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Abstract

In this paper, we study the generalization performance of overparameterized 3-
layer NTK models. We show that, for a specific set of ground-truth functions
(which we refer to as the “learnable set”), the test error of the overfitted 3-layer
NTK is upper bounded by an expression that decreases with the number of neu-
rons of the two hidden layers. Different from 2-layer NTK where there exists
only one hidden-layer, the 3-layer NTK involves interactions between two hidden-
layers. Our upper bound reveals that, between the two hidden-layers, the test error
descends faster with respect to the number of neurons in the second hidden-layer
(the one closer to the output) than with respect to that in the first hidden-layer (the
one closer to the input). We also show that the learnable set of 3-layer NTK with-
out bias is no smaller than that of 2-layer NTK models with various choices of
bias in the neurons. However, in terms of the actual generalization performance,
our results suggest that 3-layer NTK is much less sensitive to the choices of bias
than 2-layer NTK, especially when the input dimension is large.

1 Introduction

Neural tangent kernel (NTK) models (Jacot et al., 2018) have been recently studied as an impor-
tant intermediate step to understanding the exceptional generalization power of overparameterized
deep neural networks (DNNs). Deep neural networks (DNNs) usually have so many parameters that
they can perfectly fit all train data, yet they still have good generalization performance (Zhang et al.,
2017; Advani et al., 2020). This seems contradicting to the classical wisdom of “bias-variance-
tradeoff” in the statistical machine learning methods (Bishop, 2006; Hastie et al., 2009; Stein, 1956;
James & Stein, 1992; LeCun et al., 1991; Tikhonov, 1943). To understand this distinct behavior of
DNNs, a recent line of work studies the so-called “double-descent” phenomenon, beginning with
overfitted linear models. These results on linear models suggest that the test error indeed decreases
again in the overparameterized region, as the model complexity increases beyond the number of sam-
ples (Belkin et al., 2018, 2019; Bartlett et al., 2020; Hastie et al., 2019; Muthukumar et al., 2019;
Ju et al., 2020; Mei & Montanari, 2019). However, these studies use linear models with simple fea-
tures such as Gaussian or Fourier features, and hence they fail to capture the non-linearity in neural
networks. In contrast, NTK models adopt features generated by non-linear activation functions (i.e.,
neurons of DNNs), and thus they can be viewed as an intermediate step between simple linear mod-
els and DNNs. Along this line, the work in Ju et al. (2021) studies 2-layer NTK models, and shows
that the 2-layer NTK model indeed exhibits better and different descent behavior in the overparam-
eterized region, which might be closer to that of an actual neural network.

Motivated by Ju et al. (2021), it is of great interest to understand whether similar insights extend
to deeper NTK models. In particular, in this paper we study NTK models with 3 layers. Although
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both 2-layer and 3-layer NTK models share similar assumptions (e.g., trained weights do not change
much from initialization, and features are linearized around the initial state), their difference in struc-
ture leads to completely different feature formation. Compared with 2-layer NTK models that only
contain one hidden-layer of neurons, 3-layer NTK models have two hidden-layers, which interact
in more complex ways not observed in 2-layer NTK models. Specifically, let p1 and p2 denote the
number of neurons in the two hidden layers. Then, the ultimate features of the 3-layer NTK models
depend on both p1 and p2. This dependency leads to the following questions. First, the width of
which layer is more important in governing the descent behavior, p1 or p2? Further, to get better
descent behaviors, should p1 and p2 grow at the same speed, or should one of them grow faster
than the other? Second, do 3-layer NTK models have any performance advantage over 2-layer NTK
models?

To answer these questions, in this paper we study the generalization performance of overfitted min-
ℓ2-norm solutions for 3-layer NTK models where the middle layer is trained. For a set of learnable
functions (which we refer to as the “learnable set”), we provide an upper bound on the test error for
finite values of p1 and p2. To the best of our knowledge, this upper bound is the first result that can
reveal the dependency of the descent behavior on p1 and p2 separately. We then compare 3-layer
NTK with 2-layer NTK with respect to the corresponding learnable set and the actual generalization
performance. Our comparison reveals several important differences between 3-layer NTK and 2-
layer NTK, in terms of the descent behavior, the size of the learnable set, and the sensitivity of the
generalization performance to the choice of bias of the neurons.

Analyzing the Generalization Error: First, we show that the generalization error (denoted by the
absolute value of the difference between the model output and the ground-truth for a test input) is up-
per bounded by the sum of several terms on the order of O(1/

√
n) (n denotes the number of training

data), O(1/p2) (p2 denotes the number of neurons in the second hidden-layer), O( 4
√

log p1/p1) (p1
denotes the number of neurons in the first hidden-layer), plus another term related to the magnitude
of noise. Similar to 2-layer NTK (Arora et al., 2019; Ju et al., 2021; Satpathi & Srikant, 2021), our
upper bound suggests that when there are infinitely many neurons, the generalization error decreases
with the number of samples n at the speed of

√
n and will approach zero when n→∞ in the noise-

less situation. Further, the noise term will not explode when the number of neurons goes to infinity,
which is also similar to that for 2-layer NTK. However, our upper bound also reveals new insights
that are different from the results for 2-layer NTK. Specifically, our upper bound decreases slower

with respect to the number of neurons in the first hidden-layer p1 at the speed of 4
√

(log p1)/p1, and

decreases faster with respect to the number of neurons in the second1 hidden-layer p2 at the speed
of 1/

√
p2. Further, our upper bounds hold regardless of how fast p1 and p2 increase relative to each

other (e.g., they could increase at the same speed, or one could increase faster than the other).

Characterizing the Learnable Set: We then show that, even if we only train the middle-layer
weights, the learnable set (i.e., the set of ground-truth functions for which the above upper bound
holds) of the 3-layer NTK without bias contains all finite degree polynomials, which is strictly
larger than that of the 2-layer NTK without bias and is at least as large as the 2-layer NTK with bias.
Recently, Geifman et al. (2020); Chen & Xu (2020) show that when all layers are trained, 3-layer
NTK leads to exactly the same reproducing kernel Hilbert space (RKHS) as 2-layer NTK with biased
ReLU (although they assumed an infinite number of neurons, and did not characterize the descent
behavior of the generalization error). Combining with their results, we can draw the conclusion that
training only the middle-layer weights is at least as effective as training all layers in 3-layer NTK, in
terms of the size of the learnable set.

Sensitivity to the Choices of Bias: Even though a similar learnable set can be attained by 3-layer
NTK (with or without bias) and 2-layer NTK (with bias), our results suggest that the actual gener-
alization performance can still differ significantly in terms of the sensitivity to the choice of bias,
especially when the input dimension d is large. One type of bias setting commonly used in litera-
ture (Ghorbani et al., 2021a; Satpathi & Srikant, 2021) is that the bias has a similar magnitude as
each element of the input vector, which we refer to as “normal bias”. However, we show that such
a normal bias setting has a negative impact on the generalization error for overfitted 2-layer NTK
when d is large. To avoid this negative impact, it is important to use another type of bias setting
where the bias has a similar magnitude as the norm of the whole input vector, which we refer to as

1In this paper, the first hidden-layer denotes the one closer to the input layer, while the second hidden-layer
denotes the one closer to the output layer.
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Figure 1: A fully-connected three-layer neural network where input dimension d = 2, the number
of neurons of the first hidden-layer p1 = 3, and the number of neurons of the second hidden-layer
p2 = 4.

“balanced bias”. In contrast, for 3-layer NTK, different bias settings do not have an obvious effect
on the generalization performance. In summary, compared with 2-layer NTK, the use of an extra
non-linear layer in 3-layer NTK appears to significantly reduce the impact due to the choice of bias,
and therefore makes the learning more robust.

Our work is related to the growing literature on the generalization performance of such shallow
and fully-connected neural network. However, most of these studies focus on 2-layer neural net-
works. Among them, they differ in which layer to train. For example, Mei & Montanari (2019);
d’Ascoli et al. (2020); Mei et al. (2022) consider the “random feature” (RF) model that only trains
the top-layer weights and fixes the bottom-layer weights, while 2-layer NTK trains the bottom-layer
weights. In contrast, our work on 3-layer NTK neither trains the bottom-layer or top-layer weights.
Instead, we train the middle-layer weights, since the middle-layer of a 3-layer model involves the
interaction between two hidden-layers, which does not exist in 2-layer models. The above studies of
2-layer network also differ in how the number of neurons/features p, the number of training samples
n, and the input dimension d grow. Mei & Montanari (2019); Mei et al. (2022) study the generaliza-
tion performance of the RF model where the number of neurons p, the number of training data n,
and the input dimension grow proportionally to infinity. While Ghorbani et al. (2021b) focuses on
the approximation error (i.e., expressiveness) of both RF and NTK models, their analysis on general-
ization error is only on the limit n or p→∞. All of these studies are quite different from ours with
fixed n and finite p. Other works such as Arora et al. (2019); Satpathi & Srikant (2021); Fiat et al.
(2019) study the situation where the number of training samples n is given and the number of neu-
rons p is larger than a threshold, which is closer to our setup. However, these studies usually do
not quantify how the generalization performance depends on the number of neurons p. Specifically,
they usually provide an upper bound on the generalization error when the number of neurons p is
greater than a threshold, while the upper bound itself does not depend on p. Thus, such an upper
bound cannot explain the descent behavior of NTK models. The work in Ju et al. (2021) does study
the descent behavior with respect to p, and is therefore the closest to our work. However, as we have
explained earlier, there are crucial differences between 2 and 3 layers in both the descent behavior
and the learnable set of ground-truth functions. In addition to the above references, our work is
also related to Allen-Zhu et al. (2019) (which studies NTK without overfitting) and Ji & Telgarsky
(2019) (which studies classification by NTK). Their settings are however different from ours in that
we consider overfitted solutions for regression. In summary, our paper is the first to provide a high-
probability upper bound on the generalization error of the overfitted 3-layer NTK (where only its
middle layer weights are trained), and to characterize how the generalization error decreases with
the number of neurons p1 and p2.

2 System Model

Let f : Rd 7→ R denote the ground-truth function. Let (Xi, f(Xi) + ǫi), i = 1, 2, · · · , n denote

n pieces of training data, where X ∈ R
n×d is the matrix, each column of which is the input of one

training sample, ǫ ∈ R
n×1 denotes the noise in the output of training data. We define the training

output vector generated by the ground-truth function as F(X) := [f(X1) f(X2) · · · f(Xn)]
T ∈

R
n.
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We use a[j] to denote the j-th part (sub-vector) of the vector a. The part size depends on a. Specifi-
cally, If a has p1 elements, then each part has 1 elements. If a has dp1 elements, then each part has
d elements. If a has p1p2 elements, then each part has p1 elements.

We consider a fully-connected 3-layer neural network as illustrated in Fig. 1, which consists of
normalized d-dimensional input x ∈ Sd−1 (a unit hyper-sphere), p1 ReLUs (rectifier linear units
max(·, 0)) at the first hidden-layer, p2 ReLUs at the second hidden-layer, bottom-layer weights

(between input and 1st hidden-layer) V ∈ R
(p1d)×1, middle-layer weights (between 1st hidden-layer

and 2nd hidden-layer) W0 ∈ R
(p1p2)×1, and top-layer weights w ∈ R

p2×1 (between 2nd hidden-
layer and output).

2.1 Overfitted NTK solution

In this subsection, we will derive the overfitted solution for this 3-layer neural network using the
NTK approximation. Let hRF

V,x ∈ R
p1×1 denote the output of the first hidden-layer. We then have

hRF
V,x[j] := (xT

V[j])1{xTV[j]>0}, j = 1, 2, · · · , p1. (1)

(We use the superscript “RF” because hRF
V,x is indeed the feature vector of a random feature model

(Mei & Montanari, 2019).) After training the middle-layer weights, W0 changes to W1 := W0 +
∆W. Then, the change of the output is

p2∑

k=1

wk1{W1[k]ThRF
V,x>0}W1[k]

ThRF
V,x −

p2∑

k=1

wk1{W0[k]ThRF
V,x>0}W0[k]

ThRF
V,x.

The NTK model (Jacot et al., 2018) assumes that ∆W is very small and thus the activation pattern
does not change much. In other words, we can approximate 1{W1[k]ThRF

V,x>0} by 1{W0[k]ThRF
V,x>0}.

Define ∆W ∈ R
(p1p2)×1 as ∆W[k] := wk · ∆W[k], k = 1, 2, · · · , p2. Define hThree

V,W0,x
∈

R
1×(p1p2) such that

hThree
V,W0,x[k] := (hRF

V,x)
T · 1{(hRF

V,x)
TW0[k]>0}, (2)

where k = 1, 2, · · · , p2. Therefore, the change of the output can be approximated by

p2∑

k=1

wk1{W0[k]ThRF
V,x>0}∆W[k]ThRF

V,x = hThree
V,W0,x∆W.

We thus obtain a linear model in ∆W. We provide an illustration of the formation and structure
of these vectors in Fig. 4, Appendix A.1 in Supplementary Material. Define the design matrix

H ∈ R
n×(p1p2) such that its i-th row is Hi = hThree

V,W0,Xi
. Notice that overfitted gradient descent on

a linear model converges to the min ℓ2-norm solution2, which is denoted by

∆W
ℓ2 := argmin

w∈R(p1p2)×1

‖w‖2 subject to Hw = F(X) + ǫ.

When H is full row-rank (which holds with high probability under certain conditions), the trained
model is then

f̂ ℓ2(x) = hThree
V,W0,x∆W

ℓ2 = hThree
V,W0,xH

T (HH
T )−1(F(X) + ǫ). (3)

Notice that the trained model is determined by multiple random variables.

In order to analyze the generalization performance of the trained model, we have to make assump-
tions on the distribution of those random variables. Let µ(·), λ(·), and γ(·) denote the probability
density function of x, V[j], and W0[k], respectively. For simplicity, we make the following assump-
tion that all random variables follow uniform distribution.

2As suggested by other prior works Satpathi & Srikant (2021); Hastie et al. (2019); Ju et al. (2021), if we
perform gradient descent training on a linear model from zero initial point until the training error is zero
(i.e., overfitting), then the solution will be exactly the min ℓ2-norm solution. Note that we do not need to be
concerned about the training dynamics here, because the min ℓ2-norm overfitted solution can be written down
exactly as in Eq. (3).

4



Assumption 1. The input x and the bottom-layer initial weights V[j]’s (j = 1, 2, · · · , p1) are i.i.d.

and uniformly distributed in Sd−1. In other words, µ(·) and λ(·) are both unif(Sd−1). The middle-
layer initial weights W0[k]’s (k = 1, 2, · · · , p2) are i.i.d. and uniformly distributed in Sp1−1. In
other words, γ(·) is unif(Sp1−1). The top-layer weights w are all non-zero3.

Remark 1. Readers may be curious why we only train the middle-layer weights. Part of the reason
is technicality: if the bottom layer is also trained, the aggregate output of the first hidden-layer may
have changed so much that the second hidden-layer’s inputs and ReLU activation patterns change
significantly from initialization, which may violate the NTK assumption. The work in Geifman et al.
(2020); Chen & Xu (2020) is not concerned about this difficulty, since they are mostly interested in
the expressive power of the RKHS, assuming an infinite number of neurons. In contrast, we wish to
capture the effect of finite width, and thus train only the middle layer to avoid this difficulty. More
importantly, the middle-layer weights interact with both the first hidden layer and the second hidden-
layer, and are the major structural distinction compared with 2-layer NTK. This setting thus helps
us to answer the following interesting question: will training the middle layer alone already achieve
the same (potential) benefit as training all layers (especially given that the latter encounters more
technical difficulty)?

3 Generalization Performance

In this section, we will show our main results about the generalization performance of the aforemen-
tioned 3-layer NTK model for a specific set of functions. We first introduce a set of ground-truth
functions that may be learnable and then provide a high-probability upper bound on the test error.
We then discuss some useful implications of our upper bound.

3.1 A set of ground-truth functions that may be learnable

We define kernel functions KRF, KTwo, and KThree : [−1, 1] 7→ R as follows (whose meanings will
be explained soon):

KRF(a) :=

√
1− a2 + a · (π − arccos(a))

2dπ
, (4)

KTwo(a) := a · π − arccos(a)

2π
, (5)

KThree(a) :=
KTwo

(
2d ·KRF(a)

)

2d
. (6)

(Notice that 2d · KRF(a) ∈ [0, 1] for all a ∈ [−1, 1] by Lemma 43 in Supplementary Material,

Appendix I, and hence KThree(·) is well defined.) We define a set Fℓ2
(3) of ground-truth functions

based on those kernels:

Definition 1 (learnable set of 3-layer NTK).

Fℓ2
(3)

:=

{

fg : Sd−1 7→ R

∣
∣
∣ fg(x) =

∫

Sd−1

KThree(xTz)g(z)dµ(z), ‖g‖∞ <∞
}

, (7)

where ‖g‖∞ := supz∈Sd−1 |g(z)|.

To see why functions in Fℓ2
(3) may be learnable, we can check what the learned result f̂ ℓ2 in

Eq. (3) should look like. When there are infinite number of neurons and there is no noise (i.e.,
ǫ = 0), what remains on the right-hand-side of Eq. (3) can be viewed as the product of two
terms, hThree

V,W0,x
H

T and (HH
T )−1

F(X). For the first term hThree
V,W0,x

H
T , note that each row of

H is given by hThree
V,W0,Xi

for i = 1, 2, · · · , n. Thus, when p1, p2 → ∞, the i-th element of

hThree
V,W0,x

H
T , which is the inner product between hThree

V,W0,x
and hThree

V,W0,Xi
, converges in proba-

bility to KThree(hThree
V,W0,x

(hThree
V,W0,Xi

)T ), which is exactly the kernel function of 3-layer NTK. By

representing the second term (HH
T )−1

F(X) with a certain g(·), f̂ ℓ2 must then approach the form

3We do not need to specify the distribution of w, since w is absorbed into the regressor ∆W by definition

∆W[k] := wk ·∆W[k], k = 1, 2, · · · , p2.
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in Eq. (7). (See Supplementary Material, Appendix B for details.) Intuitively, KThree can be thought
of as the composition of the kernels of each of the two layers, which are KTwo and KRF given in
Eq. (5) and Eq. (4). Specifically, suppose that we fix the output of the first hidden layer (i.e., hRF

V,x)
and regard it as the input of a 2-layer NTK formed by the top two layers of the 3-layer neural net-
work. By letting p2 → ∞, we can show that the inner product between hThree

V,W0,x
and hThree

V,W0,Xi

approaches KTwo((hRF
V,x)

ThRF
V,Xi

) (with necessary normalization of hRF
V,x and hRF

V,Xi
), where KTwo

is exactly the kernel of 2-layer NTK in Ju et al. (2021). Second, when p1 → ∞, we can show that
(hRF

V,x)
ThRF

V,Xi
approaches KRF(xT

Xi), where KRF is exactly the kernel of the random-feature

model (Mei & Montanari, 2019). In summary, we expect that functions in Fℓ2
(3) can be approxi-

mated by f̂ ℓ2(·). However, we note that the above deviation is only about the expressiveness of
3-layer NTK and it does not precisely reveal its generalization performance.

3.2 An upper bound on the generalization error

We now present the first main result of this paper, which is an upper bound that quantifies the
relationship between the generalization performance and system parameters.

Theorem 1. For any ground-truth function f(x) = fg(x) ∈ Fℓ2
(3), when d is fixed and p1, p2 are

much larger than n, (with high probability) we have

|f̂ ℓ2(x)− f(x)| = O

(‖g‖∞√
n

)

︸ ︷︷ ︸

Term A

+

(

O

(‖g‖1√
p2

)

︸ ︷︷ ︸

Term B

+

O

(

‖g‖1 4

√

log p1
p1

)

︸ ︷︷ ︸

Term C

+
‖ǫ‖2√

n
︸ ︷︷ ︸

Term D

)

·O
(

n
2

d−1+
1
2 ·
√

log n
)

︸ ︷︷ ︸

Term E

. (8)

A more precise version of the upper bound and the condition of Theorem 1 as well as its derivation
can be found in Supplementary Material, Appendix C.

As we can see, Eq. (8) captures how the test error depends on finite values of parameters n, p1, p2,
‖ǫ‖2, and g. Later in this section we will examine more closely how n, p1, and p2 affect the value
of the upper bound. Regarding the dependency on g, Eq. (8) works as long as ‖g‖1 and ‖g‖∞ are

finite4. Intuitively, the norm of g represents the complexity of the ground-truth function in Fℓ2
(3).

When the norm of g is larger, then the right-hand side of Eq. (8) becomes larger, which indicates
that such ground-truth function is harder to learn. A simple example is that if we enlarge a ground

truth function fg ∈ Fℓ2
(3) by 2 times (which means g is 2 times larger), then since the model is linear,

the test error |f̂ ℓ2(x) − f(x)| will become 2 times larger. We will discuss more about which types
of functions satisfy the condition of finite norm of g in Section 4.

Next, we will discuss some implications of this upper bound of 3-layer NTK. While some of them
are similar to 2-layer NTK, others are significantly different, revealing the complexity due to having
more layers.

3.3 Interpretations similar to 2-layer NTK

Based on the upper bound in Theorem 3, we have the following insights for 3-layer NTK, which
are similar to those for 2-layer NTK shown in Ju et al. (2021). These similarities may reveal some
intrinsic properties of the NTK models regardless of the number of layers.

Zero test error with n→∞ in the ideal situation: In the ideal situation where there are infinitely
many neurons and no noise, the only remaining term in Eq. (8) is Term A. Notice that Term A
decreases to zero as n → ∞, which indicates that the generalization error decreases to zero when

4Indeed, as long as ‖g‖∞ < ∞, then ‖g‖1 < ∞. That is why we only include the condition ‖g‖∞ < ∞
in Eq. (7). Notice that the assumption ‖g‖∞ < ∞ can be relaxed to ‖g‖1 < ∞ by similar methods showing
in Ju et al. (2021). However, as shown in Ju et al. (2021), such relaxation leads to a different upper bound with
slower descent speed with respect to n.
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Figure 2: Curves of MSE for 3-layer NTK (no-bias) with respect to p1 or p2 when there exists
Gaussian noise whose mean is zero and the variance is σ2. The ground-truth function is f(x) =
(
xTe1

)2
+
(
xTe1

)3
where d = 3. Sample size is n = 200. Every curve is the median of 20 random

simulations.

more training data are provided in the ideal situation. Term A suggests that such decreasing speed
is at least 1/

√
n. Such result is consistent with that of 2-layer NTK, e.g., in Arora et al. (2019).

3.4 Insights that are distinct compared with 2-layer NTK

Compared with 2-layer NTK, an important difference for 3-layer NTK is that there are more than
one hidden-layers. Therefore, the speed of the descent of 3-layer NTK involves the interaction
between two hidden-layers.

Descent with respect to the number of neurons: In Eq. (8), Term B and Term C contain p1 and
p2, respectively. For any given n and noise level ‖ǫ‖2, Terms A and D do not change, and Term E
decreases with p1 and p2. (More discussion about Term E can be found in Supplementary Material,
Appendix D, where we discuss the noise effect.) Therefore, by increasing p1 and p2, Term B and
Term C keep decreasing. In summary, right-hand-side of Eq. (8) decreases as the number of neurons
p1 and p2 increases, which validates the descent in the overparameterized region of 3-layer NTK.

Different descent speed: As shown in Eq. (8), p1 and p2 play different roles in the descent of the
generalization error. Comparing Term B and Term C of Eq. (8), we can see that the upper bound of

the test error |f̂ ℓ2(x) − f(x)| decreases faster with respect to p2 (at the speed of
√
p2) and slower

with respect to p1 (at the speed of 4
√

p1/ log p1). We emphasize that this difference is not due to
the number of weights/parameters contributed by the number of neurons in each hidden-layer of
p1 and p2

5. Instead, we conjecture that such difference in the speed of descent may be due to the
different positions in this 3-layer neural network structure, where the second hidden-layer takes the
trained middle-layer weights as its input (and thus utilizes the trained weights better than the first
hidden-layer).

We use numerical results to illustrate the different roles of p1 and p2 in reducing the generalization
error. We fix p2 = 200 and plot the MSE with respect to p1 in Fig. 2(b). Although the test error
decreases when p1 increases, the decreasing speed is slow, especially for the noisy situation. Such a
slow decreasing speed with p1 remains even when p2 is fixed to a much higher value. For example,
in Fig. 2(b), we fix p2 = ∞, we still observe the similarly slow decreasing speed with p1 as shown
by Fig. 2(c). In contrast, the descent with respect to p2 should be easier to observe and can reach a
lower test MSE. In Fig. 2(d), we fix p1 = 200 and increase p2 (i.e., we exchange the values of p1
and p2 in Fig. 2(c)(d)). As we can see, all three curves in Fig. 2(d) have a more obvious descent
and decrease to lower MSE compared with those in Fig. 2(c), which validates our conjecture that
the descent speed with respect to the number of neurons of the second hidden-layer is faster.

Notice that our upper bound Eq. (8) also suggests a descent when both p1 and p2 increase simultane-
ously. We use simulation result by Fig. 2(a) to support this point. We fixed n = 200 and let p1 = p2
increase simultaneously. The ground-truth model in this figure is f(x) = (xTe)2 + (xTe)3 where
d = 3. The green, orange, and blue curves denote the situations of σ2 = 0 (no noise), σ2 = 0.01,
and σ2 = 0.04, respectively. Every point in this figure is the median of 20 simulation runs. We also

5Specifically, the number of weights that get trained equals to p1p2 and the total number of weights for
bottom, middle, and top layers equals to dp1 + p1p2 + p2. In other words, the number of weights (either for
the middle layer or for all layers) does not increase faster by increasing p2 instead of p1.
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provide the box plot6 of the situation of σ2 = 0.01 (correspond to the orange curve). It is obvious
that all three curves descend, which verifies that the generalization error of the overfitted 3-layer
NTK model decreases when p1 and p2 increase simultaneously at the same speed. By observing the
box plot for the situation σ2 = 0.01 (the orange curve), we also notice that when p1 = p2 becomes
large, the variance becomes small. This is because all initial weights are i.i.d. random and a large
number of weights may reduce the variance of the model due to the law of large numbers. Our upper
bound in Theorem 3 also suggests such reduced variance as the probability in Theorem 3 increases
as p1 increases.

4 Types of Ground-Truth Functions

Are 3-layer (i.e., deeper) networks better than 2-layer networks in any way for generalization per-
formance? In the last section, we have seen that both 3-layer NTK and 2-layer NTK can achieve
zero test error when n → ∞ in the ideal noiseless situation, when the ground-truth functions are
in their respective learnable set7. A natural question is then to compare the learnable sets between
these two models, and to compare the generalization performance when the ground-truth function
belongs to both learnable sets. In this section, we provide some answers by studying various types
of ground-truth functions and their effects on the generalization performance.

4.1 Size of the learnable set

For a 2-layer NTK, as shown in Ju et al. (2021), when no bias is used in ReLU, the corresponding

learnable set Fℓ2
(2) contains all even polynomials and linear functions, but does not contain other odd

polynomials. In order to learn both even and odd polynomials, it is critical that bias is added to
ReLU (Satpathi & Srikant, 2021; Ju et al., 2021). In contrast, we prove the following result:

Proposition 2. Fℓ2
(3) (with unbiased ReLU, middle layer being trained) already contains all polyno-

mials with finite degree (i.e., including both even and odd polynomials). Further, the learnable set

Fℓ2
(3) of 3-layer NTK is strictly larger than that of the 2-layer NTK with unbiased ReLU, and is at

least as large as that of the 2-layer NTK with biased ReLU.

This independence to bias shown by Proposition 2 can be seen as one performance advantage of 3-
layer NTK compared to 2-layer NTK. Details (including more precise statement) about this result is
in Supplementary Material, Appendix J. Notice that Geifman et al. (2020); Chen & Xu (2020) show
that when training all layers, 3-layer NTK leads to the same RKHS as 2-layer NTK with biased
ReLU. However, it is unclear whether training one layer is already sufficient for achieving the same
RKHS as training all layers. Our result in Proposition 2 answers this question positively, i.e., only
training the middle layer has already achieved all benefits of training all layers in terms of the size
of the learnable set. (In other words, training all three layers will not expand the learnable set over
training only the middle layer.)

4.2 Different bias settings with high input dimension

Even when a ground-truth function belongs to bothFℓ2
(2),b andFℓ2

(3), their generalization performance

may still exhibit some differences. In this subsection, we will show that when the input dimension d
is high, some specific choice of bias of the 2-layer NTK has better generalization performance than
others. In contrast, the 3-layer NTK is less sensitive to different bias settings.

Notice that adding bias to each ReLU in 2-layer NTK is equivalent to appending a constant to x
while still using ReLU without bias. Specifically, the input vector for biased 2-layer NTK is

xb :=
[√

1−b2·x
b

]

∈ R
d+1, (9)

6From bottom to top, the five horizontal lines of each marker of a box plot represent the minimum (ex-
cluding outliers), first quartile (25%), median (50%), third quartile (75%), and maximum (excluding outliers),
respectively. See (McGill et al., 1978) for more details.

7We illustrate the generalization performance of ground-truth functions outside the learnable set in Supple-
mentary Material, Appendix J.3.
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Model Learnable functions set Category

3-layer NTK, no-bias Fℓ2
(3) =

{∫

Sd−1 K
Three(xT

z)g(z)dµ(z)
}

(i)

2-layer NTK, no-bias Fℓ2
(2) =

{∫

Sd−1 K
Two(xT

z)g(z)dµ(z)
}

(ii)

2-layer NTK, normal-bias Fℓ2
(2),NLB

=
{

∫

Sd−1 K
Two( d

d+1
x

T
z + 1

d+1
)g(z)dµ(z)

}

(i)

2-layer NTK, balanced-bias Fℓ2
(2),BB

=
{∫

Sd−1 K
Two( 1

2
x

T
z + 1

2
)g(z)dµ(z)

}

(i)

Table 1: Learnable functions for different NTK models. Category: (i) can learn both even- and
odd-power polynomials; (ii) cannot learn other odd-power polynomials except linear functions. (We
omit the condition ‖g‖∞ <∞ in the expression of learnable sets to save space.)

101 102 103

n

10−9

10−6

10−3

M
SE

(a) d=2

101 102 103

n

10−2

6×10−3

2×10−2
3×10−2
4×10−2

(b) d=15
null  isk
3-NTK no-bias
3-NTK normal-bias
3-NTK balanced-bias
2-NTK no-bias
2-NTK normal-bias
2-NTK balanced-bias

Figure 3: Comparison of test MSE with respect to n between different NTK models when the num-

ber of neurons is infinite and without noise. The ground-truth function is f(x) = d+2
3

(
xTe1

)3 −
xTe1. Every curve is the average of 10 random simulations.

where b ∈ (0, 1) denotes the initial bias. We also normalize the first d elements of xb by
√
1− b2

in Eq. (9) to make sure that ‖xb‖2 = 1. Under this biased setting, the 2-layer NTK model has the

learnable set Fℓ2
(2),b

:= {
∫

Sd−1 K
Two
(
(1− b2)xTz + b2

)
g(z)dµ(z), ‖g‖∞ <∞}.

A common setup for the initial magnitude of the bias of each ReLU is to use a value that is close
or equal to the average magnitude of each element of input x, e.g., Satpathi & Srikant (2021);
Ghorbani et al. (2021a). Specifically, we let b = 1√

d+1
in Eq. (9), and denote the corresponding

learnable set by Fℓ2
(2),NLB

. We refer to this setting as the “normal-bias” setting. Alternatively, the

initial magnitude of the bias can be chosen to be close or equal to ‖x‖2. Specifically, we let b = 1√
2

in Eq. (9) and denote the corresponding learnable set by Fℓ2
(2),BB

. We refer to this second setting

as “balanced-bias”. The specific expression of Fℓ2
(2), F

ℓ2
(2),NLB

, and Fℓ2
(2),BB

can be derived by using

similar methods shown in Section 3.1 (results are listed in Table 1).

We now discuss how the two different bias settings could affect the generalization performance

when d is large. For 2-layer NTK under the normal-bias setting, the kernel is KTwo( d
d+1x

Tz +
1

d+1 ). Although it contains both even and odd power polynomials, we notice that when d increases,

KTwo approaches its no-bias counterpart KTwo(xTz), which only contains even power polynomials
and linear term. Thus, we conjecture that, by increasing d, the generalization performance of 2-

layer NTK with normal-bias will deteriorate for those ground-truth functions inside Fℓ2
(2),NLB

but far

away from Fℓ2
(2) (e.g., odd-degree non-linear polynomials). In contrast, for 2-layer NTK under the

balanced-bias setting, the kernel is KTwo( 12x
Tz + 1

2 ), which does not change with d. Therefore,
we expect that such deterioration should not happen. Note that in 3-layer NTK, although normal-
bias setting still approaches no-bias setting when d increases, there does not exist such performance

deterioration, because Fℓ2
(3) (the learnable set of 3-layer NTK without bias) already contains both

even and odd power polynomials. These insights will be verified by the numerical results below.

We now use simulation results in Fig. 3 to validate the conjecture that 3-layer NTK models are less
sensitive to different bias settings than 2-layer NTK models. We let the ground-truth function be

f(x) = d+2
3

(
xTe1

)3 − xTe1, which is orthogonal to Fℓ2
(2). In Fig. 3(a) when d = 2, all settings

have similar performance except 2-layer NTK without bias, whose test error is always above the null
risk. In Fig. 3(b) when d = 15, the purple curve of 2-layer NTK with normal bias gets closer to the
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red curve of 2-layer NTK without bias (and thus the generalization performance becomes worse),
while other curves are still close to each other. This validates our conjecture that 3-layer NTK
models are less sensitive to different bias settings than 2-layer NTK models. Further simulations
can be found in Appendix A.2.

5 Conclusion

In this paper, we studied the generalization performance of overfitted 3-layer NTK models. Com-
pared with 2-layer NTK models, 3-layer NTK is less sensitive to different bias settings. Further,
training only the middle layer can get most of the performance advantage of 3-layer NTK, in terms
of the learnable set. Possible future directions include: (i) studying whether training other layers
will get the same benefit as training the middle layer; (ii) approximating the actual neural network
where the learned result is far away from the initial state; (iii) investigating deeper network as well as
other structures such as convolutional neural network (CNN) and recursive neural network (RNN).
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