
A Sample-dependent Baselines in REBAR and RELAX

We start with the REINFORCE estimator with the sample-dependent baseline bk:

1

K

KX

k=1

(f(x(k))� bk)r⌘ log q⌘(x
(k)) + E[bkr⌘ log q⌘(x

(k))]. (15)

REBAR [62] introduces indirect independence on x
(k) in bk through the continuous reparameteriza-

tion x = H(z), z(k) ⇠ q⌘(z|x = x
(k)), where z is a continuous variable and H is an argmax-like

thresholding function. Specifically, bk = f(��(z(k))), where �� is a continuous relaxation of H
controlled by the parameter �. The correction term decomposes into two parts:

Ex(k) [Ez(k)|x(k) [f(��(z
(k)))]r⌘ log q⌘(x

(k))]

= r⌘Eq⌘(z)[f(��(z))]� Ex(k) [r⌘Eq⌘(z(k)|x(k))[f(��(z
(k)))]].

Both parts can be estimated with the reparameterization trick [29, 47, 58] which often has low
variance. The RELAX [20] estimator generalizes REBAR by noticing that f(��(z)) can be replaced
with a free-form differentiable function c�(z). However, RELAX still relies on parameterizing c�(z)
as f(��(z)) + r✓(z) to achieve strong performance, as noted in Dong et al. [14].

To form modified RELAX in Section 6.3, we replace bk = c�(z(k)) with bk = hk(��(z(k))) for hk

defined in (13).

B Proof of Unbiasedness of RODEO

Recall our estimator defined in RODEO is

1

K

KX

k=1

[(f(x(k))� 1

K � 1

X

j 6=k

(f(x(j)) + (Ahj)(x
(j)))) ·r⌘ log q⌘(x

(k)) + (Ah̃
?
k)(x

(k))]. (16)

To show the unbiasedness, we compute its expectation under q⌘ as

1

K

KX

k=1

Eq⌘ [f(x
(k))r⌘ log q⌘(x

(k))]

� 1

K(K � 1)

KX

k=1

X

j 6=k

Eq⌘ [(f(x
(j)) + (Ahj)(x

(j)))r⌘ log q⌘(x
(k))]

+
1

K

KX

k=1

Eq⌘ [(Ah̃
?
k)(x

(k))].

Since the first term is the desired gradient r⌘Eq⌘ [f(x)] and the third term is zero, it suffices to show
that the second term also vanishes. Using the law of total expectations, we find for j 6= k,

Eq⌘ [(f(x
(j)) + (Ahj)(x

(j)))r⌘ log q⌘(x
(k))]

= Ex(k)⇠q⌘ [Eq⌘ [f(x
(j)) + (Ahj)(x

(j)) | x(k)]r⌘ log q⌘(x
(k))]

= Ex(k)⇠q⌘ [Eq⌘ [f(x
(j)) | x(k)]r⌘ log q⌘(x

(k))]

= Eq⌘ [f(x
(j))r⌘ log q⌘(x

(k))]

= Ex(j)⇠q⌘ [f(x
(j))Ex(k)⇠q⌘ [r⌘ log q⌘(x

(k)) | x(j)]] = 0,

which completes the proof.

C Additional Experiments

C.1 Wall clock time comparison with RLOO

Besides necessary target function evaluations, the RODEO estimator comes with the additional cost
of evaluating the neural network-based H,H

⇤. Therefore, RODEO is most suited to the problems
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Table 3: Architecture of the ResNet VAE in Appendix C.1. 3x3xC means kernel size 3x3 and C

output channels. Each (De)conv Res block is composed of two (de)convolutional layers with strides
1, same padding, and ReLU activations, plus a skip connection with identity map. For Res blocks
with downsample and upsample functions, the first convolutional layer has strides 2, and the skip
connection is replaced by a convolutional layer with 2x2 kernel size and strides 2.

Encoder Decoder

Conv 3x3x16, strides 1, padding 1 Fully connected, 7x7x64 units
Conv Res block 3x3x16 Deconv Res block 3x3x64
Conv Res block 3x3x16 Deconv Res block 3x3x64
Conv Res block 3x3x32 (downsample by 2) Deconv Res block 3x3x32 (upsample by 2)
Conv Res block 3x3x32 Deconv Res block 3x3x32
Conv Res block 3x3x64 (downsample by 2) Deconv Res block 3x3x16 (upsample by 2)
Conv Res block 3x3x64 Deconv Res block 3x3x16
Fully connected, 200 units Deconv 3x3x1, strides 1, padding 1

where the cost of evaluating f dominates that of evaluating H,H
⇤. This is often the case in practice.

For example, state-of-the-art variational autoencoders [e.g., 63] are often built on expensive neural
architectures such as deep residual networks (ResNets). Here, to demonstrate the practical advantage
of our method as the complexity of f grows, we replace the two-layer MLP VAEs used in previous
experiments with a ResNet VAE (architecture shown in Table 3), while the neural network used
by H,H

⇤ remains a single-layer MLP with 100 hidden units. We then compare the wall clock
performance of RODEO with RLOO. The latent variables in this experiment remain binary and have
200 dimensions.

The results are shown in Figure 5. RODEO achieves better training ELBOs than RLOO in the same
amount of time. In fact, for this VAE architecture, the per-iteration time of RODEO is 25.2ms, which
is very close to the 23.1ms of RLOO. This indicates that the cost of f is significantly higher than that
of H,H

⇤.

Figure 5: Comparing the performance of RODEO and RLOO on more expensive ResNet VAE models
trained on binarized MNIST with K = 2. The middle plot shows the average wall clock performance
over 5 trials.

C.2 Impact of neural network architectures of surrogate functions

We conduct one more ablation study to investigate the impact of neural network architectures used
by H,H

⇤. Specifically, we replace the single-hidden-layer control variate network used in previous
experiments with a two-hidden-layer MLP (each layer has 100 units) and compare their performance
on binarized MNIST with K = 2. We keep other settings the same as in Section 6.1. The results are
plotted in Figure 6. We do not observe significant difference between the two versions of RODEO.

D Experimental Details

Our implementation is based on the open-source code of DisARM [14] (Apache license) and Double
CV [60] (MIT license). Our figures display 1M training steps and our tables report performance after
1M training steps to replicate the experimental settings of DisARM [14].
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Figure 6: Comparing the performance of RODEO with single-hidden-layer and two-hidden-layer
neural network architectures for H,H

⇤ on binary VAEs.

D.1 Details of VAE experiments

VAEs are models with a joint density p(y, x) = p(y|x)p(x), where x denotes the latent variable.
x is assigned a uniform factorized Bernoulli prior. The likelihood p✓(y|x) is parameterized by the
output of a neural network with x as input and parameters ✓. The VAE has two hidden layers with
200 units activated by LeakyReLU with the coefficient 0.3. To optimize the VAE we use Adam with
base learning rate 10�4 for non-binarized data and 10�3 for dynamically binarized data, except for
binarized Fashion-MNIST we decreased the learning rate to 3⇥ 10�4 because otherwise the training
is very unstable for all estimators. We use Adam with the same learning rate 10�3 for adapting our
control variate network in all experiments. The batch size is 100. The settings of other estimators are
kept the same with Titsias and Shi [60].

In the minimum probability flow (MPF) and Barker Stein operator (6), we choose the neighbor-
hood Nx to be the states that differ in only one coordinate from x. Let y 2 Nx be an element
in this neighborhood such that yi 6= xi and y�i = x�i. For the MPF Stein estimator and
the difference Stein estimator (8), the density ratio q(y)

q(x) can be simplified to q(yi|x�i)
q(xi|x�i)

. We fur-

ther replace it with q(yi|x�i)
q(xi|x�i)+10�3 to alleviate numerical instability. The Barker Stein estimator

does not suffer from the numerical issue since the coefficient is bounded in the Bernoulli case:
q(y)

q(x)+q(y) = q(yi|x�i)
q(xi|x�i)+q(yi|x�i)

= q(yi|x�i). In our experiments, we find that the difference Stein
estimator is highly unstable and may diverge as the iteration proceeds.

D.2 Details of hierarchical VAE experiments

We optimize the hierarchical VAE using Adam with base learning rate 10�4. Our control variate
network is optimized using Adam with learning rate 10�3. Settings of training multilayer VAEs are
kept the same with Dong et al. [14], except that we do not optimize the prior distribution of the VAE
hidden layer and use a larger batch size 100.

E Additional Results

In this section, we measure test set performance using 100 test points and the marginal log-likelihood
bound of Burda et al. [10], which provides a tighter estimate of marginal log likelihood than the
ELBO. Throughout, we call this the “test log-likelihood bound.”
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Table 4: Average 100-point test log-likelihood bounds of binary latent VAEs trained with K =
2, 3 (except for RELAX which uses 3 evaluations per step) on MNIST, Fashion-MNIST, and Omniglot.
We report the average value ±1 standard error after 1M steps over 5 independent runs.

Bernoulli Likelihoods Gaussian Likelihoods

MNIST Fashion-MNIST Omniglot MNIST Fashion-MNIST Omniglot

K
=

2 DisARM �101.61± 0.07 �239.11± 0.11 �118.34± 0.05 669.26± 0.53 163.40± 0.59 305.32± 0.89
Double CV �100.91± 0.04 �239.00± 0.17 �118.45± 0.09 677.02± 0.93 164.99± 0.71 304.72± 1.39
RODEO (Ours) �100.78± 0.16 �238.97± 0.09 �118.09± 0.05 681.11± 0.31 168.26± 0.73 308.55± 1.02

K
=

3 ARMS �99.08± 0.12 �238.19± 0.11 �116.78± 0.13 688.61± 0.84 174.14± 0.44 320.45± 1.07
Double CV �99.16± 0.12 �238.54± 0.16 �116.75± 0.15 690.28± 0.49 173.67± 0.30 322.88± 1.10
RODEO (Ours) �98.72± 0.14 �237.97± 0.12 �116.69± 0.09 695.11± 0.33 174.57± 0.30 323.92± 1.24

RELAX (3 evals) �100.80± 0.09 �239.03± 0.11 �117.60± 0.06 686.21± 0.57 171.43± 0.61 317.78± 1.25
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Figure 7: Average 100-point test log-likelihood bounds for binary latent VAEs trained on (top)
dynamically binarized and (bottom) non-binarized MNIST, Fashion-MNIST, and Omniglot using
K = 2.

Table 5: Average running time across 104 steps on an NVIDIA 3080Ti GPU with an AMD 5950X
CPU for the VAE experiment on binary MNIST in Section 6.1.

Double CV DisARM/ARMS RODEO (Ours) RELAX (3 evals)

K = 2 2.11 ms/step 1.89 ms/step 3.08 ms/step 4.71 ms/step
K = 3 2.28 ms/step 1.91 ms/step 4.72 ms/step

Table 6: Average running time across 104 steps on an NVIDIA 3080Ti GPU with an AMD 5950X
CPU when training hierarchical VAEs with K = 2.

Double CV DisARM RODEO (Ours)

Two layers 4.33 ms/step 3.54 ms/step 6.79 ms/step
Three layers 7.69 ms/step 6.09 ms/step 10.61 ms/step
Four layers 11.67 ms/step 9.53 ms/step 14.91 ms/step
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Figure 8: Training binary latent VAEs with Gaussian likelihoods with three evaluations of f per
step using RODEO/Double CV/ARMS with K = 3 or RELAX on non-binarized MNIST, Fashion-
MNIST, and Omniglot. (Top) variance of gradient estimates. (Bottom) the plot of average ELBO on
training examples against training steps.
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Figure 9: Average 100-point test log-likelihood bounds for binary latent VAEs trained on (top)
dynamically binarized and (bottom) non-binarized MNIST, Fashion-MNIST, and Omniglot with
three evaluations of f per step using RODEO/Double CV/ARMS with K = 3 or RELAX.

Table 7: Training hierarchical binary latent VAEs on dynamically binarized MNIST, Fashion-MNIST,
and Omniglot. We report the average (±1 standard error) training ELBOs and 100-point test log-
likelihood bounds after 1M steps over 5 independent runs.

Training ELBO Test Log-Likelihood Bound

MNIST Fashion-MNIST Omniglot MNIST Fashion-MNIST Omniglot

Two layers
Double CV �103.52± 0.06 �239.82± 0.07 �114.06± 0.04 �97.62± 0.08 �237.65± 0.06 �110.48± 0.04
DisARM �103.39± 0.12 �239.67± 0.06 �113.67± 0.05 �97.56± 0.07 �237.61± 0.06 �110.15± 0.04
RODEO (Ours) �103.15± 0.07 �239.76± 0.09 �113.84± 0.11 �97.43± 0.03 �237.63± 0.07 �110.32± 0.10

Three layers
Double CV �97.59± 0.15 �234.34± 0.07 �108.66± 0.06 �93.71± 0.12 �234.34± 0.07 �107.48± 0.07
DisARM �97.95± 0.30 �234.45± 0.05 �108.60± 0.08 �94.12± 0.28 �234.46± 0.06 �107.32± 0.10
RODEO (Ours) �97.21± 0.17 �234.11± 0.10 �108.51± 0.04 �93.52± 0.16 �234.19± 0.07 �107.26± 0.06

Four layers
Double CV �98.73± 0.06 �235.69± 0.07 �110.92± 0.06 �93.28± 0.03 �234.63± 0.03 �107.86± 0.03
DisARM �98.97± 0.02 �235.50± 0.04 �110.85± 0.07 �93.56± 0.04 �234.52± 0.04 �107.87± 0.05
RODEO (Ours) �98.67± 0.14 �235.39± 0.05 �110.79± 0.03 �93.27± 0.09 �234.39± 0.06 �107.77± 0.02
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Figure 10: Training hierarchical binary latent VAEs with two stochastic layers on dynamically
binarized MNIST, Fashion-MNIST and Omniglot. We plot (left) the average ELBO on training
examples and (middle) variance of gradient estimates. We zoom into the first 50K steps of the
variance plot on the right figure.
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Figure 11: Training hierarchical binary latent VAEs with three stochastic layers. on dynamically
binarized MNIST, Fashion-MNIST and Omniglot. We plot the average ELBO on training examples
(left) and variance of gradient estimates (middle). We zoom into the first 50K steps of the variance
plot on the right figure.
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Figure 12: Training hierarchical binary latent VAEs with four stochastic layers on dynamically
binarized MNIST, Fashion-MNIST and Omniglot. We plot the average ELBO on training examples
(left) and variance of gradient estimates (middle). We zoom into the first 50K steps of the variance
plot on the right figure.
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