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Abstract

When an Agent visits a platform recommending a menu of content to select from,
their choice of item depends not only on immutable preferences, but also on their
prior engagements with the platform. The Recommender’s primary objective is
typically to encourage content consumption which optimizes some reward, such
as ad revenue, but they often additionally aim to ensure that a sufficiently wide
variety of content is consumed by the Agent over time. We formalize this problem
as an adversarial bandit task. At each step, the Recommender presents a menu of
k (out of n) items to the Agent, who selects one item in the menu according to
their unknown preference model, which maps their history of past items to relative
selection probabilities. The Recommender then observes the Agent’s selected item
and receives bandit feedback of the item’s (adversarial) reward. In addition to
optimizing reward from the selected items at each step, the Recommender must
also ensure that the total distribution of chosen items has sufficiently high entropy.
We define a class of preference models which are locally learnable, i.e. behavior
over the entire domain can be estimated by only observing behavior in a small
region; this includes models representable by bounded-degree polynomials as well
as functions with a sparse Fourier basis. For this class, we give an algorithm for the
Recommender which obtains Õ(T 3/4) regret against all item distributions satisfy-
ing two conditions: they are sufficiently diversified, and they are instantaneously
realizable at any history by some distribution over menus. We show that these
conditions are closely connected: all sufficiently high-entropy distributions are
instantaneously realizable at any history of selected items. We also give a set of
negative results justifying our assumptions, in the form of a runtime lower bound
for non-local learning and linear regret lower bounds for alternate benchmarks.

1 Introduction

Suppose you manage an online platform that repeatedly provides menus of recommended content
to visitors, such as sets of videos to watch or items to purchase, aiming to display options which
agents will engage favorably with and yield you high rewards (in the form of ad revenue, watch time,
purchases, or other metrics). In many settings, the preferences of agents are not fixed a priori, but
rather can change as a function of their consumption patterns—the deeper one goes down a content
“rabbit hole”, the further one might be likely to keep going. This “rabbit hole” effect can lead to
(unforeseen) loss of revenue for the platform, as advertisers may later decide that they are not willing
to pay as much for this “rabbit hole” content as they would for other content. The scope of negative
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effects emerging from these feedback loops is large, ranging from the emergence of “echo chambers”
[15] and rapid political polarization [23] to increased homogeneity which can decrease agent utility
[9], amplify bias [20], or drive content providers to leave the platform [22]. These are harms which
many platforms aim to avoid, both for their own sake and out of broader societal concerns.

Hence, the evolving preferences of the Agent can be directly at odds with the Recommender’s objec-
tives of maximizing revenue and ensuring diverse consumption patterns in this dynamic environment.
Our goal is to study such tensions between the interaction of these two players: the Recommender
that recommends menus based on past choices of the Agent so as to maximize its reward (subject to
diversity constraints), and the Agent whose preferences evolve as a function of past recommendations.

To this end, we consider a stylized setting where the Recommender is tasked with providing a menu
of k recommended items (out of n total) every round to an Agent for T sequential rounds. In each
round, the Agent observes the menu, then selects one of the items according to their preference model
M , which the Recommender does not know in advance. The preference model M takes as input the
Agent’s memory vector v, which is the normalized histogram of their past chosen items, and assigns
relative selection probabilities to each item. The selected item at each round results in a reward for
the Recommender, specified by an adversarial sequence of reward vectors, which the Recommender
receives as bandit feedback, in addition to observing which item was selected. The Recommender
must choose a sequence of menus to maximize their reward (or minimize regret), subject to a diversity
constraint, expressed as a minimum entropy for the empirical item distribution.

However, any regret minimization problem is incomplete without an appropriate benchmark for
comparing the performance of a learner. An entropy constraint alone is insufficient to define a such
benchmark. Due to intricacies of the Agent’s preference model, there may be item distributions
which are impossible to induce under any sequence of menus (e.g. they may strongly dislike the
most profitable content). Adding to the challenge is the fact that the preference model is initially
unknown and must be learned, and the set of item distributions which are instantaneously realizable
by sampling a menu from some distribution can shift each round as well. Several immediate proposals
are infeasible: it is impossible to obtain sublinear regret against the best fixed menu distribution, or
even against the best item distribution realizable from the uniform memory vector. We propose a
natural benchmark for which regret minimization becomes possible: the set of item distributions
which are everywhere instantaneously realizable (the EIRD(M) set), i.e. item distributions such that,
at any memory vector, there is always some menu distribution which induces them. We show that this
set is also closely related to entropy constraints: when M is sufficiently dispersed (a condition on
the minimum selection probability for each item), EIRD(M) contains all sufficiently high-entropy
distributions, and so regret minimization can occur over the entire high-entropy set.

1.1 Our Results

We give an algorithm which, for a minimum entropy set Hc and preference model M , allows
the Recommender to obtain Õ(T 3/4) regret against the best distribution in the intersection of Hc

and EIRD(M), provided that M satisfies λ-dispersion and belongs to a classM which is locally
learnable. A λ-dispersed preference model M assigns a preference score of at least λ > 0 to every
item, ensuring a minimum positive probability of selection to each item in a menu. Dispersion is a
natural assumption, given our restriction to EIRD(M), as items which only have positive selection
probability in part of the domain cannot be induced everywhere. The local learnability condition
for a model class enforces that the behavior of any particular model can be predicted by observing
behavior only in a small region. This is essentially necessary to have any hope of model estimation
in this setting: we show that if learning a class from exact queries requires making queries to many
points which are pairwise well-separated, exponentially many rounds are required to implement
query learning. Despite this restriction, we show that several rich classes of preference models
are indeed locally learnable, including those where preference scoring functions are expressed by
bounded-degree multivariate polynomials, or by univariate functions with a sparse Fourier basis.

Our algorithm is explicitly separated into learning and optimization stages. The sole objective for the
learning stage is to solve the outer problem: recover an accurate hypothesis for the preference model.
We select sequences of menus which move the Agent’s memory vector to various points near the
uniform distribution, enabling us to implement local learning and produce a model hypothesis M̂ . We
then shift our focus to the inner problem for the Recommender, which is natural to view as a bandit
linear optimization problem over the set of distributions in consideration, as we can use M̂ to identify
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a distribution of menus which generates a particular item distribution. However, representing the
EIRD(M̂) set explicitly is impractical, as the functions which generate feasible sets from the history
can be highly non-convex. Instead, we operate over the potentially larger set where intersections
are taken only over the sets IRD(v, M̂) of instantaneously realizable distributions we have observed
thus far. This precludes us from using off-the-shelf bandit linear optimization algorithms as a
black box, as they typically require the decision set to be specified in advance. We introduce a
modification of the FKM algorithm [13], RC-FKM, which can operate over contracting decision
sets, and additionally can account for the imprecision in M̂ when generating menu distributions. This
enables the Recommender to guide the Agent to minimize regret on their behalf via the sequence of
menus they present.

1.2 Summary of Contributions

Briefly, our main contributions are:

1. We formulate the dynamic interaction between a Recommender and an Agent as an adver-
sarial bandit task. We show that no algorithm can obtain o(T ) regret against the best menu
distribution, or against the best item distribution in the IRD set of uniform vector. We then
consider EIRD(M) and argue that it is a natural benchmark for regret as it also contains all
sufficiently high entropy distributions over items.

2. We define a class of locally learnable functions, which are functions that can be learned only
using samples from a small neighborhood. We show a number of rich classes of functions
where this is possible, and further we show that any class which is not locally learnable
cannot be learned quickly by any algorithm which fits a hypothesis using queries.

3. We give an algorithm for the Recommender that achieves Õ(T 3/4) regret against EIRD(M)
for locally learnable classes of preference models that are λ-dispersed, which implements
local learning to obtain a sufficiently accurate hypothesis for use in optimizing menu
distributions. As a component of this, we develop a new algorithm for bandit linear
optimization which can operate over contracting decision sets, and which can account
for bounded adversarial imprecision in the played action.

Overall, by considering this stylized setting we are able to provide several insights into the dynamic
interaction between an Agent and a Recommender. While our algorithm is a useful tool for a
Recommender who is already committed to providing diversified recommendations, we also view our
results as presenting an intrinsic argument for incorporating such constraints. When preferences adapt
over time, and Agents may be prone to venturing down content “rabbit holes”, restricting attention to
recommendation patterns which are not too concentrated on small sets of items can in fact make the
regret minimization problem tractable by discouraging consumption patterns which may be difficult
to draw the Agent back from. This suggests a synergy between the goal of regret minimization and
showing diverse content to the user.

1.3 Related Work

Feedback loops in user preferences have received significant attention in the recommender systems lit-
erature, particularly for models with multiple agents which make use of collaborative filtering methods,
and with explicit adaptivity models which are less flexible than those we consider [7, 9, 20, 28, 22].
Within the online learning literature, our formalization bears some resemblance to bandit problems
where multiple arms can be pulled simultaneously, which have received much recent attention
[30, 29, 8, 3]. Our results also share similarities with work on optimization from revealed preferences,
where a mapping to a nested convex problem must be learned [27, 12]; with the performative predic-
tion literature, where actions induce a distribution shift which impacts instantaneous reward potential
[24, 18]; and more broadly, with repeated game problems against adaptive agents [5, 11, 10]. Further
related work is discussed in Appendix A.

1.4 Organization

In Section 2, we introduce our setting and key definitions, analyze the local learnability of several
classes of preference models, and give a series of negative and structural results. In Section 3 we
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introduce a bandit linear optimization algorithm for contracting sets, which we use as a subroutine
for our main algorithm in Section 4. We discuss the intuition for our proof techniques throughout,
with full proofs deferred to the appendix.

2 Model and Preliminaries

The central object of our setting is the preference model of the Agent, which dictates their relative
item preferences based on their selection history and expresses their adaptivity over time.
Definition 1 (Preference Models). A preference model is a mapping M : ∆(n) → [0, 1]n which
maps memory vectors v to a preference score vector sv =M(v).

We assume that any input v /∈ ∆(n) to M (such as the empty history at t = 1) results in the uniform
score vector where M(v)i = 1 for all i. A constraint on our sequence of interactions with the Agent
is that the resulting item distribution must have sufficiently high entropy.
Definition 2 (Diversity Constraints). A diversity constraint Hc ⊂ ∆(n) is the convex set containing
all item distributions v ∈ ∆(n) with entropy at least c, i.e. v is in Hc if and only if:

H(v) = −
n∑

i=1

vi log(vi) ≥ c.

We say that a constraint Hc is ϵ-satisfied by a distribution v if we have that minx∈Hc
dTV (x, v) ≤ ϵ,

where dTV is the total variation distance between probability distributions.

Our algorithmic results can be extended to any convex constraint set which contains a small region
around the uniform distribution, but we focus on entropy constraints as they are quite natural and
have interesting connections to our setting which we consider in Section 2.3.

2.1 Recommendation Menus for Adaptive Agents

An instance of our problem consists of an item set N = [n], a menu size k, a preference model M for
the Agent, a constraint Hc, a horizon length of T rounds, and a sequence of linear reward functions
ρ1, . . . , ρT for the Recommender. In each round t ∈ {1, . . . , T}:

• The Recommender chooses a menu Kt ⊂ N with |Kt| = k.
• The Agent chooses item i ∈ Kt with probability

pKt,vt,it =
svt,it∑

j∈Kt
svt,j

and updates its memory vector to the normalized histogram

vt+1 =
ei
t+ 1

+
t · vt
t+ 1

,

where ei is the ith standard unit vector.
• The Recommender observes receives reward ρt(ei) for the chosen item.

The goal of the Recommender is to maximize their reward over T rounds subject to vT satisfying
Hc. It might seem to the reader that the Recommender can ‘manipulate’ the Agent to achieve any
preference score vector over time; however, this is not true as many score vectors might not be
achievable depending on the preference model.

2.2 Realizability Conditions for Item Distributions

For any memory vector v, we define the feasible set of item choice distributions for Agent in the
current round, each generated by a distribution over menus which the Recommender samples from.
Definition 3 (Instantaneously-Realizable Distributions at v). Let pK,v ∈ ∆(n) be the item distribution
selected by an Agent presented with menu K at memory vector v, given by:

pK,v,i =
sv,i∑

j∈K sv,j
.
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The set of instantaneously-realizable distributions at v is given by:

IRD(v,M) = convhull
K∈(nk)

pK,v.

For any x ∈ IRD(v,M), any menu distribution z ∈ ∆(
(
n
k

)
) specifying a convex combination of

menu score vectors pK,v which sum to x will generate the item distribution x upon sampling.

One might hope to match the performance of the best menu distribution, or perhaps the best realizable
item distribution from the uniform vector. Unfortunately, neither of these are possible.
Theorem 1. There is no algorithm which can obtain o(T ) regret against the best item distribution in
the IRD set for the uniform vector, or against the best menu distribution in ∆

((
n
k

))
, even when the

preference model is known exactly and is expressible by univariate linear functions.

We give a separate construction for each claim, with the full proof deferred to Appendix . The first is a
case where the optimal distribution from the uniform vector cannot be played every round, as it draws
the the memory vector into IRD sets where the reward opportunities are suboptimal. The second
considers menu distributions where obtaining their late-round performance requires committing early
to an irreversible course of action. Instead, our benchmark will be the set of distributions which are
realizable from any memory vector.
Definition 4 (Everywhere Instantaneously-Realizable Distributions). For a preference model M , the
set of everywhere instantaneously-realizable distributions is given by:

EIRD(M) =
⋂

v∈∆(n)

IRD(v,M).

This is the set of distributions x ∈ ∆(n) such that from any memory vector v, there is some menu
distribution z such that sampling menus from d induces a choice distribution of x for the agent.

Note that the set EIRD(M) is convex, as each IRD(v,M) is convex by construction.

2.3 Conditions for Preference Models

The algorithm we present in Section 4 requires two key conditions for a class of preference models:
each model in the class must be dispersed, and the class must be locally learnable. This enforces that
the Agent is always willing to select every item in the menu they see with some positive probability,
and that the behavior at any memory vector can be estimated by observing behavior in a small region.
Definition 5 (Dispersion). A preference model M is λ-dispersed if sv,i ≥ λ for all v ∈ ∆(n) and
for all i, i.e. items always have a score of at least λ at any memory vector.

The dispersion condition plays an important role in the analysis of our algorithm by enabling efficient
exploration, but it additionally coincides with diversity constraints in appropriate regimes.
Theorem 2 (High-Entropy Containment in EIRD). Consider the diversity constraint Hc for c =

log(n)− γ, and let τ ≥ exp(−γ). Let M be a λ-dispersed preference model with λ ≥ k2 exp(γ/τ)
n .

For any vector v ∈ Hc, there is a vector v′ ∈ EIRD(M) such that dTV (v, v
′) is at most O(τ).

The key step here, proved in Appendix B.2, is that EIRD(M) contains the uniform distribution over
any large subset of items, and taking mixtures of these can approximate any high-entropy distribution.

Next, for a class of models to be locally learnable, one must be able to accurately estimate a model’s
preference scores everywhere when only given access to samples in an arbitrarily small region.
Definition 6 (Local Learnability). LetM be a class of preference models, and let

EIRD(M) =
⋂

M∈M
EIRD(M).

Let v∗ be a point in EIRD(M), and Vα be the set of points within distance α from v∗, for α such
that Vα ⊆ EIRD(M). M is h-locally learnable if there is some v∗ and an algorithm A which,
for any M ∈ M and any α > 0, given query access to normalized score estimates ŝv where
∥ŝv −M(v)/M∗

v ∥∞ ≤ β for any v ∈ Vα (where M∗
v =

∑
iM(v)i) and for some β, can produce a

hypothesis model M̂ such that
∥∥∥M̂(x)/M̂∗

x −M(x)/M∗
x

∥∥∥ ≤ ϵ for any x ∈ ∆(n) and ϵ = Ω(β).
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The local learnability condition, while covering many natural examples shown in Section 2.4, is
indeed somewhat restrictive. In particular, it is not difficult to see that classes of piecewise functions,
such as neural networks with ReLU activations, are not locally learnable. However, this appears to be
essentially a necessary assumption for efficient learning, given the cumulative nature of memory in
our setting. We show a runtime lower bound for any algorithm that hopes to learn an estimate M̂
for the preference model M via queries. Even a Recommender who can force the Agent to pick a
particular item each round, and exactly query the preference model for free at the current memory
vector, may require exponentially many rounds to learn M̂ if the points it must query are far apart.
Theorem 3 (Query Learning Lower Bound). Suppose the Recommender can force the Agent to
select any item at each step t, and can query M(vt) at the current memory vector vt. Let AS be an
algorithm which produces a hypothesis M̂ by receiving queries M(v) for each v ∈ S. For points
v and v′, let dmax(v, v

′) = maxi vi − v′i. Then, any sequence of item selections and queries by the
Recommender requires at least

T ≥ min
σ∈π(S)

|S|−1∏
i=1

(1 + dmax(σ(i), σ(i+ 1)))

rounds to run A(S), where π(S) is the set of permutations over S and σ(i) is the ith item in σ.

We prove this in Appendix B.3. Notably, this implies that if S contains m points which, for any pair
(v, v′) have both dmax(v, v

′) ≥ γ and dmax(v
′, v) ≥ γ, at least O ((1 + γ)m) rounds are required.

2.4 Locally Learnable Preference Models

There are several interesting examples of model classes which are indeed locally learnable, which we
prove in Appendix C. In general, our approach is to query a grid of points inside the radius α ball
around the uniform vector, estimate each function’s parameters and show that the propagation of
over the entire domain is bounded. Note that the normalizing constants for each query we observe
may differ; for univariate functions, we can handle this by only moving a subset of values at a time,
allowing for renormalization. For multivariate polynomials, we consider two distinct classes and
give a separate learning algorithm for each; we can estimate ratios of scores directly for multilinear
functions, and if scores are already normalized we can avoid rational functions altogether. Each local
learning result we prove involves an algorithm which makes queries near the uniform vector. We
later show in Lemma 4 that taking λ ≥ k2/n suffices to ensure that these queries can indeed be
implemented via an appropriate sequence of menu distributions for any M in such a class.

2.4.1 Bounded-Degree Univariate Polynomials

LetMBUP be the class of bounded-degree univariate polynomial preference models where:

• For each i, M(v)i = fi(vi), where fi is a degree-d univariate polynomial which takes
values in [λ, 1] over the range [0, 1] for some constant λ > 0.

Univariateness captures cases where relative preferences for an item depend only on the weight of
that item in the agent’s memory, i.e. there are no substitute or complement effects between items.
Lemma 1. MBUP is O(d)-locally learnable by an algorithm ABUP with β ≤ O(ϵλ2 · ( α

nd )
d).

2.4.2 Bounded-Degree Multivariate Polynomials

LetMBMLP be the class of bounded-degree multilinear polynomial preference models where:

• For each i, M(v)i = fi(v), where fi is a degree-d multilinear (i.e. linear in each item)
polynomial which takes values in [λ, 1] over ∆(n) for some constant λ > 0,

and letMBNMP be the class of bounded-degree normalized multivariate polynomial preference
models where:

• For each i, M(v)i = fi(v), where fi is a degree-d polynomial which takes values in [λ, 1]
over ∆(n) for some constant λ > 0, where

∑
i fi(v) = C for some constant C.
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Together, these express a large variety of adaptivity patterns for preferences which depend on
frequencies of many items items simultaneously. In particular, these can capture relatively intricate
“rabbit hole” effects, in which some subsets of items are mutually self-reinforcing, and where their
selection can discourage future selection of other subsets.

Lemma 2. MBMLP andMBNMP are both O(nd)-locally learnable, for β ≤ O( ϵ2

poly(n(d/α)d)) ),
and β ≤ ϵ

αdF (n,d)
, respectively, where F (n, d) is independent of other parameters.

2.4.3 Univariate Functions with Sparse Fourier Representations

We can also allow for classes of functions where the minimum allowable α depends on some
parameter. Functions with sparse Fourier representations are such an example, and naturally capture
settings where preferences are somewhat cyclical, such as when an Agent goes through “phases”
of preferring some type of content for a limited window. We say that a function f : R → R is
ℓ-sparse if f(x) =

∑ℓ
i=1 ξie

2πiηix where ηi ∈ [−F, F ] denotes the i-th frequency and ξi denotes the
corresponding magnitude. We say that an ℓ-sparse function f is α̂-separable when mini ̸=j |ηi−ηj | >
α̂. LetMSFR(α̂) be the class of univariate sparse Fourier representation preference models where:

• For each i , M(v)i = fi(vi), where fi is a univariate ℓ-sparse and α̂-separable function
which, over [0, 1], is L-Lipschitz and takes values in [λ, 1] for some constant λ > 0.

Lemma 3. MSFR(α̂) is Õ(nℓ)-locally learnable by an algorithm ASFR with β ≤ O( ϵλα√
nℓ
) and

any α ≥ Ω̃(1/α̂).

3 Bandit Linear Optimization with Contracting Sets

The inner problem for the Recommender can be viewed as a bandit linear optimization problem over
Hc ∩ EIRD(M). However, representing EIRD(M) is challenging even if we know M exactly, as it
involves an intersection over infinitely many sets (generated by a possibly non-convex function), and
a net approximation would involve exponential dependence on n. Instead, our approach will be to
operate over the larger set Hc ∩ (

⋂
t IRD(vt,M)) for the memory vectors vt we have seen thus far,

where representing each IRD has exponential dependence only on k (from enumerating all menus).

The tradeoff is that we can no longer directly use off-the-shelf bandit linear optimization algorithms
for a known and fixed decision set such as FKM [13] or SCRIBLE [1] as a subroutine, as our decision
set is contracting each round. We introduce an algorithm for bandit linear optimization, a modification
of the FKM algorithm we call Robust Contracting FKM (RC-FKM), which handles this issue by
projecting to our estimate of the contracted decision set at each step. Additionally, RC-FKM can
handle the imprecision resulting from our model estimation step, which can be represented by small
adversarial perturbations to the action vector in each round; we modify the sampling rule to ensure
that our target action remains in the true decision set even when perturbations are present. We prove
the regret bound for RC-FKM in Appendix D.

Algorithm 1 (Robust Contracting FKM).

Input: sequence of contracting convex decision sets K1, . . .KT containing 0, perturbation vectors
ξ1, . . . , ξT where ∥ξt∥ ≤ ϵ, parameters δ, η.
Set x1 = 0
for t = 1 to T do

Draw ut ∈ S1 uniformly at random, set yt = xt + δut + ξt
Play yt, observe and incur loss ϕt ∈ [0, 1], where E[ϕt] = ft(yt)
Let gt = n

δ ϕtut
Let Kt+1,δ,ϵ = {x| r

r−δ−ϵxt ∈ Kt+1}
Update xt+1 = ΠKt+1,δ,ϵ

[xt − ηgt]
end for

Theorem 4 (Regret Bound for Algorithm 1). For a sequence of G-Lipschitz linear losses f1, . . . , fT
and a contracting sequence of domains K1, . . . ,KT (with Kj ⊆ Ki for j > i, each with diameter
at most D, and where a ball of radius r > δ + ϵ around 0 is contained in KT ), and adversarially
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chosen unobserved vectors ξ1, . . . , ξT with ∥ξt∥ ≤ ϵ which perturb the chosen action at each step,
with parameters η = D

nT 3/4 and δ = 1
T 1/4 , Algorithm 1 obtains the expected regret bound

T∑
t=1

E[ϕt]− min
x∈KT

T∑
t=1

ft(x) ≤ nGDT 3/4 +
GDT 3/4

r
+

2ϵGDT

r
.

4 Recommendations for Adaptive Agents

Our main algorithm begins with an explicit learning phase, after which we conduct regret minimiza-
tion, and at a high level works as follows:

• First, we learn an estimate of the preference model M̂ by implementing local learning with
a set of points close to the uniform memory vector, which suffices to ensure high accuracy of
our representation with respect to M . If the number of local learning queries is independent
of error terms and β = Θ(ϵ), we can complete this stage in t0 = Õ(1/ϵ3) = Õ(T 3/4) steps.

• For the remaining T − t0 steps, we implement RC-FKM by using the learned model M̂ at
each step to solve for a menu distribution which generates the desired item distribution from
the current memory vector, then contracting the decision set based on the memory update.

Theorem 5 (Regret Bound for Algorithm 2). Algorithm 2 obtains regret bounded by

RegretC∩EIRD(M)(T ) ≤ Õ
(
t0 + nGT 3/4 +

(δ + ϵ)GT

r
+ ϵGT

)
= Õ(T 3/4)

where t0 is the time required for local learning, r = O(k2/n), and ϵ, δ = O(r · T−1/4), and results
in an empirical distribution such that Hc is O(ϵ)-satisfied with probability at least 1−O(T−1/4).

4.1 Structure of EIRD(M)

The key tool which enables us to implement local learning is a construction for generating any point
near the uniform via an adaptive sequence of menu distributions, provided λ is sufficiently large.

Lemma 4. For any λ-dispersedM where λ ≥ k2

n , EIRD(M) contains all points x ∈ ∆(N) satisfying

∥x− xU∥∞ ≤
k − 1

n(n− 1)
,

where xU is the uniform 1
n vector.

We give an algorithmic variant of this lemma which is used directly by Algorithm 2, as well as a
variant for uniform distributions over smaller subsets as λ grows, which we use to prove Theorem 2.

4.2 Subroutines

Our algorithm makes use of a number of subroutines for navigating the memory space, model learning,
and implementing RC-FKM. We state their key ideas here, with full details deferred to Appendix E.

UniformPad:

• In each round, include the k items with smallest counts, breaking ties randomly.

MoveTo(x):

• Apply the same approach from UniformPad to the difference between the current histogram
and x.

Query(x):

• Play a sequence of O(n/k) partially overlapping menus which cover all items, holding each
constant long enough for concentration, and compute relative probabilities of each item.
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Algorithm 2 A no-regret recommendation algorithm for adaptive agents.

Input: Item set [n], menu size k, Agent with λ-dispersed memory model M for λ ≥ k2

n , where M
belongs to an S-locally learnable classM, diversity constraint Hc, horizon T , G-Lipschitz linear
losses ρi, . . . , ρT .
Let tpad = Θ̃(1/ϵ3)

Let tmove = Θ̃(1/ϵ3)

Let tquery = Θ̃(1/ϵ2)

Let α = Θ( k
n2S )

Get set of S points in the α-ball around uniform vector xU to query from AM
Let t0 = tpad + S(2 · tmove + tquery)
Run UniformPad for tpad rounds
for xi in S do

Run MoveTo(xi) for tmove rounds
Run Query(xi) for tquery rounds, observe result q̂(xi)
Run MoveTo(xU ) for tmove rounds

end for
Estimate model M̂ using AM for β = Θ(ϵ)
Let vt0 be the empirical item distribution of the first items t0 items
Let Kt0 = Hc (in n− 1 dimensions, with xt,n = 1−

∑n−1
i=1 xt,i, and s.t. xU translates to 0)

Initialize RC-FKM to run for T ∗ = T − t0 − 1 rounds with r = O(k2/n), δ, ϵ = r
T∗1/4

for t = t0 + 1 to T do
Let xt be the point chosen by RC-FKM
Use PlayDist(xt) to compute menu distribution zt
Sample Kt ∼ zt, show Kt to Agent
Observe Agent’s chosen item it and reward ρt(eit)
Update RC-FKM with ρt(eit)
Let vt = t−1

t vt−1 +
1
t · eit

Update the decision set to Kt+1 = Kt ∩ IRD(vt, M̂)
end for

PlayDist(x):

• Given an item distribution x, we solve a linear program to compute a menu distribution zx
using M̂(v) which induces x when a menu is sampled and the Agent selects an item.

The intuition behind our learning stage is that each call to Query(x) can be accurately estimated by
bounding the “drift” in the memory vector while sampling occurs, as the number of samples per
query is small compared to the history thus far. Each call to MoveTo(x) for a point within the α-ball
can be implemented by generating an empirical distribution corresponding to a point in EIRD(M) for
sufficiently many rounds.

The resulting model estimate M̂ yields score estimates which are accurate for any memory vector.
To run RC-FKM, we translate to an n − 1 dimensional simplex representation, and construct a
menu distribution to implement any action xt via a linear program (PlayDist(x)). The robustness
guarantee for RC-FKM ensures that the loss resulting from imprecision in M̂ is bounded, and further
ensures that the resulting expected distribution remains inside Hc (and that Hc is approximately
satisfied with high probability by the empirical distribution). We contract our decision set in each
step with the current space IRD(vt, M̂), which will always contain EIRD(M̂), the best point in which
is competitive with the best point in EIRD(M).

5 Conclusion and Future Work

Our work formalizes a bandit setting for investigating online recommendation problems where agents’
preferences can adapt over time and provides a number of key initial results which highlight the
importance of diversity in recommendations, including lower bounds for more “ambitious” regret
benchmarks, and a no-regret algorithm for the EIRD set benchmark, which can coincide with the
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high-entropy set under appropriate conditions. Our results showcase a tradeoff between the space of
strategies one considers and the ability to minimize regret. Crucially, our lower bound constructions
illustrate that we cannot hope to optimize over the set of recommendation patterns which may send
agents down “rabbit holes” that drastically alter their preferences, whereas it is indeed feasible to
optimize over the space of sufficiently diversified recommendations.

There are several interesting directions which remain open for future investigation, including ad-
ditional characterizations of the EIRD set, discovering more examples or applications for local
learnability, identifying the optimal rate of regret or dependence on other parameters, settings in-
volving multiple agents with correlated preferences, and consideration of alternate models of agent
behavior which circumvent the difficulties posed by uniform memory.
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