
A Theory

Theorem 1. The evidence lower bound (ELBO) to optimize the framework is:

lnP (GCF |S, Y ∗, G) ≥ EQ[lnP (GCF |Z, S, Y ∗, G)]− KL(Q(Z|G,S, Y ∗)∥P (Z|G,S, Y ∗)),
(8)

Proof.

lnP (GCF |S, Y ∗, G)

= ln

∫
Z

P (GCF , Z|S, Y ∗, G)dZ

= ln

∫
Z

Q(Z|G,S, Y ∗)
P (GCF , Z|S, Y ∗, G)

Q(Z|G,S, Y ∗)
dZ

≥
∫
Z

Q(Z|G,S, Y ∗) ln
P (GCF , Z|S, Y ∗, G)

Q(Z|G,S, Y ∗)
dZ

=EQ[ln
P (GCF , Z|S, Y ∗, G)

Q(Z|G,S, Y ∗)
]

=EQ[ln
P (GCF |Z, S, Y ∗, G) · P (Z|G,S, Y ∗)

Q(Z|G,S, Y ∗)
]

=EQ[lnP (GCF |Z, S, Y ∗, G)]− EQ[ln
Q(Z|G,S, Y ∗)

P (Z|G,S, Y ∗)
]

=EQ[lnP (GCF |Z, S, Y ∗, G)]− KL(Q(Z|G,S, Y ∗)∥P (Z|G,S, Y ∗)).

(9)

B Reproducibility

In this section, we provide more details of model implementation and experiment setup for repro-
ducibility of the experimental results.

B.1 Details of Model Implementation

B.1.1 Details of the Prediction Model

The prediction model f is implemented with a graph neural network based model. Specifically, this
prediction model includes the following components:

• Three layers of graph convolutional network (GCN) [34] with learnable node masks.

• Two graph pooling layers with mean pooling and max pooling, respectively.

• A two-layer multilayer perceptron (MLP) with batch normalization and ReLU activation
function.

The prediction model uses negative log likelihood loss. The representation dimension is set as 32.
We use Adam optimizer, set the learning rate as 0.001, weight decay as 1e−5, the training epochs as
600, dropout rate as 0.1, and batch size as 500. As shown in Table 2, we observe that the prediction
model f achieves high performance of graph classification on all datasets.

Table 2: Performance of the prediction model on the test data of the three datasets.
Dataset Community Ogbg-molhiv IMDB-M

Accuracy 0.949± 0.006 0.897± 0.004 0.995± 0.002
AUC-ROC 0.993± 0.002 0.997± 0.002 1.000± 0.001
F1-score 0.947± 0.005 0.906± 0.004 0.994± 0.003

14

B.1.2 Details of CLEAR

CLEAR is designed in a general way, which can be adaptable to different graph representation learning
modules and different techniques in graph generative models. Specifically, in our implementation, we
apply a graph convolution [34] based module as the encoder, and use a multilayer perceptron (MLP)
as the decoder. We also use MLPs to learn the mean and covariance of the prior distribution of the
latent variables. We choose the pairwise distance using L2 norm to implement dX(·), and use cross
entropy loss to implement dA(·). We implement the counterfactual prediction loss with the negative
log likelihood loss. Following [16], we assume that the maximum number of nodes in the graph is
k, and use a graph matching technique to align the input graph and counterfactuals. The detailed
implementation contains the following components:

• Prior distribution: Two different two-layer MLPs are used to learn the mean and covariance
of the prior distribution P (Z|G,S, Y ∗), respectively.

• Encoder: The encoder contains a single-layer graph convolutional network, a graph pooling
layer with mean pooling, and two linear layers with batch normalization and ReLU acti-
vation function to learn the mean and covariance of the approximate posterior distribution
Q(Z|G,S, Y ∗).

• Decoder: The decoder uses two three-layer MLPs to output the node features and graph
structure of the counterfactual GCF , respectively. These MLPs use batch normalization,
and take ReLU as activation function in the middle layers. At the last layer of decoder, the
MLP which generates the graph structure uses Sigmoid as activation function to output a
probabilistic adjancency matrix ÂCF with elements in range [0, 1].

Inspired by [16], we use a graph matching technique to align the input graph and counterfactuals.
Specifically, we learn a graph matching matrix M = {0, 1}k×n to match the generated counterfactual
with the original explainee graph. Here, n is the number of nodes in the original graph, and M(i,j) = 1

if and only if node i is in GCF and node j is in G, and M(i,j) = 0 otherwise.

B.2 Details of Experiment Setup

B.2.1 Baseline Settings

Here we introduce more details of baseline setting:

• Random: For each explainee graph, it randomly perturbs the graph structure for at most
T = 150 steps. In each step, at most one edge can be inserted or removed. We stop the
process if the perturbed graph can achieve a desired predicted label.

• GNNExplainer: For each graph, GNNExplainer [12] outputs an edge mask which esti-
mates the importance of different edges in model prediction. In CFE generation, we set a
threshold 0.5 and remove edges with edge mask weight smaller than the threshold. Although
GNNExplainer can also identify important node features in a similar way, when we apply
GNNExplainer for CFE generation, the perturbation on node features cannot be designed as
straightforwardly as the perturbation on graph structure, thus we did not involve perturbation
on node features in GNNExplainer.

• CF-GNNExplainer: CF-GNNExplainer [9] is originally proposed for node classification
tasks, and it only focuses on the perturbations on the graph structure. Originally, for
each explainee node, it takes its neighborhood subgraph as input. To apply it on graph
classification tasks, we use the graph instance as the neighborhood subgraph, and assign
the graph label as the label for all nodes in the graph. We set the number of iterations to
generate counterfactuals for each graph as 150.

• MEG: MEG [6] is specifically proposed for molecular prediction tasks. This model ex-
plicitly incorporates domain knowledge in chemistry. The CFE generator is developed
based on reinforcement learning, and it designs the reward based on the prediction on the
counterfactual, as well as the similarity between the original graph and the counterfactual.
In each step, MEG enumerates all possible perturbations (e.g., adding an atom) which are
valid w.r.t. chemistry rules to form an action set. We apply it to general graphs by removing
the constraints of domain knowledge, and enumerating the perturbations as: 1) adding or
removing a node; 2) adding or removing an edge; 3) staying the same. We set the number of
action steps as 150.

15

Table 3: Detailed statistics of the datasets.
Dataset Community Ogbg-molhiv IMDB-M

of graphs 10, 000 31, 957 1, 160
Avg # of nodes 20 20.8 9.4
Avg # of edges 45.0 22.4 32.8
Max # of nodes 20 30 15
of classes 2 2 2
Feature dimension 16 11 2
Avg node degree 2.24 1.07 3.4

B.2.2 Datasets

For each dataset, we filter out the graphs with the number of nodes larger than a threshold k. The
setting of k (i.e., max # of nodes) can be found in Table 3. As some of the baselines need to be
optimized separately for each graph, we compare the performance of all methods on a small set of
test data with 20 graphs for evaluation in RQ1. For other RQs, we evaluate our framework on the
whole test data.

1. Community. We first generate a synthetic dataset in which we can fully control the data generation
process. In this dataset, each graph consists of two 10-node communities generated using the Erdös-
Rényi (E-R) model [24] with edge rate p1 and p2, respectively. Specifically, we simulate the data
with the following causal model:

S ∼ Uniform({0, ..., 9}), p1 = U1 ∼ Uniform([0, 1]),

U2∼Uniform([δS + b, δ(S + 1) + b]), p2=max{0,min{1,−0.15p1 + U2}},
X ∼ N (0, I), Y ∼ Bernoulli(Sigmoid(deg1(A)− ADG1 + ϵy)). (10)

U1 and U2 are two exogenous variables associated with p1 and p2, respectively. Notice that p2
is determined by p1 and U2. Here, the auxiliary variable S provides help to infer the value of
exogenous variables (specifically, U2 in this case). We set δ = 0.085, b = 0.15. p1 and p2 thereby
generate the graph structure inside the two communities, respectively. We also randomly add
few edges between these two communities. The edges connecting two communties are randomly
generated with an edge rate of 0.05. In this way, the adjacency matrix A of each graph is simulated.
deg1(A) (determined by p1) denotes the average node degree in the first community of each graph
A. Label generation: The label Y is determined by deg1(A) together with a Gaussian noise
ϵy ∼ N (0, 0.012). ADG1 is a constant, which is the average value of deg1(A) over all graphs.
Causality: To elicit a different predicted label, deg1(A) in the counterfactual is supposed to be
perturbed, while other variables can remain the same. But considering that with the above causal
model, when deg1(A) increases (decreases), the average node degree in the second community
deg2(A) (determined by p2) should decrease (increase) correspondingly. We take this causal relation
deg1(A) → deg2(A) as our causal relation of interest, and denote it as R. Correspondingly, we
define a causal constraint for evaluation of causality: “(deg1(A

CF) > deg1(A)) ⇒ (deg2(A
CF) <

deg2(A))” OR “(deg1(A
CF) < deg1(A)) ⇒ (deg2(A

CF) > deg2(A))”.

2. Ogbg-molhiv. Ogbg-molhiv is adopted from the MoleculeNet [47] datasets. All molecules
are preprocessed with RDKit [48]. The original node features are 9-dimensional, containing atom
features such as atomic number, formal charge and chirality. In this dataset, each graph stands
for a molecule, where each node represents an atom, and each edge is a chemical bond. As the
ground-truth causal model is unavailable, we simulate the label and causal relation of interest as
follows: Label generation: Y ∼ Bernoulli(Sigmoid(X1 − AVGx1)), where X1 is the average
value of a synthetic node feature over all nodes in each graph. This node feature is generated for
each node from distribution Uniform(0, 1). AVGx1 means the average value of X1 over all graphs.
Causality: We also add a causal relation of interest R between X1 and another synthetic node
feature X2: X2 = U2 + 0.5X1. Here U2 is simulated in a similar way as the Community dataset.
Correspondingly, we have the following causal constraint: “(XCF

1 > X1) ⇒ (XCF
2 > X2)” OR

“(XCF
1 < X1) ⇒ (XCF

2 < X2)”.

3. IMDB-M. This dataset contains movie collaboration networks from IMDB. In each graph, each
node represents an actor or an actress, and each edge represents the collaboration between two actors or

16

actresses in the same movie. Similarly as the above datasets, we simulate the label and causal relation
of interest as follows: Label generation: Y ∼ Bernoulli(Sigmoid(deg(A) − ADG + ϵy). deg(A)
is the average node degree in graph with adjacency matrix A. ADG is the average value of deg(A)
over all graphs. Causality: We also add a causal relation of interest R from the average node degree
to a synthetic node feature: X1 = U1 + 0.5deg(A)/ADG, where U1 ∼ Uniform[0.1S, 0.1S + 0.1],
S ∼ Uniform{0, ..., 9}. We denote the causal relation deg(A) → X1 as R, and define an associated
causal constraint: “(deg(ACF) > deg(A)) ⇒ (XCF

1 > X1)” OR “(deg(ACF) < deg1(A)) ⇒
(XCF

1 < X1)”.

B.2.3 Experiment Settings

All the experiments are conducted in the following environment:

• Python 3.6

• Pytorch 1.10.1

• Pytorch-geometric 1.7.0

• Scikit-learn 1.0.1

• Scipy 1.6.2

• Networkx 2.5.1

• Numpy 1.19.2

• Cuda 10.1

In all the experiments of counterfactual explanation, each dataset is randomly split into 60%/20%/20%
training/validation/test set. Unless otherwise specified, we set the hyperparameters as α = 5.0 and
β = 10.0. The batch size is 500, and the representation dimension is 32. The graph prediction models
trained on all the above datasets perform well in label prediction (AUC-ROC score over 95% and
F1 score over 90% on test data). We use NetworkX [49] to generate synthetic graphs. In our CFE
generator CLEAR, the learning rate is 0.001, the number of epochs is 1,000. All the experimental
results are averaged over ten repeated executions. The implementation is based on Pytorch. We use
the Adam optimizer for model optimization.

C More Experimental Results

C.1 Ablation Study

Fig. 7 shows the results of ablation studies on the IMDB-M dataset. The observations are generally
consistent with the observations on other two datasets as described in Section 4.6.

C.2 Case Study

To better illustrate the explainability provided by CFE, we further conduct case studies to compare the
original graphs and their counterfactuals. In the Community dataset, Fig. 8 shows the change from
original graphs to their counterfactuals w.r.t. the average node degree in the first community and in the
second community, i.e., deg1(A) and deg2(A). Here, Fig. 8 has the same x-axis and y-axis as Fig. 5.
In Fig. 8, we randomly select 6 graphs and show them in different shapes of markers. The colors
denote their values of S with the same colorbar in Fig. 5(a-c). In Fig. 8, we connect the pairs (original,
counterfactual generated by CLEAR) with solid lines, and connect the pairs (original, counterfactual
generated by CLEAR-VAE) with dashed lines. We have the following observations: 1) Compared with
the input graph, the counterfactuals generated by CLEAR-VAE and CLEAR both make the correct
perturbations to achieve the desired label (moving the variable deg1(A) across the decision boundary
at around deg1(A) = 2); 2) The counterfactuals generated by CLEAR better match the causality
than CLEAR-VAE in two aspects: a) Qualitatively, the counterfactuals generated by CLEAR better
satisfy the causal constraints introduced in the dataset description, i.e., deg2(A) increases (decreases)
when deg1(A) decreases (increases); 2) Quantitatively, the changes from original graphs to their
counterfactuals fit in well with the associated structural equations (deg1(A), U2) → deg2(A). Notice
that in counterfactuals, deg1(A) changes but U2 is supposed to maintain its original value.

17

Validi
ty
Proxim

ityX
Proxim

ityACausa
lity

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Pe
rf
or
m
an
ce

-NC
-NPA

-NPX
-NP

-VAE
CLEAR

Figure 7: Ablation studies on the IMDB-M dataset.

0 2 4
degree of community 1

1

2

3

4

de
gr

ee
 of

 co
m

m
un

ity
 2

Figure 8: Case study.

100 200 500 1000
batch size

0.50

0.75

1.00

V
al

id
ity

Validity
ProximityX 0.5

0.6
0.7
0.8
0.9
1.0

Pr
ox

im
ity

X
(a) Batch size

8 16 32 64
representation dimension

0.50

0.75

1.00

V
al

id
ity

Validity
ProximityX 0.5

0.6
0.7
0.8
0.9
1.0

Pr
ox

im
ity

X

(b) Representation dimension
Figure 9: Parameter studies on Ogbg-molhiv regarding batch size and representation dimension.

C.3 Parameter Study

Here, we conduct further parameter study with respect to the batch size and representation dimension.
Specifically, we vary the batch size from range {100, 500, 1000, 2000}, and the representation
dimension from range {8, 16, 32, 64}. From the results shown in Fig. 9, we observe that the
performance of CLEAR under different settings of these parameters is generally stable. This
observation further validates the robustness of our framework.

D Further Discussion

CFEs in Other Tasks on Graphs. In this paper, we mainly focus on the task of graph classification,
but it is worth noting that the proposed framework CLEAR can also be used for counterfactual
explanations in other tasks such as node classification. More specifically, in a node classification
task, CLEAR can generate CFEs for nodes with the same loss function in Eq. (5). But differently,
the encoder here learns node representations instead of graph representations at the bottleneck layer.
Besides, in this case, Y ∗ is a vector which contains the desired labels for all the training nodes on
graph G, and S is the vector of auxiliary variables for all the training nodes. Notice that in a graph,
nodes are often not independent. To obtain a valid counterfactual for an explainee node, not only
can we change the explainee node’s own features and adjacent edges, but we can also change other
nodes’ features or any other part of the graph structure. Therefore, the decoder still needs to generate
a graph GCF as a counterfactual (but this process can be more efficient, as in many scenarios, we
only need to generate counterfactuals for each node’s neighboring subgraph instead of the whole
graph). Similarly, our framework can also be extended to generate CFEs for graphs in other tasks,
such as link prediction.

Limitation, Future Work, and Negative Societal Impacts. In this work, we mainly focus on
promoting optimization, generalization, and causality in counterfactual explanations on graphs, while
other important targets (e.g., actionability [26], sparsity [28], diversity [29], and data manifold
closeness [31]) in traditional counterfactual explanations could be considered in graph data in the
future. Noticeably, the definition and evaluation metrics with respect to these targets should be
specifically tailored for graphs, rather than directly employed in the same way as other types of data.
Besides, in terms of causality, another interesting direction is incorporating different levels of prior
knowledge and assumptions regarding the underlying causal model into CFE generation on graphs,
and quantifying the influence of different levels of prior knowledge and assumptions on the CFE
performance. Currently, we have not found any negative societal impact regarding this work.

18

