class of Hadamard directionally differentiable function and
proved nonasymptotic convergence guarantee. Davis et al. [31] relaxed the assumption of Hadamard
directionally differentiability and showed that another modification of Goldstein’s subgradient method
could achieve the same finite-time guarantee for any Lipschitz function. Concurrently, Tian et al. [80]
removed the subgradient selection oracle assumption in Zhang et al. [85, Assumption 1] and provided
the third modification of Goldstein’s subgradient method with the same finite-time convergence.
Different from these gradient-based methods, we focus on the gradient-free methods in this paper.

We are also aware of many recent works on the algorithmic design in the structured nonsmooth
nonconvex optimization. There are two primary settings where the proximal gradient methods is
guaranteed to achieve nonasymptotic convergence if the proximal mapping can be efficiently evaluated.
The former one considers the objective function with composition structure [35, 33, 29], while the
latter one focuses on composite objective functions with nonsmooth convex component [14, 7].
However, both of these settings require the weak convexity of objective function and exclude many
simple and important nonsmooth nonconvex functions used in the real-world application problems.

B Proof of Proposition 2.3

Throughout this subsection, we let u ∈ Rd denote a random variable distributed uniformly on B1(0).
For the first statement, since f is L-Lipschitz, we have

|fδ(x)− f(x)| = |E[f(x + δu)− f(x)]| ≤ δL · E[‖u‖] ≤ δL.
Then, we proceed to prove the second statement. Indeed, Bertsekas [9, Proposition 2.4] guarantees
that fδ is everywhere differentiable. Since f is L-Lipschitz, we have
|fδ(x)−fδ(x′)| = |E[f(x+δu)−f(x′+δu)]| ≤ L|E[‖x−x′‖]| = L‖x−x′‖, for all x,x′ ∈ Rd.
It remains to prove that ∇fδ is Lipschitz. Since f is L-Lipschitz, the Rademacher’s theorem
guarantees that f is almost everywhere differentiable. This implies that ∇fδ(x) = E[∇f(x + δu)].
Then, we have

‖∇fδ(x)−∇fδ(x′)‖ = ‖E[∇f(x + δu)]− E[∇f(x′ + δu)]‖

= 1
Vol(B1(0))

∣∣∣∣∣
∫
u∈B1(0)

∇f(x + δu) du−
∫
u∈B1(0)

∇f(x′ + δu) du

∣∣∣∣∣
= 1

Vol(Bδ(0))

∣∣∣∣∣
∫
y∈Bδ(x)

∇f(y) dy −
∫
y∈Bδ(x′)

∇f(y) dy

∣∣∣∣∣ .
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Note that f is L-Lipschitz, we have ‖∇f(y)‖ ≤ L for any y ∈ Bδ(x) ∪ Bδ(x′). Then, we turn to
prove that ‖∇fδ(x)−∇fδ(x′)‖ ≤ L

√
d‖x−x′‖
δ for two different cases one by one as follows.

Case I: ‖x− x′‖ ≥ 2δ. It is clear that

‖∇fδ(x)−∇fδ(x′)‖ ≤ 2L ≤ L‖x−x′‖
δ

d≥1

≤ L
√
d‖x−x′‖
δ ,

which implies the desired result.

Case II: ‖x− x′‖ ≤ 2δ. It is clear that Bδ(x) ∩ Bδ(x′) 6= ∅. This implies that

‖∇fδ(x)−∇fδ(x′)‖ = 1
Vol(Bδ(0))

∣∣∣∣∣
∫
y∈Bδ(x)\Bδ(x′)

∇f(y) dy −
∫
y∈Bδ(x′)\Bδ(x)

∇f(y) dy

∣∣∣∣∣ .
Since ‖∇f(y)‖ ≤ L for any y ∈ Bδ(x) ∪ Bδ(x′), we have

‖∇fδ(x)−∇fδ(x′)‖ ≤ L
Vol(Bδ(0)) (Vol(Bδ(x) \ Bδ(x′)) + Vol(Bδ(x′) \ Bδ(x))) .

By the symmetry from a geometrical point of view, we have Vol(Bδ(x) \ Bδ(x′)) = Vol(Bδ(x′) \
Bδ(x)). For simplicity, we let I = Bδ(x) \ Bδ(x′) and obtain that

‖∇fδ(x)−∇fδ(x′)‖ ≤ 2L
Vol(Bδ(0)) Vol(I) = 2L

cdδd
Vol(I), where cd = πd/2

Γ(d/2+1) .

It suffices to find an upper bound for Vol(I) in terms of ‖x− x′‖. Let Vcap(p) denote the volume of
the spherical cap with the distance p from the center of the sphere, we have

Vol(I) = Vol(Bδ(0))− 2Vcap(
1
2‖x− x′‖) = cdδ

d − 2Vcap(
1
2‖x− x′‖).

The volume of the d-dimensional spherical cap with distance p from the center of the sphere can be
calculated in terms of the volumes of (d− 1)-dimensional spheres as follows:

Vcap(p) =

∫ δ

p

cd−1(δ2 − ρ2)
d−1
2 dρ, for all p ∈ [0, δ].

Since Vcap(·) is a convex function over [0, δ], we have Vcap(p) ≥ Vcap(0) + V ′cap(0)p. By the
definition, we have Vcap(0) = 1

2 Vol(Bδ(0)) = 1
2cdδ

d and V ′cap(0) = −cd−1δ
d−1. Thus, Vcap(p) ≥

1
2cdδ

d − cd−1δ
d−1p. Furthermore, 1

2‖x − x′‖ ∈ [0, δ]. Putting these pieces together yields that
Vol(I) ≤ cd−1δ

d−1‖x− x′‖. Therefore, we conclude that

‖∇fδ(x)−∇fδ(x′)‖ ≤ 2L
cdδd

Vol(I) ≤ 2cd−1

cd

L‖x−x′‖
δ .

Since cd = πd/2

Γ(d/2+1) , we have 2cd−1

cd
=

{
d!!

(d−1)!! if d is odd,
2
π

d!!
(d−1)!! otherwise.

and 1√
d

2cd−1

cd
→
√

π
2 . Therefore,

we conclude that the gradient ∇fδ is cL
√
d

δ -Lipschitz where c > 0 is a positive constant. In addition,
for the construction of a function f in which each of the above bounds are tight, we consider a convex
combination of “difficult" functions, in this case

f1(x) = L‖x‖, f2(x) = L|〈x, w
‖w‖ 〉 −

1
2 |.

and choose f(x) = 1
2 (f1(x) + f2(x)). Following up the same argument as in Duchi et al. [36,

Lemma 10], it is relatively straightforward to verify that the bounds in Proposition 2.3 cannot be
improved by more than a constant factor. This completes the proof.

C Proof of Theorem 3.1

We first show that∇fδ(x) = Eu∼P[∇f(x + δu)]. Indeed, by the definition of fδ , we have

fδ(x) = Eu∼P[f(x + δu)] = 1
Vol(B1(0))

∫
u∈B1(0)

f(x + δu) du = 1
Vol(Bδ(0))

∫
v∈Bδ(0)

f(x + v) dv.
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Since f is L-Lipschitz, Bertsekas [9, Proposition 2.3] guarantees that fδ is everywhere differentiable.
Thus, we have ∇fδ(x) exists for any x ∈ Rd and satisfies that

lim
‖h‖→0

|fδ(x+h)−fδ(x)−〈∇fδ(x),h〉|
‖h‖ = 0. (C.1)

Further, we have

fδ(x+h)−fδ(x)
‖h‖ = 1

Vol(Bδ(0))

∫
v∈Bδ(0)

f(x+h+v)−f(x+v)
‖h‖ dv

Since f is L-Lipschitz, we have f(x+h+v)−f(x+v)
‖h‖ ≤ L. By the dominated convergence theorem,

we have

lim
‖h‖→0

fδ(x+h)−fδ(x)
‖h‖ = 1

Vol(Bδ(0))

∫
v∈Bδ(0)

(
lim
‖h‖→0

f(x+h+v)−f(x+v)
‖h‖

)
dv

Furthermore, Rademacher’s theorem guarantees that f is almost everywhere differentiable. Letting
U ⊆ Bδ(0) such that Vol(U) = Vol(Bδ(0)) and f is differentiable at x + v for ∀v ∈ U , we have

lim
‖h‖→0

fδ(x+h)−fδ(x)
‖h‖ = 1

Vol(U)

∫
v∈U

(
lim
‖h‖→0

f(x+h+v)−f(x+v)
‖h‖

)
dv, (C.2)

and
lim
‖h‖→0

|f(x+h+v)−f(x+v)−〈∇f(x+v),h〉|
‖h‖ = 0. (C.3)

Combining Eq. (C.1), Eq (C.2) and Eq. (C.3) together yields that

lim
‖h‖→0

|〈∇fδ(x)−Eu∼P[∇f(x+δu)],h〉|
‖h‖ = 0.

Choosing h = t(∇fδ(x) − Eu∼P[∇f(x + δu)]) with t → 0, we have ‖∇fδ(x) − Eu∼P[∇f(x +
δu)]‖ = 0.

It remains to show that∇fδ(x) ∈ ∂δf(x) for any x ∈ Rd using the proof argument by contradiction.
In particular, we assume that there exists x0 ∈ Rd such that∇fδ(x0) /∈ ∂δf(x0). Recall that

∂δf(x0) := conv(∪y∈Bδ(x0)∂f(y)),

By the hyperplane separation theorem [74], there exists a unit vector g ∈ Rd such that
〈g,∇fδ(x0)〉 > 0 and

〈g, ξ〉 ≤ 0, for any ξ ∈ ∪y∈Bδ(x0)∂f(y). (C.4)

However, we already obtain that∇fδ(x) = Eu∼P[∇f(x + δu)] which implies that

∇fδ(x0) = 1
Vol(B1(0))

∫
u∈B1(0)

∇f(x0 + δu) du = 1
Vol(Bδ(0))

∫
y∈Bδ(x0)

∇f(y) dy.

Thus, Eq. (C.4) implies that 〈g,∇fδ(x0)〉 ≤ 0 which leads to a contradiction. Therefore, we conclude
that∇fδ(x) ∈ ∂δf(x) for any x ∈ Rd. This completes the proof.

D Missing Proofs for Gradient-Free Methods

In this section, we present some technical lemmas for analyzing the convergence property of gradient-
free method and its two-phase version. We also give the proofs of Theorem 3.2 and 3.4.

D.1 Technical lemmas

We provide two technical lemmas for analyzing Algorithm 1. The first lemma is a restatement
of Shamir [75, Lemma 10] which gives an upper bound on the quantity E[‖gt‖2|xt] in terms of
problem dimension d ≥ 1 and the Lipschitz parameter L > 0. For the sake of completeness, we
provide the proof details.

Lemma D.1 Suppose that f is L-Lipschitz and let {gt}T−1
t=0 and {xt}T−1

t=0 be generated by Algo-
rithm 1. Then, we have E[gt|xt] = ∇fδ(xt) and E[‖gt‖2|xt] ≤ 16

√
2πdL2.
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Proof. By the definition of gt and the symmetry of the distribution of wt, we have

E[gt | xt] = E
[
d
2δ (f(xt + δwt)− f(xt − δwt))wt | xt

]
= 1

2

(
E
[
d
δ f(xt + δwt)wt | xt

]
+ E

[
d
δ f(xt + δ(−wt))(−wt) | xt

])
= 1

2

(
∇fδ(xt) +∇fδ(xt)

)
= ∇fδ(xt).

It remains to show that E[‖gt‖2 | xt] ≤ 16
√

2πdL2. Indeed, since ‖wt‖ = 1, we have

E[‖gt‖2 | xt] = E
[
d2

4δ2 (f(xt + δwt)− f(xt − δwt))2‖wt‖2 | xt
]
≤ E

[
d2

4δ2 (f(xt + δwt)− f(xt − δwt))2 | xt
]
.

Using the elementary inequality (a− b)2 ≤ 2a2 + 2b2, we have

E[(f(xt + δwt)− f(xt − δwt))2 | xt]
= E[(f(xt + δwt)− E[f(xt + δwt) | xt]− (f(xt − δwt)− E[f(xt + δwt) | xt]))2 | xt]
≤ 2E[(f(xt + δwt)− E[f(xt + δwt) | xt])2 | xt] + 2E[(f(xt − δwt)− E[f(xt + δwt) | xt])2 | xt].

Since wt has a symmetric distribution around the origin, we have

E[(f(xt + δwt)− E[f(xt + δwt) | xt])2 | xt] = E[(f(xt − δwt)− E[f(xt + δwt) | xt])2 | xt].
Putting these pieces together yields that

E[‖gt‖2 | xt] ≤ d2

δ2E[(f(xt + δwt)− E[f(xt + δwt) | xt])2 | xt]. (D.1)

For simplicity, we let h(w) = f(xt + δw). Since f is L-Lipschitz, this function h is δL-Lipschitz
given a fixed xt. In addition, wt ∈ Rd is sampled uniformly from a unit sphere. Then, by Wainwright
[81, Proposition 3.11 and Example 3.12], we have

P(|h(wt)− E[h(wt)]| ≥ α) ≤ 2
√

2πe−
α2d

8δ2L2 .

Then, we have

E[(h(wt)− E[h(wt)])2] =

∫ +∞

0

P((h(wt)− E[h(wt)])2 ≥ α) dα

=

∫ +∞

0

P(|h(wt)− E[h(wt)]| ≥
√
α) dα ≤ 2

√
2π

∫ +∞

0

e−
αd

8δ2L2 dα

= 2
√

2π · 8δ2L2

d = 16
√

2πδ2L2

d .

By the definition of h, we have

E[(f(xt + δwt)− E[f(xt + δwt) | xt])2 | xt] ≤ 16
√

2πδ2L2

d . (D.2)

Combining Eq. (D.1) and Eq. (D.2) yields the desired inequality. �

The second lemma gives a key descent inequality for analyzing Algorithm 1.

Lemma D.2 Suppose that f is L-Lipschitz and let {xt}T−1
t=0 be generated by Algorithm 1. Then, we

have

E[‖∇fδ(xt)‖2] ≤ E[fδ(x
t)]−E[fδ(x

t+1)]
η + η · (8

√
2π)cd3/2L3

δ , for all 0 ≤ t ≤ T − 1.

where c > 0 is a constant appearing in the smoothing parameter of fδ (cf. Proposition 2.3).

Proof. By Proposition 2.3, we have fδ is differentiable and L-Lipschitz with the cL
√
d

δ -Lipschitz
gradient where c > 0 is a constant. This implies that

fδ(x
t+1) ≤ fδ(xt)− η〈∇fδ(xt),gt〉+ cη2L

√
d

2δ ‖gt‖2.

Taking the expectation of both sides conditioned on xt and using Lemma D.1, we have

E[fδ(x
t+1) | xt] ≤ fδ(x

t)− η〈∇fδ(xt),E[gt | xt]〉+ cη2L
√
d

2δ E[‖gt‖2 | xt]

≤ fδ(x
t)− η‖∇fδ(xt)‖2 + η2 · cL

√
d

2δ · 16
√

2πdL2

= fδ(x
t)− η‖∇fδ(xt)‖2 + η2 · (8

√
2π)cd3/2L3δ−1.
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Taking the expectation of both sides and rearranging yields that

E[‖∇fδ(xt)‖2] ≤ E[fδ(x
t)]−E[fδ(x

t+1)]
η + η · (8

√
2π)cd3/2L3

δ .

This completes the proof. �

We also present a proposition which is crucial to deriving the large deviation property of Algorithm 2.

Proposition D.3 Suppose that Ω is a polish space with a Borel probability measure P and let
{∅,Ω} = F0 ⊆ F1 ⊆ F2 ⊆ . . . be a sequence of filtration. For an integer N ≥ 1, we define a
martingale-difference sequence of Borel functions {ζk}Nk=1 ⊆ Rn such that ζk is Fk-measurable and
E[ζk | Fk−1] = 0. Then, if E[‖ζk‖2] ≤ σ2

k for all k ≥ 1, we have E[‖
∑N
k=1 ζk‖2] ≤

∑N
k=1 σ

2
k and

the following statement holds true,

Prob

∥∥∥∥∥
N∑
k=1

ζk

∥∥∥∥∥
2

≥ λ
N∑
k=1

σ2
k

 ≤ 1
λ , for all λ ≥ 0.

This is a general result concerning about the large deviations of vector martingales; see, e.g., Juditsky
and Nemirovski [54, Theorem 2.1] or Ghadimi and Lan [44, Lemma 2.3].

D.2 Proof of Theorem 3.2

Summing up the inequality in Lemma D.2 over t = 0, 1, 2, . . . , T − 1 yields that
T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤ fδ(x
0)−E[fδ(x

T )]
η + η · (8

√
2π)cd3/2L3T

δ .

By Proposition 2.3, we have f(x0) ≤ fδ(x0) ≤ f(x0) + δL. In addition, we see from the definition
of fδ that fδ(x) ≥ infx∈Rd f(x) for any x ∈ Rd and thus E[fδ(x

T )] ≥ infx∈Rd f(x). Putting these
pieces together with f ∈ Fd(∆, L) yields that

fδ(x
0)− E[fδ(x

T )] ≤ f(x0)− inf
x∈Rd

f(x) + δL ≤ ∆ + δL.

Therefore, we conclude that

1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ ∆+δL

ηT + η · (8
√

2π)cd3/2L3

δ ≤ ∆+δL
ηT + η · 100cd3/2L3

δ .

Recalling that η = 1
10

√
δ(∆+δL)
cd3/2L3T

, we have

1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ 20

√
cd3/2L3

T (L+ ∆
δ ).

Since the random count R ∈ {0, 1, 2, . . . , T − 1} is uniformly sampled, we have

E[‖∇fδ(xR)‖2] = 1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ 20

√
cd3/2L3

T (L+ ∆
δ ). (D.3)

By Theorem 3.1, we have∇fδ(xR) ∈ ∂δf(xR). This together with the above inequality implies that

E[min{‖g‖ : g ∈ ∂δf(xR)}] ≤ E[‖∇fδ(xR)‖] ≤ 5
(
cd3/2L3

T (L+ ∆
δ )
) 1

4

.

Therefore, we conclude that there exists some T > 0 such that the output of Algorithm 1 satisfies
that E[min{‖g‖ : g ∈ ∂δf(xR)}] ≤ ε and the total number of calling the function value oracles is
bounded by

O

(
d

3
2

(
L4

ε4
+

∆L3

δε4

))
.

This completes the proof.
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D.3 Proof of Theorem 3.4

By the definition of s? and using the Cauchy -Schwarz inequality, we have

‖gs?‖2 = min
s=0,1,2,...,S−1

‖gs‖2 ≤ min
s=0,1,2,...,S−1

{
2‖∇fδ(x̄s)‖2 + 2‖gs −∇fδ(x̄s)‖2

}
(D.4)

≤ 2

(
min

s=0,1,2,...,S−1
‖∇fδ(x̄s)‖2 + max

s=0,1,2,...,S−1
‖gs −∇fδ(x̄s)‖2

)
.

This implies that

‖∇fδ(x̄s?)‖2 ≤ 2‖gs?‖2 + 2‖gs? −∇fδ(x̄s?)‖2 (D.5)
Eq. (D.4)
≤ 4

(
min

s=0,1,2,...,S−1
‖∇fδ(x̄s)‖2

)
+ 4

(
max

s=0,1,2,...,S−1
‖gs −∇fδ(x̄s)‖2

)
+ 2‖gs? −∇fδ(x̄s?)‖2.

The next step is to provide the probabilistic bounds on all the terms in the right-hand side of Eq. (D.5).
In particular, for each s = 0, 1, 2, . . . , S− 1, we have x̄s is an output obtained by calling Algorithm 1

with x0, d, δ, T and η = 1
10

√
δ(∆+δL)
cd3/2L3T

. Then, Eq. (D.3) in the proof of Theorem 3.2 implies that

E[‖∇fδ(x̄s)‖2] ≤ 20

√
cd3/2L3

T (L+ ∆
δ ).

Using the Markov’s inequality, we have

Prob
(
‖∇fδ(x̄s)‖2 ≥ 40

√
cd3/2L3

T (L+ ∆
δ )

)
≤ 1

2 .

Thus, we have

Prob
(

min
s=0,1,2,...,S−1

‖∇fδ(x̄s)‖2 ≥ 40

√
cd3/2L3

T (L+ ∆
δ )

)
≤ 2−S . (D.6)

Further, for each s = 0, 1, 2, . . . , S − 1, we have

gs −∇fδ(x̄s) = 1
B

B−1∑
k=0

(gks −∇fδ(x̄s)).

By Lemma D.1, we have E[gts|x̄s] = ∇fδ(x̄s) and E[‖gts‖2|x̄s] ≤ 16
√

2πdL2. This implies that

E[gts −∇fδ(x̄s)|x̄s] = 0, E[‖gts −∇fδ(x̄s)‖2] ≤ 16
√

2πdL2.

This together with Proposition D.3 yields that

Prob
(
‖gs −∇fδ(x̄s)‖2 ≥ λ(16

√
2πdL2)
B

)
= Prob

∥∥∥∥∥
B−1∑
k=0

(gks −∇fδ(x̄s))

∥∥∥∥∥
2

≥ λB(16
√

2πdL2)

 ≤ 1
λ .

Therefore, we conclude that

Prob
(

max
s=0,1,2,...,S−1

‖gs −∇fδ(x̄s)‖2 ≥ λ(16
√

2πdL2)
B

)
≤ S

λ . (D.7)

By the similar argument, we have

Prob(‖gs? −∇fδ(x̄s?)‖2 ≥ λ(16
√

2πdL2)
B ) ≤ 1

λ . (D.8)

Combining Eq. (D.5), Eq. (D.6), Eq. (D.7) and Eq. (D.8) yields that

Prob
(
‖∇fδ(x̄s?)‖2 ≥ 160

√
cd3/2L3

T (L+ ∆
δ ) + λ(96

√
2πdL2)
B

)
≤ S+1

λ + 2−S , for all λ > 0.

(D.9)
We set λ = 2(S+1)

Λ and the parameters (T, S,B) as follows,

T = cd3/2L3(L+ ∆
δ )( 160

ε2 )2, S = dlog2( 2
Λ )e, B = (384

√
2πdL2)(S+1)

Λε2 .
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Then, we have

Prob
(
‖∇fδ(x̄s?)‖2 ≥ ε2

)
≤ Prob

(
‖∇fδ(x̄s?)‖2 ≥ 160

√
cd3/2L3

T (L+ ∆
δ ) + λ(96

√
2πdL2)
B

)
≤ Λ.

By Theorem 3.1, we have ∇fδ(x̄s?) ∈ ∂δf(x̄s?). This together with the above inequality implies
that there exists some T, S,B > 0 such that the output of Algorithm 2 satisfies that E[min{‖g‖ :
g ∈ ∂δf(x̄s?)}] ≤ ε and the total number of calling the function value oracles is bounded by

O

(
d

3
2

(
L4

ε4
+

∆L3

δε4

)
log2

(
1

Λ

)
+
dL2

Λε2
log2

(
1

Λ

))
.

This completes the proof.

E Missing Proofs for Stochastic Gradient-Free Methods

In this section, we present some technical lemmas for analyzing the convergence property of stochastic
gradient-free method and its two-phase version. We also give the proofs of Theorem 3.5 and 3.6.

E.1 Technical lemmas

We provide two technical lemmas for analyzing Algorithm 3. The first lemma gives an upper bound
on the quantity E[‖ĝt‖2|xt] in terms of problem dimension d ≥ 1 and the constant G > 0. The proof
is based on a modification of the proof of Lemma D.1.

Lemma E.1 Suppose that {ĝt}T−1
t=0 and {xt}T−1

t=0 are generated by Algorithm 3. Then, we have
E[ĝt|xt] = ∇fδ(xt) and E[‖ĝt‖2|xt] ≤ 16

√
2πdG2.

Proof. By the definition of ĝt and the symmetry of the distribution of wt, we have

E[ĝt | xt] = E
[
d
2δ (F (xt + δwt, ξt)− F (xt − δwt, ξt))wt | xt

]
= 1

2

(
E
[
d
δF (xt + δwt, ξt)wt | xt

]
+ E

[
d
δF (xt + δ(−wt), ξt)(−wt) | xt

])
= E

[
d
δF (xt + δwt, ξt)wt | xt

]
.

By the tower property, we have

E[ĝt | xt] = E
[
d
δE[F (xt + δwt, ξt)wt | xt,wt] | xt

]
= E

[
d
δ f(xt + δwt)wt | xt

]
= ∇fδ(xt).

It remains to show that E[‖ĝt‖2 | xt] ≤ 16
√

2πdG2. Indeed, by using the same argument as used in
the proof of Lemma D.1, we have

E[‖ĝt‖2|xt] ≤ d2

δ2E[(F (xt + δwt, ξt)− E[F (xt + δwt, ξt) | xt, ξt])2 | xt]. (E.1)

For simplicity, we let h(w) = F (xt + δw, ξt). Since F (·, ξ) is L(ξ)-Lipschitz, this function h is
δL(ξt)-Lipschitz given a fixed xt and ξt. In addition, wt ∈ Rd is sampled uniformly from a unit
sphere. Then, by Wainwright [81, Proposition 3.11 and Example 3.12], we have

P(|h(wt)− E[h(wt)]| ≥ α) ≤ 2
√

2πe
− α2d

8δ2L(ξt)2 .

Then, we have

E[(h(wt)− E[h(wt)])2] =

∫ +∞

0

P((h(wt)− E[h(wt)])2 ≥ α) dα

=

∫ +∞

0

P(|h(wt)− E[h(wt)]| ≥
√
α) dα ≤ 2

√
2π

∫ +∞

0

e
− αd

8δ2L(ξt)2 dα

= 2
√

2π · 8δ2L(ξt)2

d = 16
√

2πδ2L(ξt)2

d .

By the definition of h, we have

E[(F (xt + δwt, ξt)− E[F (xt + δwt, ξt) | xt, ξt])2 | xt] ≤ 16
√

2πδ2

d E[L(ξt)2].
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Since ξt is simulated from the distribution Pµ, we have E[L(ξt)2] ≤ G2. Plugging this into the above
inequality, we have

E[(F (xt + δwt, ξt)− E[F (xt + δwt, ξt) | xt, ξt])2 | xt] ≤ 16
√

2πδ2G2

d (E.2)

Combining Eq. (E.1) and Eq. (E.2) yields the desired inequality. �

The second lemma gives a key descent inequality for analyzing Algorithm 3.

Lemma E.2 Suppose that {xt}T−1
t=0 are generated by Algorithm 3. Then, we have

E[‖∇fδ(xt)‖2] ≤ E[fδ(x
t)]−E[fδ(x

t+1)]
η + η · (8

√
2π)cd3/2G3

δ , for all 0 ≤ t ≤ T − 1.

Proof. Since f(·) = Eξ∈Pµ [F (·, ξ)] and F (·, ξ) is L(ξ)-Lipschitz with Eξ∈Pµ [L2(ξ)] ≤ G2 for some
G > 0, we have f is G-Lipschitz. Then, by Proposition 2.3, we have fδ is differentiable with the
cG
√
d

δ -Lipschitz gradient where c > 0 is a constant. This implies that

fδ(x
t+1) ≤ fδ(xt)− η〈∇fδ(xt), ĝt〉+ cη2G

√
d

2δ ‖ĝt‖2.

Taking the expectation of both sides conditioned on xt and using Lemma E.1, we have

E[fδ(x
t+1) | xt] ≤ fδ(x

t)− η〈∇fδ(xt),E[ĝt | xt]〉+ cη2G
√
d

2δ E[‖ĝt‖2 | xt]

≤ fδ(x
t)− η‖∇fδ(xt)‖2 + η2 · cG

√
d

2δ · 16
√

2πdG2

= fδ(x
t)− η‖∇fδ(xt)‖2 + η2 · (8

√
2π)cd3/2G3

δ .

Taking the expectation of both sides and rearranging yields that

E[‖∇fδ(xt)‖2] ≤ E[fδ(x
t)]−E[fδ(x

t+1)]
η + η · (8

√
2π)cd3/2G3

δ .

This completes the proof. �

E.2 Proof of Theorem 3.5

Summing up the inequality in Lemma E.2 over t = 0, 1, 2, . . . , T − 1 yields that
T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤ fδ(x
0)−E[fδ(x

T )]
η + η · (8

√
2π)cd3/2G3T

δ .

Since f(·) = Eξ∈Pµ [F (·, ξ)] and F (·, ξ) is L(ξ)-Lipschitz with Eξ∈Pµ [L2(ξ)] ≤ G2 for someG > 0,
we have f is G-Lipschitz. Thus, we have f ∈ Fd(∆, L). By using the same argument as used in the
proof of Theorem 3.2, we have

1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ ∆+δG

ηT + η · (8
√

2π)cd3/2G3

δ ≤ ∆+δG
ηT + η · 100cd3/2G3

δ .

Recalling that η = 1
10

√
δ(∆+δG)
cd3/2G3T

, we have

1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ 20

√
cd3/2G3

T (G+ ∆
δ ).

Since the random count R ∈ {0, 1, 2, . . . , T − 1} is uniformly sampled, we have

E[‖∇fδ(xR)‖2] = 1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ 20

√
cd3/2G3

T (G+ ∆
δ ). (E.3)

By Theorem 3.1, we have∇fδ(xR) ∈ ∂δf(xR). This together with the above inequality implies that

E[min{‖g‖ : g ∈ ∂δf(xR)}] ≤ E[‖∇fδ(xR)‖] ≤ 5
(
cd3/2G3

T (G+ ∆
δ )
) 1

4

.
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Therefore, we conclude that there exists some T > 0 such that the output of Algorithm 3 satisfies
that E[min{‖g‖ : g ∈ ∂δf(xR)}] ≤ ε and the total number of calling the function value oracles is
bounded by

O

(
d

3
2

(
G4

ε4
+

∆G3

δε4

))
.

This completes the proof.

E.3 Proof of Theorem 3.6

By the definition of s? and using the Cauchy -Schwarz inequality, we have

‖ĝs?‖2 = min
s=0,1,2,...,S−1

‖ĝs‖2 ≤ min
s=0,1,2,...,S−1

{
2‖∇fδ(x̄s)‖2 + 2‖ĝs −∇fδ(x̄s)‖2

}
(E.4)

≤ 2

(
min

s=0,1,2,...,S−1
‖∇fδ(x̄s)‖2 + max

s=0,1,2,...,S−1
‖ĝs −∇fδ(x̄s)‖2

)
.

This implies that

‖∇fδ(x̄s?)‖2 ≤ 2‖ĝs?‖2 + 2‖ĝs? −∇fδ(x̄s?)‖2 (E.5)
Eq. (E.4)
≤ 4

(
min

s=0,1,2,...,S−1
‖∇fδ(x̄s)‖2

)
+ 4

(
max

s=0,1,2,...,S−1
‖ĝs −∇fδ(x̄s)‖2

)
+ 2‖ĝs? −∇fδ(x̄s?)‖2.

The next step is to provide the probabilistic bounds on all the terms in the right-hand side of Eq. (E.5).
In particular, for each s = 0, 1, 2, . . . , S−1, we have x̄s is an output obtained by calling Algorithm 3

with x0, d, δ, T and η = 1
10

√
δ(∆+δG)
cd3/2G3T

. Then, Eq. (E.3) in the proof of Theorem 3.5 implies that

E[‖∇fδ(x̄s)‖2] ≤ 20

√
cd3/2G3

T (G+ ∆
δ ).

Using the Markov’s inequality, we have

Prob
(
‖∇fδ(x̄s)‖2 ≥ 40

√
cd3/2G3

T (G+ ∆
δ )

)
≤ 1

2 .

Thus, we have

Prob
(

min
s=0,1,2,...,S−1

‖∇fδ(x̄s)‖2 ≥ 40

√
cd3/2G3

T (G+ ∆
δ )

)
≤ 2−S . (E.6)

Further, for each s = 0, 1, 2, . . . , S − 1, we have

ĝs −∇fδ(x̄s) = 1
B

B−1∑
k=0

(ĝks −∇fδ(x̄s)).

By Lemma E.1, we have E[ĝts|x̄s] = ∇fδ(x̄s) and E[‖ĝts‖2|x̄s] ≤ 16
√

2πdG2. This implies that

E[ĝts −∇fδ(x̄s)|x̄s] = 0, E[‖ĝts −∇fδ(x̄s)‖2] ≤ 16
√

2πdG2.

This together with Proposition D.3 yields that

Prob
(
‖ĝs −∇fδ(x̄s)‖2 ≥ λ(16

√
2πdG2)
B

)
= Prob

∥∥∥∥∥
B−1∑
k=0

(ĝks −∇fδ(x̄s))

∥∥∥∥∥
2

≥ λB(16
√

2πdG2)

 ≤ 1
λ .

Therefore, we conclude that

Prob
(

max
s=0,1,2,...,S−1

‖ĝs −∇fδ(x̄s)‖2 ≥ λ(16
√

2πdG2)
B

)
≤ S

λ . (E.7)

By the similar argument, we have

Prob(‖ĝs? −∇fδ(x̄s?)‖2 ≥ λ(16
√

2πdG2)
B ) ≤ 1

λ . (E.8)
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Figure 5: Addional experimental results on the CIFAR10 dataset [59]. (a-b) Performance of 2-SGFM with
different choices of B. (c-d) Performance of 2-SGFM and SGD.

Combining Eq. (E.5), Eq. (E.6), Eq. (E.7) and Eq. (E.8) yields that

Prob
(
‖∇fδ(x̄s?)‖2 ≥ 160

√
cd3/2G3

T (G+ ∆
δ ) + λ(96

√
2πdG2)
B

)
≤ S+1

λ + 2−S , for all λ > 0.

(E.9)
We set λ = 2(S+1)

Λ and the parameters (T, S,B) as follows,

T = cd3/2G3(G+ ∆
δ )( 160

ε2 )2, S = dlog2( 2
Λ )e, B = (384

√
2πdG2)(S+1)

Λε2 .

Then, we have

Prob
(
‖∇fδ(x̄s?)‖2 ≥ ε2

)
≤ Prob

(
‖∇fδ(x̄s?)‖2 ≥ 160

√
cd3/2G3

T (G+ ∆
δ ) + λ(96

√
2πdG2)
B

)
≤ Λ.

By Theorem 3.1, we have ∇fδ(x̄s?) ∈ ∂δf(x̄s?). This together with the above inequality implies
that there exists some T, S,B > 0 such that the output of Algorithm 4 satisfies that E[min{‖g‖ :
g ∈ ∂δf(x̄s?)}] ≤ ε and the total number of calling the function value oracles is bounded by

O

(
d

3
2

(
G4

ε4
+

∆G3

δε4

)
log2

(
1

Λ

)
+
dG2

Λε2
log2

(
1

Λ

))
.

This completes the proof.

F Additional Experimental Results on CIFRA10

We evaluate the performance of our two-phase version of SGFM (Algorithm 4) on the CIFAR10 [59]
dataset using convolutional neural networks (CNNs) with ReLU activations. We provide the detailed
information about the network architecture as follows,

class CNN_CIFAR(nn.Module):
def __init__(self):

super(CNN_CIFAR, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
out = F.relu(self.conv1(x))
out = F.max_pool2d(out, 2)
out = F.relu(self.conv2(out))
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), -1)
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
out = F.log_softmax(out, dim=1)
return out

Moreover, we summarize the experimental results in Figure 5. In Figure 5a and 5b, we study the
effect of batch size B ≥ 1 in 2-SGFM on the CIFAR10 dataset. In Figure 5c and 5d, We compare
the performance of SGD and 2-SGFM. Overall, these results show promising performance of our
proposed gradient-free method on solving real-world complex image classification problems.
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