
Appendix: Efficient Training of
Low-Curvature Neural Networks

A Proof of Theorem 1

In this section, we provide the proof of the main theorem in the paper, which decomposes overall
curvature into curvatures and slopes of constituent layers. We state Theorem 1 below for reference.

Theorem 1. Given a function f = fL ◦ fL−1 ◦ . . . ◦ f1 with fi : Rni−1 → Rni , the curvature Cf
can be bounded as follows

Cf (x) ≤
L∑

i=1

ni × Cfi(x)
i∏

j=1

∥∇fj−1
fj(x)∥2 ≤

L∑
i=1

ni ×max
x′

Cfi(x′)

i∏
j=1

max
x′

∥∇fj−1
fj(x

′)∥2.

(1)

This statement is slightly different than the one given in the paper, differing by a term of the width of
each nonlinear layer. Since we do not use or care about the units of curvature, only its minimization,
and have elected to equally-weight each term of the sum, this is an inconsequential discrepancy.

A similar bound is constructed recursively in [1]. [2] gives a similar formula, albeit for the Frobenius
norm. The Frobenius norm is both simpler, because the sum of squared entries is independent of
the layout of the data, and also weaker, since it cannot deliver a bound which holds uniformly in the
data. To our knowledge Equation 1 is the first explicit, easily-interpreted formula of its type.

We start with some preliminaries, with the actual proof being in subsection A.4.

A.1 Derivatives of compositional functions

For a function f : Rd → Rr, let ∇f : Rd → Rd×r denote its gradient, and ∇2f : Rd → Rd×r×d

denote its Hessian. We drop the argument to functions when possible, and all norms will be spectral
norms.

Given L functions fi : Rni−1 → Rni , i = 1 . . . , L let fk,k+j = fk+j ◦ fk+j−1 ◦ . . . ◦ fk : Rnk−1 →
Rnk+j for 1 ≤ k ≤ k + j ≤ L. This function composition will be our model of a deep neural
network where fℓ represents the action of the ℓth layer.

If each fi is continuously differentiable, we have this formula for the gradient of fk,k+j

∇fk,k+j =

j∏
i=1

∇fk+j−i+1 ∈ Rnk+j×nk . (2)

where we adopt the convention that fj,j(x) = x in order to make the boundary conditions cor-
rect. The product begins at the end, with ∇fk+j and progresses forward through the indices – a
straightforward consequence of the chain rule of differentiation. Supposing moreover that each fi is
twice-differentiable, we have this formula for the second derivative of f1,k:

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

∇2f1,k =

k∑
i=1

∇2f1,i −∇2f1,i−1

where (∇2f1,i −∇2f1,i−1) = (∇2fi)
(
∇f1,i−1,∇f⊤

i+1,k,∇f1,i−1

)
∈ Rn0×nk×n0

(3)

where we have used the covariant multilinear matrix multiplication notation: ∇2fi is an order-three
tensor ∈ Rni×ni×ni , with the first and third modes multiplied by ∇f1,i−1 ∈ Rni×n0 and the second
mode multiplied by ∇f⊤

i+1,k ∈ Rni×nk .

A.2 Tensor calculus

In this section, we present a simplifed version of the notation from [3]. A k-linear map is a function
of k (possibly multidimensional) variables such that if any k−1 variables are held constant, the map
is linear in the remaining variable. A k-linear function is can be represented by an order-k tensor A
given elementwise by A = Jaj1...jkK ∈ Rd1×...×dk .

The covariant multilinear matrix multiplication of a tensor with matrices (order 2 tensors) M1 =

(m
(1)
i1j1

) ∈ Rd1×s1 , . . . ,Mk = (m
(k)
ikjk

) ∈ Rdk×sk is

A(M1, . . . ,Mk) =

t
d1∑

i1=1

. . .

dk∑
ik

ai1...ikm
(1)
i1j1

. . .m
(k)
ikjk

|

∈ Rs1×...×sk .

This operation can be implemented via iterated einsums as:

def covariant_multilinear_matmul(a: torch.Tensor,
mlist: List[torch.Tensor]) -> torch.Tensor:

order = a.ndim
base_indices = string.ascii_letters
indices = base_indices[:order]
next_index = base_indices[order]

val = a
for idx in range(order):

resp_str = indices[:idx] + next_index + indices[idx+1:]
einsum_str = indices + f",{indices[idx]}{next_index}->{resp_str}"
val = torch.einsum(einsum_str, val, mlist[idx])

return val

For example, covariant multilinear matrix multiplication of an order two tensor is pre- and post-
multiplication by its arguments: M⊤

1 AM2 = A(M1,M2). The generalization of the matrix spectral
norm is ||A||2 = sup{A(x1, . . . , xk) : ||xi|| = 1, xi ∈ Rdi , i = 1, 2, . . . , k}. The computation
of order-k operator norms is hard in theory, and also in practice (cf. [4]). In order to address this
difficulty, we introduce an instance of the unfold operator.

For A ∈ Rd1×d2×d3 , unfold{{1,2},{3}}(A) ∈ Rd1d2×d3 is the matrix with the jth column being
the flattened jth (in the final index) d2 × d3 matrix.1 Unfolding is useful because it it allows us to
bound an order-3 operator norm in terms of order-2 operator norms – Wang et al. [3] shows that
||A|| ≤ ||unfold{{1,2},{3}}(A)||. The upper bound – the operator norm of a matrix – can computed
with standard largest singular-value routines. A similar unfolding-based bound was used in the deep-
learning context by [5] to give improved estimates on the spectral norm of convolution operators.

To facilitate the analysis of unfolded tensors, we coin operations that put to the diagonal of tensors:

• pdiag2 : Rd 7→ Rd×d defined by pdiag2(x)ij =
{
xj if i = j

0 otherwise.

1In PyTorch notation, unfold{{1,2},{3}}(a) = torch.flatten(a, end_dim=1)

2

• pdiag3 : Rd 7→ Rd×d×d defined by pdiag3(x)ijk =

{
xj if i = j = k

0 otherwise.

Further, let 1n ∈ Rn be a vector of ones, In = pdiag2(1n) ∈ Rn×n be the n-dimensional identity
matrix, and In = pdiag3(1n) ∈ Rn×n×n. For two vectors a ∈ Rn, b ∈ Rn, let ab denote the
elementwise product. ⊗ denotes the well-understood Kronecker product, so that, for example, 1⊤n ⊗
Im is an m× nm matrix consisting of n copies of the m×m identity matrix stacked side by side.
Where it is redundant, we drop the subscripts indicating dimension.

We use the following facts about tensors, their unfoldings, and their operator norms, in what follows.

1. A = pdiag3(ab) =⇒ A(M1,M2,M3) = I(pdiag2(a)M1,M2, pdiag2(b)M3)

2. unfold{{1,2},{3}}(I(M1,M2,M3)) = (M1 ⊗ Is2)
⊤unfold{{1,2},{3}}(I(Id1 ,M2,M3))

3. ||(1⊤d1
⊗ Is2)unfold{{1,2},{3}}(I(Id1

,M2,M3))|| ≤ ||M⊤
2 M3||s2

Taken together Fact #2 and #3 imply that

||unfold{{1,2},{3}}(I(M1,M2,M3))|| ≤ ||M1|| × ||M⊤
2 M3|| × s2 (4)

which is our essential bound for the norm of an order-3 tensor in terms of order-2 tensors.

A.3 Hessian increment bound

Let σ(x) = exp(x)/(1 + exp(x))) denote the (elementwise) logistic function Rd 7→ Rd. The
derivatives of s(x;β) can be written as

∇s(x;β) = pdiag2(σ(βx)) ∈ Rd×d (5)

∇2s(x;β) = pdiag3(βσ(βx)(1− σ(βx))) ∈ Rd×d×d. (6)

Let the ith softplus layer have coefficient βi, then the increment from Equation 3, can be bounded
as follows:

||(∇2fi)
(
∇f1,i−1,∇f⊤

i+1,k,∇f1,i−1

)
|| (7)

=||βiIni

(
pdiag2(1− σ(βix))∇f1,i−1,∇f⊤

i+1,k, pdiag2(σ(βix))∇f1,i−1

)
|| (8)

≤||βiunfold{{1,2},{3}}(Ini(pdiag2(1− σ(βix))∇f1,i−1,∇f⊤
i+1,k, pdiag2(σ(βix))∇f1,i−1)|| (9)

≤||βi(pdiag2(1− σ(βix))∇f1,i−1|| × ||∇f⊤
i+1,kpdiag2(σ(βix))∇f1,i−1|| × ni (10)

≤ni × ||βi(pdiag2(1− σ(βix))|| × ||∇f1,i−1|| × ||∇f⊤
i+1,k∇fi∇f1,i−1|| (11)

=ni × Cfi × ||∇f1,i−1|| × ||∇f ||. (12)

Equation 8 follows by Fact #1 above, along with Equation 6. Equation 9 is the standard unfold-
ing bound by [3]. Equation 10 is our main bound on order-3 tensors in terms of order-2 matri-
ces, Equation 4. Equation 11 follows from the Cauchy-Schwartz inequality. The replacement in
the last term of the product is Equation 5. Equation 12 rewrites Equation 11 using Equation 2:
f⊤
i+1,k∇fi∇f1,i−1 = ∇f1,k and the definition of the curvature of fi.

3

A.4 Putting it together

Ignoring the ϵ term,

Cf (x) =
∥∇2f(x)∥
∥∇f(x)∥

(13)

=
1

∥∇f(x)∥

∣∣∣∣∣
∣∣∣∣∣

L∑
i=1

∇2f1,i(x)−∇2f1,i−1(x)

∣∣∣∣∣
∣∣∣∣∣ (14)

≤ 1

∥∇f(x)∥

L∑
i=1

||∇2f1,i(x)−∇2f1,i−1(x)|| (15)

≤
L∑

i=1

ni × Cfi(x)× ||∇f1,i−1(x)|| (16)

≤
L∑

i=1

ni × Cfi(x)×
j∏

i=1

||∇fi(x)|| (17)

≤
L∑

i=1

ni ×max
x

Cfi(x)×
j∏

i=1

max
x

||∇fi(x)|| (18)

Equation 14 substitutes Equation 3. Equation 15 is the triangle inequality. Equation 16 is Equa-
tion 12, along with cancelling the term of ||∇f || top and bottom. Equation 17 are Equation 18 are
obvious and a standard simplification in the literature on controlling the Lipschitz constant of neural
networks. Because exactly computing the smallest Lipschitz constant of a general neural network is
NP-complete, a widely-used baseline measure of Lipschitz-smoothness is rather the product of the
Lipschitz constants of smaller components of the network, such as single layers ([6]).

B Loss curvature vs logit curvature

We have thusfar discussed how to assure a bound on curvature independent of the input x. How-
ever, a truly data-independent bound must also not depend on the class label y. In this short
section we discuss the main consideration that accompanies this: the differences between loss
and (pre-softmax) logit curvature. Let the function including the loss for a class c be denoted
by f c

loss, and the logit corresponding to a class c ∈ [1, C] be f c
logit, and let f1,C

logit denote the vec-
tor valued function corresponding to all the logits. Then we have f c

loss = lsmc ◦ f1,C
logit , where

lsmc(x) = − log exp(xc)∑C
i=1 exp(xi)

= −xc + log
∑C

i=1 exp(xi) is the negative log softmax function.

The derivatives of this function are:

dlsmc(x)

dxc
=

exp(xc)∑C
i=1 exp(xi)

− 1

d2lsmc(x)

dx2
c

=
exp(xc)∑C
i=1 exp(xi)

(
1− exp(xc)∑C

i=1 exp(xi)

)

whose norm is upper bounded by 1 and 0.25 respectively. This implies that bounding the logit cur-
vature also ensures that the loss curvature is bounded, as the gradients and Hessians of the negative
log softmax layer do not explode. In other words, Cfloss < Cflogit .

However penalizing an upper bound may not be the most efficient way to penalize the loss
Hessian. Consider the following decomposition of the loss Hessian, which can be written as
∇2f(x) ∼ ∇flogit(x)∇2

fl
LSE(x)∇flogit(x)

⊤ +∇flLSE(x)∇2flogit(x), where LSE(x) is the Log-
SumExp function. Thus a more efficient way to penalize the loss Hessians is to both use our LCNN
penalties, as well as penalize the gradient norm, which we also find to be true in our experiments.

4

C γ-Lipschitz Batchnorm

We present here a Pytorch-style pseudo-code for the γ-Lipschitz Batchnorm for clarity.

bn = torch.nn.BatchNorm2d(in_channels, affine=False)
log_lipschitz = torch.nn.Parameter(torch.tensor(init_lipschitz).log())
...
perform spectral normalization for BN in closed form
bn_spectral_norm = torch.max(1 / (bn.running_var + 1e-5).sqrt())
one_lipschitz_bn = bn(x) / bn_spectral_norm

multiply normalized BN with a learnable scale
scale = torch.min((bn.running_var + 1e-5) ** .5)
one_lipschitz_part = bn(x) * scale
x = one_lipschitz_part * torch.minimum(1 / scale, log_lipschitz.exp())

Note that we parameterize γ in terms of its log value, to ensure it remains positive during training.
We employ the same method for fitting the centered softplus parameter, β.

D Proofs of LCNN Properties

Here we present proofs for the properties linking LCNNs to gradient smoothness and adversarial
robustness. To this end, we first prove a lemma that is used in both these results, which states that
the gradient norm can rise exponentially in the worst case. In the text below, Bδ(x) denotes the
δ-ball around x.
Lemma 1. The ratio of gradient norms at nearby points rises exponentially with distance between
those points. For a function f satisfying maxx′∈Bδ(x) Cf (x′) = δC , points x and x + ϵ that are
∥ϵ∥2 = r away, we have

∥∇f(x+ ϵ)∥2
∥∇f(x)∥2

≤ exp(rδC)

Proof. Let g(x) = log ∥∇f(x)∥22. Applying a first order Taylor series with Lagrange remainder /
mean-value theorem, we have

g(x+ ϵ)− g(x) = ∇g(x+ ξ)⊤ϵ (for some ξ ∈ Bϵ(x))

log
∥∇f(x+ ϵ)∥22
∥∇f(x)∥22

= 2
∇f(x+ ξ)∇2f(x+ ξ)⊤ϵ

∥∇f(x+ ξ)∥22

≤ 2
∥∇f(x+ ξ)∥2∥∇2f(x+ ξ)∥2∥ϵ∥2

∥∇f(x+ ξ)∥22
(Cauchy-Schwartz inequality)

≤ 2rδC

Note that to apply the Cauchy-Schwartz inequality, we first upper bound the term on the right by its
2-norm, which for a scalar is simply its absolute value. Taking exponent on both sides of the final
expression and taking square root, we have the intended result.

D.1 LCNNs have Robust Gradients

Proposition 1. Let maxx′∈Bϵ(x) Cf (x′) ≤ δC , then the relative distance between gradients at x and
x+ ϵ is

∥∇f(x+ ϵ)−∇f(x)∥22
∥∇f(x)∥22

≤ rδC exp(rδC) ∼ rCf (x) (Quadratic Approximation)

5

Proof. We begin the proof by invoking the Taylor series approximation of ∇f(x+ϵ) at x, and using
the explicit Lagrange form of the Taylor error. This is equivalent to using a form of the multivariate
mean-value theorem. Let ξ ∈ Bϵ(x), then there exists some ξ such that the following holds

∇f(x+ ϵ)−∇f(x) = ∇2f(x+ ξ)⊤ϵ (Taylor Series)

∥∇f(x+ ϵ)−∇f(x)∥2 ≤ ∥∇2f(x+ ξ)∥2∥ϵ∥2 (Cauchy- Schwartz inequality)
∥∇f(x+ ϵ)−∇f(x)∥2

∥∇f(x)∥2
≤ Cf (x+ ξ0)∥∇f(x+ ξ)∥2

∥∇f(x)∥2
r (Divide by gradnorm)

Plugging in the value of ∥∇f(x + ξ0)∥2/∥∇f(x)∥2 from Lemma 1, and further upper bounding
Cf (x+ ξ) ≤ δC we have the intended result.

To derive the simplified quadratic approximation, replace the first step in the Taylor series with
∇f(x+ ϵ)−∇f(x) = ∇2f(x)⊤ϵ, i.e., use ξ = 0.

D.2 Curvature is Necessary for Robustness

Proposition 2. Let maxx′∈Bϵ(x) Cf (x′) ≤ δC , then for two points x and x+ ϵ,

∥f(x+ ϵ)− f(x)∥2 ≤ r∥∇f∥2
(
1 +

1

2
rδC exp(rδC)

)
∼ r∥∇f∥2

(
1 +

1

2
rCf (x)

)
(Quadratic Approximation)

Proof. Let ξ ∈ Bϵ(x), then there exists some ξ such that the following holds

f(x+ ϵ)− f(x) = ∇f(x)⊤ϵ+
1

2
ϵ⊤∇2f(x+ ξ)ϵ (Taylor Series)

∥f(x+ ϵ)− f(x)∥2 ≤ ∥∇f(x)⊤ϵ∥2 +
1

2
∥ϵ⊤∇2f(x+ ξ)ϵ∥2 (triangle inequality)

≤ ∥∇f(x)∥2∥ϵ∥2 +
1

2
λmax(x+ ξ)∥ϵ∥22 (Cauchy-Schwartz inequality)

≤ ∥∇f(x)∥2∥ϵ∥2 +
1

2
Cf (x+ ξ)∥ϵ∥22∥∇f(x+ ξ)∥2 (Defn of Cf (x+ ξ))

Factoring out ∥∇f(x)∥2∥ϵ∥2 in the RHS, and using Lemma 1, and further upper bounding Cf (x+
ξ) ≤ δC we have the intended result.

To derive the simplified quadratic approximation, replace the first step in the Taylor series with
f(x+ ϵ)− f(x) = ∇f(x)⊤ϵ+ 1

2ϵ
⊤∇2f(x)ϵ, i.e., use ξ = 0.

E Experimental Settings

In this section we elaborate on the hyper-parameter settings used for our tuning our models. For
the standard ResNet-18, we use standard hyper-parameter settings as indicated in the main paper,
and we do not modify this for the other variants. For LCNNs, we chose regularizing constants as
λβ = 10−4 and λγ = 10−5. For GradReg, we use λgrad = 10−3, and for LCNNs + GradReg, we
chose λβ = 10−4, λγ = 10−5, λgrad = 10−3. We performed a coarse grid search and chose the
largest regularizing constants that did not affect predictive performance.

F Additional Experiments

F.1 Ablation Experiments

In this section, we present ablation studies where we train models with each of the proposed mod-
ifications separately, i.e., we train a model with only spectral norm for the convolution layers, γ-
Lipschitz Batchnorm or centered softplus. Our results in Table 1 show that for the resnet18 archi-
tecture considered,

6

Table 1: Ablation experiments to study effect of individual modifications to LCNN architectures. We
find that while either using only centered softplus or γ-BN suffices in practice to minimize curvature,
while spectral norm on the convolutional layers (which is the most expensive modification) may not
be necessary.

Model ExCf (x) Ex∥∇2f(x)∥2 Ex∥∇f(x)∥2 Accuracy (%)
ConvSpectralNorm only 358.86 8380.55 23.92 77.55

γ-BN only 65.78 1086.95 20.86 77.33
c-Softplus only 57.49 734.05 16.99 77.31

Standard 270.89 6061.96 19.66 77.42
LCNN 69.40 1143.62 22.04 77.30

(1) performing spectral normalization had no effect of curvature as presumably the batchnorm layers
are able to compensate for the lost flexibility, and

(2) either penalizing the batchnorm alone or the softplus alone performs almost as well as LCNN, or
sometimes even better in terms of curvature reduction. Note that the most expensive computational
step is the spectral norm for the convolutional layers, indicating that avoiding this in practice may
yield speedups in practice.

While in practice for Resnet-18 only γ-Lipschitz or centered softplus is sufficient for curvature
reduction, in theory we must regularize all components to avoid scaling restrictions in one layer
being compensated by other layers, as dictated by the upper bound. In particular, this means that the
strategy of penalizing only a subset of layers may not generalize to other architectures.

F.2 Robustness Evaluation on RobustBench / Autoattack

The attack presented in ?? was relatively “weak” – a network could be truly susceptible to ad-
versarial attack, but by only testing against a weak adversary, we could fail to notice. Short of a
comprehensive verification (e.g. [7]), which is known to be computationally intractable at scale,
there is no fully satisfactory way to guarantee robustness. However, one common method to de-
velop confidence in a model is to demonstrate robustness in the face of a standard set of nontrivially
capable attackers. This is what we do in Table 2, where we use the Robustbench software library
[8] to evaluate both a white-box (having access to the internal details of the model), and a black-box
(using only function evaluations) attacks.

Table 2: Adversarial accuracy to standard attacks accessed via Robustbench [8]. “APGD-t” refers
to the white box targetted auto PGD attack from [9], “Square” refers to the black-box square attack
from [10].

Model APGD-t Acc. (%) Square Acc. (%) Clean Acc. (%)
Standard 22.122 52.874 76.721
LCNN 23.709 52.179 76.602

GradReg 50.294 64.678 76.394
LCNN+GradReg 52.477 64.678 76.622

CURE 50.096 63.488 75.928
Softplus+wt decay 23.907 53.766 76.622

Adv Training 55.155 66.861 75.521

CURE + GradReg 60.810 67.357 74.192
LCNN + GradReg + Adv Training 59.222 66.861 75.382

These experimental results show overall that:

(1) LCNN + GradReg is still on par with adversarial training even against stronger attacks such as
APGD-t and Square, as they are with PGD.

(2) Combining LCNN + GradReg with adversarial training (in the last row) further improves robust-
ness at the cost of predictive accuracy.

7

(3) Combining CURE with GradReg (in the penultimate row) improves robustness at the cost of
further deteriorating predictive accuracy.

F.3 Additional Evaluations on more Architectures / Dataset Combinations

We present results on the following dataset - architecture pairs:

(1) In Table 3, we present results on SVHN dataset and VGG-11 model

(2) In Table 4, we present results on SVHN dataset and ResNet-18 model

(3) In Table 5, we present results on CIFAR-100 dataset and VGG-11 model

In all cases, we find that our results are on par with our experiment done on the CIFAR-100 and
ResNet-18 setup, which confirms that generality of our approach.

Table 3: Model geometry of VGG-11 models trained on the SVHN test dataset.
Model Ex∥∇f(x)∥2 Ex∥∇2f(x)∥2 ExCf (x) Accuracy (%)

Standard 2.87 158.29 54.24 96.01
LCNNs 4.04 83.34 30.05 95.61

GradReg [11] 1.85 57.52 33.34 96.03
LCNNs + GradReg 2.02 25.54 17.06 96.23

Adversarial Training [12] 1.25 27.64 24.23 96.37

Table 4: Model geometry of Resnet-18 models trained on the SVHN test dataset.
Model Ex∥∇f(x)∥2 Ex∥∇2f(x)∥2 ExCf (x) Accuracy (%)

Standard 2.64 204.38 78.22 96.41
LCNNs 2.91 77.78 25.36 96.35

GradReg [11] 1.63 68.22 39.55 96.57
LCNNs + GradReg 1.69 31.69 15.28 96.53

Adversarial Training [12] 1.05 22.96 24.48 96.64

Table 5: Model geometry of VGG-11 models trained on the CIFAR-100 test dataset.
Model Ex∥∇f(x)∥2 Ex∥∇2f(x)∥2 ExCf (x) Accuracy (%)

Standard 17.07 1482.16 85.81 73.33
LCNNs 15.88 282.06 41.14 73.76

GradReg [11] 10.64 534.71 48.26 72.65
LCNNs + GradReg 9.81 105.07 24.48 73.01

Adversarial Training [12] 6.20 166.73 27.37 71.13

References
[1] Sahil Singla and Soheil Feizi. Second-order provable defenses against adversarial attacks.

In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
8981–8991. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
singla20a.html.

[2] Ann-Kathrin Dombrowski, Christopher J. Anders, Klaus-Robert Müller, and Pan Kessel. To-
wards robust explanations for deep neural networks. Pattern Recognition, 121:108194, 2022.
ISSN 0031-3203. URL https://doi.org/10.1016/j.patcog.2021.108194.

[3] Miaoyan Wang, Khanh Dao Duc, Jonathan Fischer, and Yun S. Song. Operator norm inequal-
ities between tensor unfoldings on the partition lattice. Linear Algebra and its Applications,

8

https://proceedings.mlr.press/v119/singla20a.html
https://proceedings.mlr.press/v119/singla20a.html
https://doi.org/10.1016/j.patcog.2021.108194

520:44–66, 2017. ISSN 0024-3795. URL https://doi.org/10.1016/j.laa.2017.01.
017.

[4] Shmuel Friedland and Lek-Heng Lim. Nuclear norm of higher-order tensors. Mathematics of
Computation, 87:1255–1281, 2018. doi: https://doi.org/10.1090/mcom/3239.

[5] Sahil Singla and Soheil Feizi. Fantastic four: Differentiable bounds on singular values of
convolution layers. CoRR, abs/1911.10258, 2019. URL http://arxiv.org/abs/1911.
10258.

[6] Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural networks: Analysis
and efficient estimation. In Proceedings of the 32nd International Conference on Neural In-
formation Processing Systems, NIPS’18, page 3839–3848, Red Hook, NY, USA, 2018. Curran
Associates Inc. URL https://dl.acm.org/doi/10.5555/3327144.3327299.

[7] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. CoRR, abs/1702.01135, 2017.
URL http://arxiv.org/abs/1702.01135.

[8] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas
Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized
adversarial robustness benchmark, 2021.

[9] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. CoRR, abs/2003.01690, 2020. URL https://
arxiv.org/abs/2003.01690.

[10] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein.
Square attack: a query-efficient black-box adversarial attack via random search. CoRR,
abs/1912.00049, 2019. URL http://arxiv.org/abs/1912.00049.

[11] H. Drucker and Y. Le Cun. Improving generalization performance using double backpropaga-
tion. IEEE Transactions on Neural Networks, 3(6):991–997, 1992. doi: 10.1109/72.165600.

[12] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks. arXiv e-prints,
June 2017. URL http://arxiv.org/abs/1706.06083.

9

https://doi.org/10.1016/j.laa.2017.01.017
https://doi.org/10.1016/j.laa.2017.01.017
http://arxiv.org/abs/1911.10258
http://arxiv.org/abs/1911.10258
https://dl.acm.org/doi/10.5555/3327144.3327299
http://arxiv.org/abs/1702.01135
https://arxiv.org/abs/2003.01690
https://arxiv.org/abs/2003.01690
http://arxiv.org/abs/1912.00049
http://arxiv.org/abs/1706.06083

	Proof of Theorem 1
	Derivatives of compositional functions
	Tensor calculus
	Hessian increment bound
	Putting it together

	Loss curvature vs logit curvature
	-Lipschitz Batchnorm
	Proofs of LCNN Properties
	LCNNs have Robust Gradients
	Curvature is Necessary for Robustness

	Experimental Settings
	Additional Experiments
	Ablation Experiments
	Robustness Evaluation on RobustBench / Autoattack
	Additional Evaluations on more Architectures / Dataset Combinations

