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Abstract

We study what dataset assumption permits solving offline two-player zero-sum
Markov games. In stark contrast to the offline single-agent Markov decision pro-
cess, we show that the single strategy concentration assumption is insufficient
for learning the Nash equilibrium (NE) strategy in offline two-player zero-sum
Markov games. On the other hand, we propose a new assumption named unilat-
eral concentration and design a pessimism-type algorithm that is provably efficient
under this assumption. In addition, we show that the unilateral concentration as-
sumption is necessary for learning an NE strategy. Furthermore, our algorithm
can achieve minimax sample complexity without any modification for two widely
studied settings: dataset with uniform concentration assumption and turn-based
Markov games. Our work serves as an important initial step towards understand-
ing offline multi-agent reinforcement learning.

1 Introduction

Promising empirical advances have been achieved in reinforcement learning (RL), including mas-
tering the game of Go [Silver et al., 2016], Poker [Brown et al., 2017], real-time strategy games
[Vinyals et al., 2019] and robotic control [Kober et al., 2013]. Notably, many of these successes
lie in the domain of multi-agent reinforcement learning (MARL). MARL is about multiple agents
interacting in a shared environment, and each of them aims to maximize its own long-term reward.
During the learning process, each agent not only needs to identify the environment dynamic but also
needs to compete/cooperate with other agents. One important subarea of MARL is offline MARL. In
many practical scenarios, we only have access to the offline data or it is too expensive to frequently
change the policy [Zhang et al., 2021a]. While there are plenty of empirical works on offline MARL
[Pan et al., 2021, Jiang and Lu, 2021], the theoretical understanding is still very limited. In this
work, we take an initial step towards understanding when offline MARL is provably solvable.

We consider two-player zero-sum Markov games, where two players simultaneously select actions
over multiple time steps in a Markovian environment and the first player aims to maximize the total
reward while the second player aims to minimize it. In the offline setting, we have access to a fixed
dataset collected by a (possibly unknown) exploration policy and the target is to find a (near-)Nash
equilibrium (NE) strategy of the underlying two-player zero-sum Markov game.

One of the main difficulties in offline RL is distribution shift, i.e., the dataset distribution is different
from the distribution induced by the optimal policy. It is important to understand what is the minimal
dataset distribution assumption that permits offline RL. For single-agent offline RL, it is shown
that the pessimism principle allows policy optimization with single policy concentration, i.e. the
dataset only covers the optimal policy [Jin et al., 2021b, Zanette et al., 2021, Yin and Wang, 2021,
Rashidinejad et al., 2021]. This assumption is necessary as it is impossible to learn the optimal
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policy if it is not covered by the dataset. However, the dataset coverage assumption for MARL is
still far from clear. In this work, we want to answer the following question:

What is the minimal dataset coverage assumption that permits learning an NE strategy in offline
two-player zero-sum Markov games?

Generally speaking, MARL is much more difficult than single-agent RL due to the following two
reasons. First, MARL is known to suffer from the non-stationary property, i.e. agents will affect the
others during the learning process [Zhang et al., 2021a]. Specifically, the performance may decline
if each agent simultaneously tries to improve its own policy depending on others’ current policies. In
addition, multiple agents incur complicated statistical dependence that makes the theoretical analysis
difficult. A line of works study Markov games with online sampling oracle [Bai et al., 2020, Bai and
Jin, 2020, Liu et al., 2021] or generative model oracle [Sidford et al., 2020, Zhang et al., 2020, Cui
and Yang, 2020], where specialized techniques are developed to tackle the above difficulties. In this
paper, we give the first analysis on offline Markov games in the fundamental tabular setting.

1.1 Main Contributions

• First, we propose an assumption named unilateral concentration, which posits that for all strategies
µ, ν, strategy pairs (µ∗, ν) and (µ, ν∗) are covered by the dataset, where µ is the strategy for the
first (max) player, ν is the strategy for the second (min) player, and (µ∗, ν∗) is an NE strategy.
In Section 3, we prove that NE strategy is not learnable even if this assumption is only slightly
violated. The intuition behind the hardness result is that to identify an NE strategy, the algorithm
has to compare it with strategy pairs that one player uses any other strategies as a reference. This
result also implies that the single strategy concentration, which is sufficient for offline single-agent
RL, is not sufficient for offline MARL.

• Second, we provide positive results showing that NE strategy is PAC learnable under the unilat-
eral concentration assumption. Combined with the hardness results above, we conclude that uni-
lateral concentration assumption is the necessary and sufficient dataset coverage assumption for
solving offline zero-sum Markov games. Our algorithm is based on the pessimism principle that we
maintain pessimistic estimates for both players, respectively. We show that our algorithm achieves
Õ(
√

C∗SABH3/n) performance gap under unilateral concentration assumption, where C∗ quan-
tifies the coverage of the dataset, S is the number of states, A is the number of the max player’s
actions, B is the number of the min player’s actions, H is the horizon and n is the number of
samples.

• Third, we show that our algorithm is minimax optimal when the dataset satisfies a stronger as-
sumption, uniform concentration, or the Markov game is turn-based. These are two widely studied
settings in the RL community. Uniform concentration assumes that all state-action pairs are covered
by the dataset and turn-based Markov game is a variant of zero-sum Markov games where two play-
ers select actions in turns instead of simultaneously. Although uniform concentration is about the
dataset structure and turn-based Markov games are about the environment structure, our algorithm
can adapt to both of them without any modification and achieves minimax sample complexity.

Main Techniques. Our algorithm is motivated by the Bernstein-type bonus and reference advantage
function techniques in Xie et al. [2021b] while we make novel adaptations, namely monotonic up-
date and a self-bounding technique, to realize them in Markov games. The Monotonic update allows
a sandwich-type argument that bounds the reference function and further bounds the variance term.
The self-bounding technique is utilized to bound the performance gap by itself and then solve the
inequality to derive the final bound on performance gap.

To summarize, (1) we identify the minimal dataset coverage assumption that allows learning the NE
strategy in Markov games; (2) we propose a pessimism-based algorithm that achieves polynomial
sample complexity based on novel Markov game techniques; and (3) we further show the algorithm
is minimax optimal under the uniform concentration assumption or in turn-based Markov games.

1.2 Related Work

Here we focus on the theoretical works on two-player zero-sum Markov games and offline RL.

2



Two-player zero-sum Markov games. Zero-sum Markov games have been widely studied since
the seminal work [Shapley, 1953]. When the transition kernel is unknown, different sampling oracles
are utilized to acquire samples, including online sampling [Bai and Jin, 2020, Xie et al., 2020a, Liu
et al., 2021, Bai et al., 2020, Jin et al., 2021a, Song et al., 2021], generative model sampling [Sidford
et al., 2020, Cui and Yang, 2020, Zhang et al., 2020, Jia et al., 2019]. For offline sampling oracle,
Zhang et al. [2021b] and Abe and Kaneko [2020] consider decentralized algorithm with network
communication and offline policy evaluation, both under the uniform concentration assumption.
One concurrent work [Zhong et al., 2022] considers zero-sum Markov games with linear function
approximation. They also show the single policy coverage is not sufficient and propose a similar
unilateral concentration assumption under which they give a provably efficient algorithm. On the
other hand, under the unilateral concentration assumption, their sample complexity is worse than
ours when specialized to tabular setting because they did not use Bernstein bonus. They show it is
impossible to learn in all instances without unilateral concentration. However, they do not show that
any assumption weaker than unilateral concentration makes learning impossible, which is a negative
result proven in our paper. Lastly, our algorithm is minimax optimal for uniform concentration
setting and turn-based Markov games while their algorithms are not.

Offline single-agent RL. Theoretical analysis of offline RL can be traced back to Szepesvári and
Munos [2005], under the uniform concentration assumption (analogue to Assumption 2.3). This
assumption has been extensively investigated [Xie and Jiang, 2021, Xie et al., 2020b, Yin et al.,
2020, 2021, Ren et al., 2021]. Recently, a line of works showed that the pessimism principle allows
offline policy optimization under a much weaker assumption, single policy concentration, both in
tabular case and with function approximation [Rashidinejad et al., 2021, Yin and Wang, 2021, Xie
et al., 2021b, Jin et al., 2021b, Uehara and Sun, 2021, Uehara et al., 2021, Zanette et al., 2021, Xie
et al., 2021a]. One closely related work is Xie et al. [2021b], which utilizes the reference advantage
function technique and Bernstein-type bonus to show a minimax sample complexity Õ(SC∗H3/n)
in finite-horizon MDP. We show that the counterpart of single policy concentration in zero-sum
Markov games is insufficient for NE strategy learning and use the pessimism principle to design
algorithm that works under the unilateral concentration assumption.

2 Preliminaries

2.1 Two-Player Zero-sum Markov Games

Zero-sum Markov games (MG) generalize single-agent MDP to two-agent case where one agent
aims to maximize the total reward while the other one aims to minimize it. A tabular finite-horizon
zero-sum Markov game is described by the tuple G = (S,A,B, P, r,H), where S is the state space,
A is the action space of the first (max) player, B is the action space of the second (min) player,
P = (P1, P2, · · · , PH), Ph ∈ R|S||A||B|×|S|,∀h ∈ [H] is the (unknown) transition probability
matrix for time step h, r = (r1, r2, · · · , rH), rh ∈ [0, 1]|S||A||B|,∀h ∈ [H] is the (unknown) de-
terministic reward vector and H is the horizon length.* This paper focuses on the tabular setting
where |S|,|A|,and |B| are finite. At each timestep h and state sh, if the max player chooses action
ah and the min player chooses action bh, then the next state at timestep h+1 follows the distribution
sh+1 ∼ Ph(·|sh, ah, bh) and both players receive a reward rh(sh, ah, bh). Both players sequentially
choose H actions and at each timestep, the action is chosen simultaneously and then it is revealed to
both players. We assume that we have a fixed initial state s1 and it is straightforward to generalize
our results to the case where the initial state is sampled from a fixed distribution.†

Turn-based Markov games are an important subclass of (simultaneous-move) Markov games, where
the max player takes action first and the min player can take action after observing the opponent’s
action. It is a widely studied setting [Sidford et al., 2020, Cui and Yang, 2020, Bai and Jin, 2020]
and we will provide minimax sample complexity result for this setting in Section 4.3.

We denote a strategy pair as π = (µ, ν), where µ = (µ1, µ2, · · · , µH), µh : S → ∆A,∀h ∈ [H] is
the strategy of the first player and ν = (ν1, ν2, · · · , νH), νh : S → ∆B,∀h ∈ [H] is the strategy of

*It is straightforward to generalize our results to stochastic rewards because the major difficulty is in learn-
ing the transitions rather than learning the rewards.

†Stochastic initial state is equivalent to an MDP with deterministic initial state by creating a dummy initial
state which transits to the next state following that initial state distribution.
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the second player, where ∆X is the probability simplex on the finite set X . A deterministic strategy
is a strategy that maps state to a single point distribution. We define the state value function and
state-action value function for a strategy pair π similarly as in single-agent MDP:

V π
h (sh) := E

[
H∑
t=h

r(st, at, bt)|π, sh

]
, Qπ

h(sh, ah, bh) := E

[
H∑
t=h

r(st, at, bt)|π, sh, ah, bh

]
.

If the second player’s strategy ν is fixed, then the MG degenerates to an MDP and we call the optimal
policy in this MDP as the best response strategy br1(ν). Similarly, we can define the br2(µ) as the
best response for the second player. We will ignore the subscript in br1 and br2 when it is clear in
the context. While the best response may not be unique, the best response value is always unique.
For all h ∈ [H], sh ∈ S, we define

V ∗,ν
h (sh) := V

br(ν),ν
h (sh) = max

µ
V µ,ν
h (sh), V

µ,∗
h (sh) := V

µ,br(µ)
h (sh) = min

ν
V µ,ν
h (sh).

It is well known that Nash equilibrium (NE) strategy π∗ = (µ∗, ν∗), i.e., a strategy pair such that no
player can benefit from switching its own strategy, exists for zero-sum Markov games with a unique
value function [Shapley, 1953]. In other words, µ∗ and ν∗ are the best responses to each other. We
define V ∗

h := V µ∗,ν∗

h for all h ∈ [H]. The following weak duality property holds for all strategy
pairs (µ, ν) in MG:

V µ,∗
h ≤ V ∗

h ≤ V ∗,ν
h ,∀h ∈ [H].

For a strategy pair π = (µ, ν), we can then define the corresponding duality gap as

Gap(π) = V ∗,ν
1 (s1)− V µ,∗

1 (s1).

The duality gap is always non-negative and the NE strategy has zero duality gap Gap(π∗) = 0.
Duality gap measures how well a strategy pair approximates the NE. We say a strategy pair π is an
ϵ-approximate NE if Gap(π) ≤ ϵ.

2.2 Offline Two-Player Zero-Sum Game

In offline RL, we are given an offline dataset D = {(sτh, aτh, bτh, rτh, sτh+1)}
h∈[H]
τ∈[n] and we cannot do

any further sampling [Kakade, 2003]. We assume that the dataset is sampled from some exploration
policy ρ = (ρ1, ρ2, · · · , ρH), ρh : S → ∆A×B,∀h ∈ [H].‡ The target of offline MG is to find an
approximate NE with a small duality gap by utilizing the given dataset D. We use dπh(s, a, b) to
denote the probability of s, a, b appears at timestep h in the trajectory generated by strategy π for
all h ∈ [H]. The dataset distribution dρh(s, a, b) is defined similarly. A state-action pair (s, a, b) at
timestep h is covered by strategy π if and only if dπh(s, a, b) > 0. Strategy π is covered by dataset
generated by exploration strategy ρ if and only if for all (s, a, b) covered by π, it is covered by ρ. In
other words, we have

dπh(s, a, b)

dρh(s, a, b)
<∞,∀h ∈ [H], (s, a, b) ∈ S ×A× B. (1)

The sample complexity guarantee will depend on this ratio.

Dataset Coverage Assumptions. Below we list three different dataset coverage assumptions for
Markov games.
Assumption 2.1. (Single strategy concentration) One NE strategy (µ∗, ν∗) is covered by the dataset.
Assumption 2.2. (Unilateral concentration) For all strategies µ and ν, (µ, ν∗) and (µ∗, ν) are cov-
ered by the dataset, where (µ∗, ν∗) is one NE strategy.
Assumption 2.3. (Uniform concentration) For all h ∈ [H] and (s, a, b) ∈ S × A × B, (s, a, b) at
timestep h is covered by the dataset.

Assumption 2.1 is the weakest assumption and is the most straightforward extension of the single
policy concentration in single-agent RL [Rashidinejad et al., 2021]. Assumption 2.3 generalizes the
uniform policy concentration in single-agent RL [Yin et al., 2020]. Assumption 2.2 is sandwiched

‡For simplicity we assume the exploration policy is Markovian. However, our analysis can be directly
generalized to arbitrary dataset distribution. See Jin et al. [2021b] for discussions on dataset-dependent bounds.
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by Assumption 2.1 and Assumption 2.3 as Assumption 2.2 implies Assumption 2.1 and Assump-
tion 2.3 implies Assumption 2.2. In this work, we will show that Assumption 2.2 is the minimal
dataset coverage assumption that allows NE learning and we provide sample complexity bounds
that depends on the density ratio (1).§

Notations. We use VarP (s,a,b)(V ) to denote the variance of the random variable V (s′) where s′ ∼
P (·|s, a, b) and VarP (V ) ∈ RSAB to denote a vector whose (s, a, b) component is VarP (s,a,b)(V ).
We define a ∨ b := max{a, b} and a ∧ b := min{a, b}. In addition, if a is a vector and b is a scalar,
the operation is taken on each element of a: [a ∨ b]i = ai ∨ b. For two vector a ∈ Rn, b ∈ Rn, we
use a

b ∈ Rn to denote the element-wise division:
[
a
b

]
i
= ai

bi
. In addition, if a is scalar, we still use

a
b ∈ Rn to denote the element-wise division:

[
a
b

]
i
= a

bi
. We use S,A,B to denote |S|, |A|, |B|.

3 Impossibility Results

In this section, we show that no assumption weaker than the unilateral concentration assumption
(Assumption 2.2), which includes single strategy concentration (Assumption 2.1), allows learning
the NE strategy. To begin with, we consider the deterministic unilateral concentration assumption.
Assumption 3.1. (Deterministic unilateral concentration) For all deterministic strategy µ and ν,
(µ, ν∗) and (µ∗, ν) are covered by the dataset, where (µ∗, ν∗) is one NE strategy.

Immediately we can tell that Assumption 3.1 is satisfied under Assumption 2.2. These two assump-
tions are equivalent, which is shown by Proposition 3.2, because any stochastic strategy can be
viewed as a combination of several deterministic strategies.
Proposition 3.2. If for all deterministic strategy µ and ν, (µ, ν∗) and (µ∗, ν) are covered by the
dataset, then we have for all (possibly stochastic) strategy µ′ and ν′, (µ′, ν∗) and (µ∗, ν′) are
covered by the dataset.

For the hardness examples, we consider bandit games, i.e., Markov games with horizon H = 1. The
result can be generalized to arbitrary horizon by setting the reward to be 0 in horizons other than
h = 1. We consider a class of bandit games and datasets such that Assumption 3.1 is almost satisfied
while no algorithm can identify the NE strategy for all bandit games and datasets in this class. As
Assumption 2.2 and Assumption 3.1 are equivalent, no assumption weaker than Assumption 2.2
allows NE strategy learning. A direct corollary is that single strategy concentration (Assumption
2.1) is not sufficient for NE learning.
Theorem 3.3. Define a class X of bandit game M and exploration strategy ρ that consists of all
M and ρ pairs satisfying that there exists at most one deterministic strategy µ or one deterministic
strategy ν such that (µ, ν∗) or (µ∗, ν) is not covered and for all other deterministic strategies µ′, ν′,
the density ratio is bounded

dµ
∗,ν′

h (s, a, b)

dρh(s, a, b)
≤ 2A+ 2B,

dµ
′,ν∗

h (s, a, b)

dρh(s, a, b)
≤ 2A+ 2B,

for all h ∈ [H]. For any algorithm ALG, there exists (M,ρ) ∈ X such that the output of the
algorithm ALG is at most a 0.25-approximate NE strategy no matter how many data are collected.

Proof. We consider bandit games with two actions for each player here. The action set is A =
{a1, a2} for the first (max) player and B = {b1, b2} for the second (min) player. We construct the
following two bandit games with deterministic rewards.

r(a1, b1) = 0.25 r(a1, b2) = 0.5
r(a2, b1) = 0 r(a2, b2) = 0.75

Bandit Game 1

Then the (unique) NE of the first bandit game is (a1, b1) and the (unique) NE of the second
bandit game is (a2, b2). Now we set the exploration strategy ρ to be uniform distribution on
{(a1, b1), (a1, b2), (a2, b2)}. We can verify that both bandit games with exploration strategy ρ is

§Note that there could be different minimal assumptions as the assumption set is a partially ordered set.
Here ‘minimal’ means Assumption 2.2 allows NE learning while no weaker assumption allows doing so.
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r(a1, b1) = 0.25 r(a1, b2) = 0.5
r(a2, b1) = 1 r(a2, b2) = 0.75

Bandit Game 2

in the class defined in Theorem 3.3. Note that the dataset contains data on (a1, b1), (a1, b2), (a2, b2)
and no data on (a2, b1). It is impossible for an algorithm to distinguish between these two bandit
games as they are consistent on the given dataset and they all satisfy the dataset coverage assump-
tion that only one action pair is not covered. With some calculations, we can show that the output of
ALG is at most a 0.25-approximate NE for one of the instances, which proves the theorem.

Remark 3.4. We can easily extend this instance to arbitrary action space by setting (ai, bj) = 0
for all i /∈ {1, 2}, j ∈ {1, 2}, and (ai, bj) = 1 for all j /∈ {1, 2}, i ∈ {1, 2}, and the exploration
strategy ρ to be the uniform distribution on (ai, bj) such that (i, j) ∈ {(i, j) : i ∈ {1, 2} or j ∈
{1, 2}, (i, j) ̸= (2, 1)}.
Remark 3.5. It is straightforward to verify that the hard instance in Theorem 3.3 also holds for turn-
based Markov games. As a result, no assumption weaker than Assumption 2.2 is sufficient for NE
learning in turn-based Markov games.

4 Provably Efficient Algorithm under Unilateral Concentration

In this section, we show that it is indeed possible to learn the NE with the unilateral concentration
assumption. We propose a novel algorithm called Pessimistic Nash Value Iteration (PNVI), which
adapts the pessimism principle in single-agent RL to Markov games. Our sample complexity result
depends on the following quantity named unilateral concentrability:
Definition 4.1. (Unilateral concentrability) For Nash equilibrium π∗, we define

C∗ := min
π∗=(µ∗,ν∗)

max
h,(s,a,b),µ,ν

{
dµ

∗,ν
h (s, a, b)

dρh(s, a, b)
,
dµ,ν

∗

h (s, a, b)

dρh(s, a, b)

}
.

By definition, C∗ is finite if Assumption 2.2 is satisfied. For the rest of the paper, π∗ denotes the
Nash equilibrium that achieves the minimum here. Note that C∗ is not provided to the algorithm.

4.1 Hoeffding-type Algorithm with Data Splitting

To illustrate our main algorithm design ideas, we first propose an algorithm with Hoeffding-type
bonus and random data splitting. Given a dataset D =

{
(skh, a

k
h, b

k
h, r

k
h, s

k
h+1)

}n,H
k,h=1

, we denote
nh(s, a, b) =

∑n
k=1 1

(
(skh, a

k
h, b

k
h) = (s, a, b)

)
to be the number of times that (s, a, b) is visited at

timestep h. We set the empirical reward and the empirical transition kernel as

r̂h(s, a, b) = rh(s, a, b), P̂h(s
′|s, a, b) =

∑n
k=1 1

(
(skh, a

k
h, b

k
h, s

k
h+1) = (s, a, b, s′)

)∑n
k=1 1

(
(skh, a

k
h, b

k
h) = (s, a, b)

) , (2)

if nh(s, a, b) ≥ 1, and r̂h(s, a, b) = 0, P̂h(s
′|s, a, b) = 1/S otherwise. In addition, we use nh ∈

RSAB to denote a vector such that [nh]s,a,b = nh(s, a, b).

Now we explain Algorithm 1 in detail. First, we split the dataset D into H small datasets {Dh}Hh=1
with the same size. Then we use Dh to estimate the reward and the transition matrix at timestep
h. The data splitting scheme is to remove the dependence between each timestep. Then the value
function is estimated via a value-iteration-type algorithm. At each timestep, we maintain both opti-
mistic and pessimistic estimates by adding/minusing a Hoeffding-type bonus. We use the following
Hoeffding-type bonus:

bh(sh, ah, bh) = bh(sh, ah, bh) = 4

√
H2ι

nh(s, a, b) ∨ 1
, (3)

where ι = log(HSAB/δ). Then we compute the pessimistic estimate Q and Q:

Q
h
=
(
r̂h + (P̂h · V h+1)− bh

)
∨ 0, Qh =

(
r̂h + (P̂h · V h+1) + bh

)
∧ (H − h+ 1). (4)
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Algorithm 1 Pessimistic Nash Value Iteration (PNVI)

Input: Offline dataset D =
{
(skh, a

k
h, b

k
h, r

k
h, s

k
h+1)

}n,H
k,h=1

. Failure Probability δ.

Initialization: Set V H+1(·) = V H+1(·) = 0. Randomly split the dataset D into {Dh}Hh=1 with
|Dh| = n/H . Set r̂h, P̂h, bh and bh as (2) and (3) using the dataset Dh for all h ∈ [H].
for time h = H,H − 1, . . . , 1 do

Set Q
h
(·, ·, ·) and Qh(·, ·, ·) as (4).

Compute the NE of Q
h
(·, ·, ·) as (µ

h
(·), νh(·)).

Compute V h(·) = Ea∼µ
h
,b∼νh

Q
h
(·, a, b).

Compute the NE of Qh(·, ·, ·) as (µh(·), νh(·)).
Compute V h(·) = Ea∼µh,b∼νh

Qh(·, a, b).
end for
Output µ = (µ

1
, µ

2
, · · · , µ

H
), ν = (ν1, ν2, · · · , νH), {V h}Hh=1, {V h}Hh=1.

Pessimistic estimate Q
h

is for the max player, which mimics the pessimism in single-agent RL. Qh

using a positive bonus is for the min player, which is also a kind of pessimism as the min player’s
target is to minimize the reward. We compute the NE strategy of the matrix game Q(s, ·, ·) and
Q(s, ·, ·) respectively and use the NE value to be the state value V (s) and V (s). Note that we only
solve a zero-sum matrix game, which is computationally efficient [Chen and Deng, 2006].
Remark 4.2. If we compute an ϵNE/H-approximate NE of the matrix game Q(s, ·, ·) and Q(s, ·, ·)
at each timestep, then the performance gap will only be enlarged by Õ(ϵNE).
Theorem 4.3. Suppose Assumption 2.2 holds. For any 0 < δ < 1 and strategy µ, ν, with probability
1− δ, the pessimistic values V h and V h of Algorithm 1 satisfy

Eµ∗,ν [V
∗
h (sh)− V h(sh)] ≤ Õ

(√
C∗SABH5/n

)
,Eµ,ν∗

[
V h(sh)− V ∗

h (sh)
]
≤ Õ

(√
C∗SABH5/n

)
,

for all h ∈ [H], where sh is sampled from the trajectory following the strategy in the expectation.

Proof Sketch. For simplicity, we only show the guarantee for the strategy µ of the max player. First,
we show that under good concentration event, the pessimistic value V h is always smaller than the
best response value of µ, i.e.

V h(s) ≤ V
µ,∗
h (s),∀h ∈ [H], s ∈ S.

Second, we show that the performance gap of µ is bounded by the expected sum of bonus under the
strategy µ∗, ν, i.e.

V ∗
h (s)− V

µ,∗
h (s) ≤ V

µ∗,ν
h (sh)− V h(sh) ≤ 2Eµ∗,ν

[
H∑
t=h

bt(st, at, bt)|sh = s

]
.

Finally, we define a concatenated strategy ν′ := (ν1, · · · , νh−1, νh, · · · , νH) and then we have

Eµ∗,ν [V
∗
h (sh)− V h(sh)] ≤ 2Eµ∗,ν′

H∑
t=h

bt(st, at, bt).

As Assumption 2.2 suggests that (µ∗, ν′) is well covered by the exploration strategy ρ, the expected
sum of bonus can be bounded. See Appendix B for details.

Theorem 4.3 provides polynomial bounds on the error of the value estimates in Algorithm 1. It
can directly imply the following performance gap bound. In addition, it provides guarantees for the
reference function that will be utilized in the next section.
Corollary 4.4. Suppose Assumption 2.2 holds. For any 0 < δ < 1, with probability 1−δ, the output
policy π = (µ, ν) of Algorithm 1 satisfies Gap(π) ≤ Õ

(√
C∗SABH5/n

)
.

Theorem 4.4 shows that the output strategy of Algorithm 1 is an Õ
(√

C∗SABH5/n
)

-approximate
NE. The parameter C∗ measures how the exploration strategy ρ covers the unilateral strategies
(µ∗, ν) and (µ, ν∗) for all µ and ν.
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4.2 Bernstein-type Algorithm with Reference Advantage Function Decomposition

In this section, we will derive an improved performance gap bound Õ
(√

C∗SABH3/n
)

. The

extra H2 is shaved by using Bernstein-type bonus and reference advantage decomposition technique
motivated from Xie et al. [2021b]. However, we want to emphasize that zero-sum Markov games
are substantially different from MDP and require novel adaptation, which we will describe later.

Due to the space constraint, we put Algorithm 2 in Appendix A. Algorithm 2 is different from
Algorithm 1 in two aspects. First, we use the reference advantage decomposition to remove an H
factor. The dataset is split into three subset with equal size Dref , D0, D1, and D1 is further split
into H subset with equal size {Dh,1}Hh=1. We run algorithm 1 on dataset Dref and we can obtain
pessimistic value estimate V ref and V ref with guarantees by Theorem 4.3. Then we use datasetD0 to
estimate PhV

ref
h+1 and datasetDh,1 to estimate Ph(V h+1−V ref

h+1). Second, we use a Bernstein-type
bonus to remove another H factor. Our updating formulas of Q

h
and Qh are

Q
h
= Qref

h
∨ [r̂h,0 + (P̂h,0 · V ref

h+1)− bh,0 + (P̂h,1 · (V h+1 − V ref
h+1))− bh,1], (5)

Qh = Q
ref

h ∧ [r̂h,0 + (P̂h,0 · V
ref

h+1) + bh,0 + (P̂h,1 · (V h+1 − V
ref

h+1)) + bh,1], (6)

where we truncate by the reference function to ensure monotonic update so that Q
h

and Qh are more

accurate pessimistic/optimistic estimate compared with the reference function Qref

h
and Q

ref

h . The
bonus functions are defined as

bh,0 = c

√
VarP̂h,0

(V ref
h+1)ι

nh,0 ∨ 1
+

Hι

nh,0 ∨ 1

 , bh,0 = c


√√√√VarP̂h,0

(V
ref
h+1)ι

nh,0 ∨ 1
+

Hι

nh,0 ∨ 1

 , (7)

bh,1 = c

√
VarP̂h,1

(V h+1 − V ref
h+1)ι

nh,1 ∨ 1
+

Hι

nh,1 ∨ 1

 , bh,1 = c


√√√√VarP̂h,1

(V h+1 − V
ref
h+1)ι

nh,1 ∨ 1
+

Hι

nh,1 ∨ 1

 ,

(8)

where c is some universal constant and VarP̂h,0
(V ), VarP̂h,1

(V ), nh,0, nh,1 are all SAB-dimension
vectors and the operations are element-wise.
Theorem 4.5. Suppose Assumption 2.2 holds. For any 0 < δ < 1 and n ≥ C∗SABH4, with proba-
bility 1− δ, the output policy π = (µ, ν) of Algorithm 2 satisfies Gap(π) ≤ Õ

(√
C∗SABH3/n

)
.

Remark 4.6. n ≥ C∗SABH4 serves as the burn-in cost, which is standard in the literature. See a
more detailed discussion in Li et al. [2021].

Proof of Sketch. For simplicity we only show the guarantee for the strategy µ of the max player.
First we show that under good concentration event, the pessimistic value V h is always sandwiched
by the reference value V ref

h and the best response value of µ, i.e.,

V ref
h (s) ≤ V h(s) ≤ V

µ,∗
h (s),∀h ∈ [H], s ∈ S.

Second, we show that the performance gap of µ is bounded by the expected sum of bonus under the
strategy µ∗, ν, i.e.,

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤ V

µ∗,ν
1 (s1)− V 1(s1) ≤ 2Eµ∗,ν

H∑
h=1

[
bh,0(sh, ah, bh) + bh,1(sh, ah, bh)

]
.

Then we bound the first term by

Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh) ≤ Õ

(√
C∗SABH3/n+

√
C∗SABH3/n

√
V

µ∗,ν
1 (s1)− V 1(s1)

)
,
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where
√
V

µ∗,ν
1 (s1)− V 1(s1) is the square root of the term we want to bound. The second term can

be bounded similarly. Finally solving the self-bounding inequality for V µ∗,ν
1 (s1)− V 1(s1) and we

have

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤V µ∗,ν

1 (s1)− V 1(s1) ≤ Õ
(√

C∗SABH3/n
)
.

We utilizes Theorem 4.3 to provide guarantee for the error of the reference function and V ref
h (s) ≤

V h(s) ≤ V
µ,∗
h (s) to bound the variance of the estimation error. See Appendix C for details.

As MDP are degenerated Markov games with one player having a fixed action, Markov games inherit
the lower bounds of MDP. Comparing with the lower bound Ω̃

(√
C∗SH3/n

)
[Xie et al., 2021b],

our bound is already tight in C∗, S, H . The extra AB factor is from the Cauchy-Schwarz inequality
and the fact that the NE of zero-sum Markov games can be a mixed strategy while deterministic
optimal policy always exists for MDP. It is unknown whether the AB factor is removable and we
leave it to future work.

4.3 Minimax Optimal Sample Complexity Bounds

In this section, we show that Algorithm 2 directly adapts to two popular settings, i.e. Assumption
2.3 (uniform concentration assumption) and turn-based Markov games. In addition, minimax sample
complexity can be achieved under both settings. The proof is deferred to Appendix D.

Theorem 4.7. Set dm = min {dρh(s, a, b) : h ∈ [H], (s, a, b) ∈ S ×A× B}. Suppose Assumption
2.3 holds. For any 0 < δ < 1 and n ≥ H4/dm, with probability 1− δ, the output policy π = (µ, ν)

of Algorithm 2 satisfies Gap(π) ≤ Õ
(√

H3/(ndm)
)
.

This bound has no explicit dependence on AB because the Cauchy-Schwarz inequality can be

applied on d
µ∗,ν
h instead of

√
d
µ∗,ν
h (See the proof of Theorem D.1). As the lower bound

Ω̃
(√

H3/(ndm)
)

for MDP [Yin and Wang, 2021] is the lower bound for Markov games, Algo-
rithm 2 achieves minimax sample complexity under assumption 2.3.

Theorem 4.8. Suppose Assumption 2.2 holds for a turn-based Markov games. For any 0 < δ < 1
and n ≥ C∗SH4, with probability 1 − δ, the output policy π = (µ, ν) of Algorithm 2 satisfies

Gap(π) ≤ Õ
(√

C∗SH3/n
)
.

As the lower bound is Ω̃
(√

C∗SH3/n
)

[Xie et al., 2021b], Algorithm 2 can achieve the minimax
sample complexity for turn-based Markov games under assumption 2.2. The difference is due to
turn-based Markov games always have pure NE strategies (See the proof of Theorem D.6).

5 Conclusion

In this work, we study the minimal dataset coverage assumption for NE learning in two-player zero-
sum Markov games. We show that single strategy concentration is not enough for NE learning.
Instead, we find a minimal coverage assumption for NE learning and design an algorithm with
sample complexity tight in C∗,S, H under such assumption based on novel techniques. In addition,
the algorithm can achieve minimax sample complexity in certain settings. We believe this work can
shed new light on offline MARL.

Here we list several open problems for future work. One direction is to find the minimax sample
complexity of offline Markov games under the unilateral concentration. Importantly, it is unclear
whether AB factor can be reduced [Bai et al., 2020]. Another direction is to design efficient algo-
rithms for offline MARL with a large number of agents without sample complexity scales exponen-
tially with the number of agents.
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A Algorithm

Algorithm 2 Pessimistic Nash Value Iteration with Reference Advantage Decomposition

Input: Dataset D =
{
(skh, a

k
h, b

k
h, r

k
h, s

k
h+1)

}n,H
k,h=1

. Failure Probability δ.

Initialization: Randomly split the datasetD intoDref ,D0, {Dh,1}Hh=1 with |Dref | = n/3, |D0| =
n/3, |Dh,1| = n/(3H) for all h ∈ [H].
Set V H+1 = V H+1 = 0.
Learn the reference value function V ref , V ref ← PNVI(Dref) (Algorithm 1).
Set P̂h,0 and r̂h,0 as (2) using the dataset D0 for all h ∈ [H].
Set P̂h,1 and r̂h,1 as (2) using the dataset Dh,1 for all h ∈ [H].
Set bh,0 and bh,0 as (7) using the dataset D0 for all h ∈ [H].
for time h = H,H − 1, . . . , 1 do

Set bh,1 and bh,1 as (8) using the dataset Dh,1 for all h ∈ [H].
Set Q

h
(·, ·, ·) as (5).

Compute the NE of Q
h
(·, ·, ·) as (µ

h
(·), νh(·)).

Compute V h(·) = Ea∼µ
h
,b∼νh

Q
h
(·, a, b).

Set Qh(·, ·, ·) as (6).
Compute the NE of Qh(·, ·, ·) as (µh(·), νh(·)).
Compute V h(·) = Ea∼µh,b∼νh

Qh(·, a, b).
end for
Output: µ = (µ

1
, µ

2
, · · · , µ

H
), ν = (ν1, ν2, · · · , νH).

B Proofs in Section 4.1

Lemma B.1. (Concentration) With probability 1− δ, we have∣∣∣rh(s, a, b)− r̂h(s, a, b) +
〈
Ph(·|s, a, b)− P̂h(·|s, a, b), V h+1(·)

〉∣∣∣ ≤ bh(s, a, b),∣∣∣rh(s, a, b)− r̂h(s, a, b) +
〈
Ph(·|s, a, b)− P̂h(·|s, a, b), V h+1(·)

〉∣∣∣ ≤ bh(s, a, b),

1

nh(s, a, b) ∨ 1
≤ 8Hι

ndρh(s, a, b)
.

holds for all h ∈ [H], s ∈ S, a ∈ A and b ∈ B. We define this as the good event G.

Proof. We provide the proof for the first argument and the proof for the second argument holds
similarly. For all s, a, b, h, we have

|rh(s, a, b)− r̂h(s, a, b)| ≤H

√
1

nh(s, a, b) ∨ 1
,

as whenever nh(s, a, b) ≥ 1, r̂h(s, a, b) = rh(s, a, b). For the concentration on〈
P̂ (·|s, a, b), V h+1(·)

〉
, note that V h+1 only depends on the dataset {Dt}Ht=h+1 while P̂h(·|s, a, b)

only depends on the dataset Dh, which means they are independent and then Hoeffding’s inequality
can be applied: 〈

Ph(·|s, a, b)− P̂h(·|s, a, b), V h+1(·)
〉
≤2

√
H2ι

nh(s, a, b) ∨ 1
.

The second argument holds similarly. For the third argument, the proof is from Lemma B.1 in Xie
et al. [2021b].

Lemma B.2. (Pessimism) Under the good event G, we have that V h(s) ≤ V
µ,∗
h (s) and V h(s) ≥

V ∗,ν
h (s) hold for all h ∈ [H] and s ∈ S.
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Proof. We prove this lemma by induction. The inequalities trivially hold for h = H + 1. If the
inequalities hold for timestep h + 1, now we consider timestep h. By the definition of Qh(s, a, b),
we have

Q
h
(s, a, b) =

(
r̂h(s, a, b) + (P̂h · V h+1)(s, a, b)− bh(s, a, b)

)
∨ 0

≤
(
r(s, a, b) + (P · V µ,∗

h+1)(s, a, b)
)
∨ 0

=r(s, a, b) + (P · V µ,∗
h+1)(s, a, b)

=Q
µ,∗
h (s, a, b),

where the inequality is from Lemma B.1. With the pessimism on the state-action value function, we
can prove the pessimism on the state value function.

V h(s) =Eµ
h
,νh

Q
h
(s, a, b)

≤Eµ
h
,br(µ

h
)Qh

(s, a, b)

≤Eµ
h
,br(µ

h
)Q

µ,∗
h (s, a, b)

=V
µ,∗
h (s, a, b),

where the first inequality is from the definition of NE and the second inequality is from the pes-
simism of the state-action value function. The arguments for V h hold similarly. Then by mathemat-
ical induction we can prove the lemma.

Lemma B.3. Under the good event G, for all h ∈ [H] and sh ∈ S, we have

V ∗
h (sh)− V

µ,∗
h (sh) ≤ V

µ∗,ν
h (sh)− V h(sh) ≤ 2Eµ∗,ν

[
H∑
t=h

bt(st, at, bt)|sh

]
,

V ∗,ν
h (sh)− V ∗

h (sh) ≤ V h(sh)− V µ,ν∗

h (sh) ≤ 2Eµ,ν∗

[
H∑
t=h

bt(st, at, bt)|sh

]
.

Proof. We prove the first argument and the second argument can be proven similarly. By the defini-
tion of NE, we have V ∗

h ≤ V
µ∗,ν
h . Combined with Lemma B.2, we have the first inequality. For the

second inequality, we have

V
µ∗,ν
h (sh)− V h(sh)

=Eµ∗
h,νh

Q
µ∗,ν
h (sh, ah, bh)− Eµ

h
,νh

Q
h
(sh, ah, bh)

≤Eµ∗
h,νh

Q
µ∗,ν
h (sh, ah, bh)− Eµ∗

h,νh
Q

h
(sh, ah, bh)

=Eµ∗
h,νh

[
Q

µ∗,ν
h (sh, ah, bh)−Q(sh, ah, bh)

]
=Eµ∗

h,νh

[
rh(sh, ah, bh) +

〈
Ph(·|sh, ah, bh), V µ∗,ν

h+1 (·)
〉
− r̂h(sh, ah, bh)

−
〈
P̂h(·|sh, ah, bh), V h+1(·)

〉
+ bh(sh, ah, bh)

]
≤Eµ∗

h,νh

[〈
Ph(·|sh, ah, bh), V µ∗,ν

h+1 (·)− V h+1(·)
〉
+ 2bh(sh, ah, bh)

]
(Lemma B.1)

=Eµ∗
h,νh

[
V ∗
h+1(sh+1)− V ∗

h+1(sh+1)|sh
]
+ 2Eµ∗

h,ν
∗
h
bh(sh, ah, bh)

≤2Eµ∗,ν

[
H∑
t=h

bh(st, at, bt)|sh

]
.
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Theorem B.4. Suppose Assumption 2.2 holds. For any 0 < δ < 1, with probability 1−δ, the output
policy π = (µ, ν) of Algorithm 1 satisfies

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤ 64

√
C∗SABH5ι2

n
, V ∗,ν

1 (s1)− V ∗
1 (s1) ≤ 64

√
C∗SABH5ι2

n
.

As a result, we have

Gap(µ, ν) ≤ Õ

(√
C∗SABH5

n

)
.

Proof. By Lemma B.3, with probability at least 1− δ, we have

V µ∗,∗
1 (s1)− V

µ,∗
1 (s1)

≤2
H∑

h=1

Eµ∗,νbh(sh, ah,bh)

=2

H∑
h=1

Eµ∗,ν

[
4

√
H2ι

nh(s, a, b) ∨ 1

]

≤2
H∑

h=1

Eµ∗,ν

[
32

√
H3ι2

ndρh(s, a, b)

]
(Lemma B.1)

=2

H∑
h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b)

[
32

√
H3ι2

ndρh(s, a, b)

]

≤64
H∑

h=1

∑
(s,a,b)

√d
µ∗,ν
h (s, a, b)C∗H3ι2

n


≤64
√
SABH ·

√∑H
h=1

∑
(s,a,b) d

µ∗,ν
h (s, a, b)C∗H3ι2

n
(Cauchy-Schwarz Inequality)

=64

√
C∗SABH5ι2

n
.

Similarly we have

V ∗,ν
1 (s1)− V ∗

1 (s1) ≤ 64

√
C∗SABH5ι2

n
.

As a result, we have

Gap(µ, ν) ≤ V ∗,ν
1 (s1)− V ∗

1 (s1) + V µ∗,∗
1 (s1)− V

µ,∗
1 (s1) ≤ Õ

(√
C∗SABH5

n

)
.

Theorem B.5. Suppose Assumption 2.2 holds. For any 0 < δ < 1 and strategy µ, ν, with probability
1− δ, the pessimistic values V h and V h of Algorithm 1 satisfy

Eµ∗,ν [V
∗
h (sh)− V h(sh)] ≤ 64

√
C∗SABH5ι2

n
,

Eµ,ν∗
[
V h(sh)− V ∗

h (sh)
]
≤ 64

√
C∗SABH5ι2

n
,

where sh is sampled from the trajectory following the strategy in the expectation at timestep h.

Proof. We prove the first argument and the second argument can be proven similarly. By Lemma
B.3, under good event G for all state s we have

V ∗
h (s)− V

µ,∗
h (s)

16



≤2
H∑
t=h

Eµ∗,ν [bh(st, at, bt)|sh = s] .

We define ν′ = (ν1, · · · , νh−1, νh, · · · , νH). Then we have

Eµ∗,ν [V
∗
h (sh)− V h(sh)] ≤Eµ∗,ν

[
2

H∑
t=h

Eµ∗,ν [bh(st, at, bt)|sh = s] |s

]

=2

H∑
t=h

Eµ∗,ν′ [bh(st, at, bt)] .

Then following the proof of Theorem B.4, we can prove the argument.

C Proofs in Section 4.2

For simplicity, we only provide the guarantee for the max player and the guarantee for the min player
can be proven in a similar manner.
Lemma C.1. (Concentration) There exists some absolute constant c > 0 such that the concentration
event G′ holds with probability at least 1− δ, i.e.,∣∣∣r̂h,0(s, a, b)− rh,0(s, a, b) +

[(
P̂h,0 − Ph

)
V ref

h+1

]
(s, a, b)

∣∣∣
≤c


√√√√VarP̂h,0(s,a,b)

(V ref
h+1)ι

nh,0(s, a, b) ∨ 1
+

Hι

nh,0(s, a, b) ∨ 1

 ,

∣∣∣[(P̂h,1 − Ph

)(
V h+1 − V ref

h+1

)]
(s, a, b)

∣∣∣
≤c


√√√√VarP̂h,1(s,a,b)

(V h+1 − V ref
h+1)ι

nh,1(s, a, b) ∨ 1
+

Hι

nh,1(s, a, b) ∨ 1

 ,

1

nh,0(s, a, b) ∨ 1
≤ c

ι

ndρh(s, a, b)
,

1

nh,1(s, a, b) ∨ 1
≤ c

Hι

ndρh(s, a, b)
.

Proof. The proof is a direct application of Lemma C.1 in Xie et al. [2021b] with s, a replaced by
s, a, b.

Lemma C.2. For all h ∈ [H] and s ∈ S, we have V h(s) ≥ V ref
h (s).

Proof. By the update rule (5), we have Q
h
(s, a, b) ≥ Qref

h
(s, a, b) for h ∈ [H] and s, a, b ∈ S ×

A× B. Then by the definition of NE, we have

V h(s) = Eµ
h
,νh

Q
h
(s, a, b) ≥ Eµref

h
,νh

Q
h
(s, a, b) ≥ Eµref

h
,νh

Qref

h
(s, a, b) ≥ Eµref

h
,νref

h
Qref

h
(s, a, b) = V ref

h (s).

Lemma C.3. (Pessimism) Under the good event G′, we have that V h(s) ≤ V
µ,∗
h (s) holds for all

h ∈ [H] and s ∈ S.

Proof. We prove this lemma by induction. The inequalities trivially hold for h = H + 1. If the
inequalities hold for h+ 1, now we consider h.

Q
h
(s, a, b)

=
{
r̂h,0(s, a, b) + (P̂h,0 · V ref

h+1)(s, a, b)− bh,0(s, a, b) + (P̂h,1 · (V h+1 − V ref
h+1))(s, a, b)− bh,1(s, a, b)

}
17



∨Qref

h
(s, a, b)

≤max
{
rh(s, a, b) + (Ph · V ref

h+1)(s, a, b) +
(
Ph ·

(
V h+1 − V ref

h+1

))
(s, a, b), Qref

h
(s, a, b)

}
=max

{
rh(s, a, b) + (Ph · V h+1)(s, a, b), Q

ref

h
(s, a, b)

}
≤max

{
rh(s, a, b) + (Ph · V h+1)(s, a, b), rh(s, a, b) + (Ph · V ref

h+1)(s, a, b)
}

(Lemma B.2)

≤rh(s, a, b) + (Ph · V h+1)(s, a, b) (Lemma C.2)

≤rh(s, a, b) + (Ph · V
µ,∗
h+1)(s, a, b) (Induction hypothesis)

=Q
µ,∗
h (s, a, b).

Then by the definition of NE, we have

V h(s) =Eµ
h
,νh

Q
h
(s, a, b)

≤Eµ
h
,br(µ

h
)Qh

(s, a, b)

≤Eµ
h
,br(µ

h
)Q

µ,∗
h (s, a, b)

=V
µ,∗
h (s).

With mathematical induction we can prove the lemma.

Lemma C.4. Under the good event G′, we have

V
µ∗,ν
1 (s1)− V 1(s1) ≤ 2Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh) + 2Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh)

Proof.

V
µ∗,ν
1 (s1)− V 1(s1)

=Eµ∗
1 ,ν1

Q
µ∗,ν
1 (s1, a1, b1)− Eµ

1
,ν1

Q
1
(s1, a1, b1)

≤Eµ∗
1 ,ν1

Q
µ∗,ν
1 (s1, a1, b1)− Eµ∗

1 ,ν1
Q

1
(s1, a1, b1)

=Eµ∗
1 ,ν1

[
Q

µ∗,ν
1 (s1, a1, b1)−Q

1
(s1, a1, b1)

]
=Eµ∗

1 ,ν1

[
r1(s1, a1, b1) +

〈
P1(·|s1, a1, b1), V µ∗,ν

2 (·)
〉
− V ref

1 (s1) ∨
{
r̂1,0(s1, a1, b1)

+(P̂1,0V
ref
2 )(s1, a1, b1)− b1,0(s1, a1, b1) + (P̂1,1(V 2 − V ref

2 ))(s1, a1, b1)− b1,1(s1, a1, b1)
}]

≤Eµ∗
1 ,ν1

[〈
P1(·|s1, a1, b1), V µ∗,ν

2 (·)− V 2(·)
〉
+ 2b1,0(s1, a1, b1) + 2b1,1(s1, a1, b1)

]
(Lemma C.1)

=Eµ∗
1 ,ν1

[
V

µ∗,ν
2 (s2)− V ∗

2(s2)
]
+ 2Eµ∗

1 ,ν
∗
1
b1,0(s1, a1, b1) + 2Eµ∗

1 ,ν
∗
1
b1,1(s1, a1, b1)

≤2Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh) + 2Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh),

where the last inequality is from telescoping the timestep H .

Lemma C.5. For any strategy ν, we have
H∑

h=1

∑
(s,a,b)

dµ
∗,ν

h (s, a, b) Var
Ph(s,a,b)

(V µ∗,ν
h+1 ) ≤ H2.

Proof. This is the standard total variance lemma.
H∑

h=1

∑
(s,a,b)

dµ
∗,ν

h (s, a, b) Var
Ph(s,a,b)

(V µ∗,ν
h )

18



=

H∑
h=1

Eµ∗,ν

[
Var

[
V ∗
h+1(sh+1)|sh, ah, bh

]]
=

H∑
h=1

Eµ∗,ν

[
E
[(
V ∗
h+1(sh+1) + rh(sh, ah, bh)− V ∗

h (sh)
)2 |sh, ah, bh]]

=

H∑
h=1

Eµ∗,ν

[(
V ∗
h+1(sh+1) + rh(sh, ah, bh)− V ∗

h (sh)
)2]

=Eµ∗,ν

( H∑
h=1

(
V ∗
h+1(sh+1) + rh(sh, ah, bh)− V ∗

h (sh)
))2


=Eµ∗,ν

( H∑
h=1

rh(sh, ah, bh)− V ∗
1 (s1)

)2


=Var
µ∗,ν

(
H∑

h=1

rh(sh, ah, bh)

)
≤H2.

Lemma C.6. The output strategy π = (µ, ν) and the pessimistic estimate V of Algorithm 1 satisfy

V
µ∗,ν
1 (s1)− V 1(s1) ≥ Eµ∗,ν

[
V

µ∗,ν
h (sh)− V h(sh)

]
.

Proof. We prove the argument for h = 2 first.

V
µ∗,ν
1 (s1)− V 1(s1)

≥Eµ∗,ν [Q
µ∗,ν
1 (s1, a1, b1)−Q

1
(s1, a1, b1)]

≥Eµ∗,ν

[
r1(s1, a1, b1) +

〈
P1(·|s1, a1, b1), V µ∗,ν

2 (·)
〉]
− Eµ∗,ν

[
r̂1,0(s1, a1, b1) + (P̂1,0V

ref
2 )(s1, a1, b1)

−b1,0(s1, a1, b1) + (P̂1,1(V 2 − V ref
2 ))(s1, a1, b1)− b1,1(s1, a1, b1)

]
≥Eµ∗,ν

[
r1(s1, a1, b1) +

〈
P1(·|s1, a1, b1), V µ∗,ν

2 (·)
〉]
− Eµ∗,ν [r1(s1, a1, b1) + ⟨P1(·|s1, a1, b1), V 2(·)⟩]

=Eµ∗,ν

[
V

µ∗,ν
2 (s2)− V 2(s2)

]
.

We can prove the lemma for arbitrary h by telescoping the argument to timestep h.

Lemma C.7. For n ≥ C∗SABH3, we have

Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh) ≤ Õ

(√
C∗SABH3

n

√
V

µ∗,ν
1 (s1)− V 1(s1)

)
+ Õ

(√
C∗SABH3

n

)
.

Proof.

Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh)

=cEµ∗,ν

H∑
h=1


√√√√VarP̂h,0(s,a,b)

(V ref
h+1)ι

nh,0(s, a, b) ∨ 1
+

Hι

nh,0(s, a, b) ∨ 1
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≤cEµ∗,ν

H∑
h=1

√cVarPh(s,a,b)(V
ref
h+1)ι

ndρh(s, a, b)
+

cHι

ndρh(s, a, b)
+

cHι

ndρh(s, a, b)


=c2

H∑
h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b)

√VarPh(s,a,b)(V
ref
h+1)ι

ndρh(s, a, b)
+

Hι

ndρh(s, a, b)


≤c2

H∑
h=1

∑
(s,a,b)

√C∗d
µ∗,ν
h (s, a, b)VarPh(s,a,b)(V

ref
h+1)ι

n
+

C∗Hι

n


≤c2
√
SABH ·

√
C∗ι

∑H
h=1

∑
(s,a,b) d

µ∗,ν
h (s, a, b)VarPh(s,a,b)(V

ref
h+1)

n
+

c2SABC∗Hι

n

≤c2
√
C∗SABHι ·

√√√√∑H
h=1 Eµ∗,ν

[
VarPh(s,a,b)(V

ref
h+1)

]
n

+
c2SABC∗Hι

n

≤c2
√
C∗SABHι ·

√√√√∑H
h=1 Eµ∗,ν

[
VarPh(s,a,b)(V

µ∗,ν
h+1 ) + 2H[Ph(V

µ∗,ν
h+1 − V ref

h+1)](s, a, b)
]

n
+

c2SABC∗Hι

n
(Lemma E.4)

≤c2
√
C∗SABHι ·

√√√√H2 + 2H
∑H

h=1 Eµ∗,ν

[
V

µ∗,ν
h+1 (sh+1)− V ref

h+1(sh+1)
]

n
+

c2SABC∗Hι

n
(Lemma C.5)

=c2
√
C∗SABHι ·

√√√√H2 + 2H
∑H

h=1 Eµ∗,ν

[
V

µ∗,ν
h+1 (sh+1)− V ∗

h+1(sh+1) + V ∗
h+1(sh+1)− V ref

h+1(sh+1)
]

n

+
c2SABC∗Hι

n

≤c2
√
C∗SABHι ·

√√√√H2 + 2H2(V
µ∗,ν
1 (s1)− V 1(s1)) + 128H

√
C∗SABH5ι2

nref

n
+

c2SABC∗Hι

n
(Lemma C.6 and Theorem B.5)

≤c2
√
C∗SABH3ι√

n
+

c2
√
384C∗SABH2ι

√
C∗SABH5ι2

n3/4
+

c
√
2C∗SABH3ι√

n

√
V

µ∗,ν
1 (s1)− V 1(s1)

+
c2SABC∗Hι

n

≤Õ

(√
C∗SABH3

n

√
V

µ∗,ν
1 (s1)− V 1(s1)

)
+ Õ

(√
C∗SABH3

n

)
. (n ≥ C∗SABH3)

Lemma C.8. For n ≥ C∗SABH4, we have

Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh) ≤ Õ

(√
C∗SABH3

n

)
.

Proof.

Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh)
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=cEµ∗,ν

H∑
h=1


√√√√VarP̂h,0(s,a,b)

(V h+1 − V ref
h+1)ι

nh,1(s, a, b) ∨ 1
+

Hι

nh,1(s, a, b) ∨ 1


≤cEµ∗,ν

H∑
h=1

√cH VarPh(s,a,b)(V h+1 − V ref
h+1)ι

ndρh(s, a, b)
+

cH2ι

ndρh(s, a, b)
+

cH2ι

ndρh(s, a, b)



≤c2Eµ∗,ν

H∑
h=1


√√√√H

[
Ph(V h+1 − V ref

h+1)
2
]
(s, a, b)ι

ndρh(s, a, b)
+

H2ι

ndρh(s, a, b)



=c2
H∑

h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b)


√√√√H

[
Ph(V h+1 − V ref

h+1)
2
]
(s, a, b)ι

ndρh(s, a, b)
+

H2ι

ndρh(s, a, b)



≤c2
H∑

h=1

∑
(s,a,b)


√√√√C∗Hd

µ∗,ν
h (s, a, b)

[
Ph(V h+1 − V ref

h+1)
2
]
(s, a, b)ι

n1
+

H2C∗ι

n1


(Cauchy-Schwarz Inequality)

≤c2
√
SABHι

√√√√C∗H
∑H

h=1

∑
(s,a,b) d

µ∗,ν
h (s, a, b)

[
Ph(V h+1 − V ref

h+1)
2
]
(s, a, b)

n
+

c2SABH3C∗ι

n

≤c2
√
SABHι

√√√√C∗Hι
∑H

h=1

∑
(s,a,b) d

µ∗,ν
h (s, a, b)

[
Ph(V ∗

h+1 − V ref
h+1)

2
]
(s, a, b)

n
+

c2C∗SABH3ι

n

(V ∗
h+1 ≥ V h+1 ≥ V ref

h+1)

=c2
√
SABHι

√
H2C∗∑H

h=1

∑
s d

µ∗,ν
h+1 (s)(V

∗
h+1(s)− V ref

h+1(s))

n
+

c2C∗SABH3ι

n

≤c2
√
SABHι

√√√√H2C∗64
√

C∗SABH5ι2

nref

n
+

c2SABH3C∗ι

n
(Theorem B.5)

=c2

√
192C∗SABH3ι

√
C∗SABH5ι2

n3/2
+

c2C∗SABH3ι

n

≤Õ

(√
C∗SABH3

n

)
. (n ≥ C∗SABH4)

Theorem C.9. Suppose Assumption 2.2 holds. For any 0 < δ < 1 and n ≥ C∗SABH4, with
probability 1− δ, the output policy π = (µ, ν) of Algorithm 1 satisfies

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤ Õ

(√
C∗SABH3

n

)
,

V ∗,ν
1 (s1)− V ∗

1 (s1) ≤ Õ

(√
C∗SABH3

n

)
.

As a result, we have

Gap(µ, ν) ≤ Õ

(√
C∗SABH3

n

)
.
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Proof.

V
µ∗,ν
1 (s1)− V 1(s1)

≤2Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh) + 2Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh) (Lemma C.4)

≤Õ

(√
C∗SABH3

n

√
V

µ∗,ν
1 (s1)− V 1(s1)

)
+ Õ

(√
C∗SABH3

n

)
(Lemma C.7 and Lemma C.8)

≤Õ

(√
C∗SABH3

n

)
+ Õ

(
C∗SABH3

n

)
(Lemma E.5)

=Õ

(√
C∗SABH3

n

)
.

By the definition of NE, we have

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤ V

µ∗,ν
1 (s1)− V 1(s1) ≤ Õ

(√
C∗SABH3

n

)
.

The second argument can be proven in a similar manner. Combining these two argument and we
can prove that

Gap(µ, ν) ≤ Õ

(√
C∗SABH3

n

)
.

D Proofs in Section 4.3

D.1 Uniform Coverage

Theorem D.1. Suppose dm = min {dρh(s, a, b) : h ∈ [H], (s, a, b) ∈ S ×A× B} and Assumption
2.2 holds. For any 0 < δ < 1, with probability 1 − δ, the output policy π = (µ, ν) of Algorithm 1
satisfies

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤ 64

√
H5ι2

ndm
, V ∗,ν

1 (s1)− V ∗
1 (s1) ≤ 64

√
H5ι2

ndm
.

As a result, we have

Gap(µ, ν) ≤ Õ

√ H5

ndm

 .

Proof. By Lemma B.3, with probability 1− δ we have

V µ∗,∗
1 (s1)− V

µ,∗
1 (s1)

≤2
H∑

h=1

Eµ∗,νbh(sh, ah,bh)

=2

H∑
h=1

Eµ∗,ν

[
4

√
H2ι

nh(s, a, b) ∨ 1

]

≤2
H∑

h=1

Eµ∗,ν

[
32

√
H3ι2

ndρh(s, a, b)

]
(Lemma B.1)
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=2

H∑
h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b)

[
32

√
H3ι2

ndρh(s, a, b)

]

≤64
H∑

h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b)

√H3ι2

ndm


≤64

√√√√ H∑
h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b) ·

√∑H
h=1

∑
(s,a,b) d

µ∗,ν
h (s, a, b)C∗H3ι2

ndm

(Cauchy-Schwarz Inequality)

=
√
H ·

√
H4ι2

ndm

=64

√
H5ι2

ndm
.

Theorem D.2. Suppose dm = min {dρh(s, a, b) : h ∈ [H], (s, a, b) ∈ S ×A× B} and Assumption
2.2 holds. For any 0 < δ < 1 and strategy µ, ν, with probability 1− δ, the pessimistic value V h and
optimistic estimate V h of Algorithm 1 satisfies

Eµ∗,ν [V
∗
h (sh)− V h(sh)] ≤ 64

√
H5ι2

ndm
,Eµ,ν∗

[
V h(sh)− V ∗

h (sh)
]
≤ 64

√
H5ι2

ndm
,

where sh is sampled from the trajectory following the strategy in the expectation at timestep h.

Proof. By Lemma B.3, under good event G for all state s we have

V ∗
h (s)− V

µ,∗
h (s) ≤ 2

H∑
t=h

Eµ∗,ν [bh(st, at, bt)|sh = s]

We define ν′ = (ν1, · · · , νh−1, νh, · · · , νH). Then we have

Eµ∗,ν [V
∗
h (sh)− V h(sh)] ≤Eµ∗,ν

[
2

H∑
t=h

Eµ∗,ν [bh(st, at, bt)|sh = s] |s

]

=2

H∑
t=h

Eµ∗,ν′ [bh(st, at, bt)] .

Then following the proof of Theorem D.1, we can prove the argument.

Lemma D.3. Suppose dm = min {dρh(s, a, b) : h ∈ [H], (s, a, b) ∈ S ×A× B} and Assumption
3.1 holds. For n ≥ H3/dm, we have

Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh) ≤ Õ

√ H3

ndm

√
V

µ∗,ν
1 (s1)− V 1(s1)

+ Õ

√ H3

ndm

 .

Proof.

Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh)
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=cEµ∗,ν

H∑
h=1


√√√√VarP̂h,0(s,a,b)

(V ref
h+1)ι

nh,0(s, a, b) ∨ 1
+

Hι

nh,0(s, a, b) ∨ 1


≤cEµ∗,ν

H∑
h=1

√cVarPh(s,a,b)(V
ref
h+1)ι

ndρh(s, a, b)
+

cHι

ndρh(s, a, b)
+

cHι

ndρh(s, a, b)


≤c2

H∑
h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b)

√VarPh(s,a,b)(V
ref
h+1)ι

ndm
+

Hι

ndm


≤c2

√√√√ H∑
h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b)

√∑H
h=1

∑
(s,a,b) d

µ∗,ν
h (s, a, b)VarPh(s,a,b)(V

ref
h+1)ι

ndm
+

Hι

ndm


(Cauchy-Schwarz inequality)

≤c2
√
H ·

√
ι
∑H

h=1

∑
(s,a,b) d

µ∗,ν
h (s, a, b)VarPh(s,a,b)(V

ref
h+1)

ndm
+

c2Hι

ndm

≤c2
√
Hι ·

√√√√∑H
h=1 Eµ∗,ν

[
VarPh(s,a,b)(V

ref
h+1)

]
ndm

+
c2Hι

ndm

≤c2
√
Hι ·

√√√√∑H
h=1 Eµ∗,ν

[
VarPh(s,a,b)(V

µ∗,ν
h+1 ) + 2H[Ph(V

µ∗,ν
h+1 − V ref

h+1)](s, a, b)
]

ndm
+

c2Hι

ndm
(Lemma E.4)

≤c2
√
Hι ·

√√√√H2 + 2H
∑H

h=1 Eµ∗,ν

[
V

µ∗,ν
h+1 (sh+1)− V ref

h+1(sh+1)
]

ndm
+

c2Hι

ndm
(Lemma C.5)

=c2
√
Hι ·

√√√√H2 + 2H
∑H

h=1 Eµ∗,ν

[
V

µ∗,ν
h+1 (sh+1)− V ∗

h+1(sh+1) + V ∗
h+1(sh+1)− V ref

h+1(sh+1)
]

ndm
+

c2Hι

ndm

≤c2
√
Hι ·

√√√√H2 + 2H2(V
µ∗,ν
1 (s1)− V 1(s1)) + 128H

√
H5ι2

nrefdm

ndm
+

c2Hι

ndm
(Lemma C.6 and Theorem D.2)

≤c2
√
H3ι√

ndm
+

c2
√

384H2ι
√
H5ι2

(ndm)3/4
+

c
√
2H3ι√
ndm

√
V

µ∗,ν
1 (s1)− V 1(s1) +

c2Hι

ndm

≤Õ

√ H3

ndm

√
V

µ∗,ν
1 (s1)− V 1(s1)

+ Õ

√ H3

ndm

 . (n ≥ H3/dm)

Lemma D.4. For n ≥ H4/dm, we have

Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh) ≤ Õ

√ H3

ndm

 .

Proof.

Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh)
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=cEµ∗,ν

H∑
h=1


√√√√VarP̂h,0(s,a,b)

(V h+1 − V ref
h+1)ι

nh,1(s, a, b) ∨ 1
+

Hι

nh,1(s, a, b) ∨ 1


≤cEµ∗,ν

H∑
h=1

√cH VarPh(s,a,b)(V h+1 − V ref
h+1)ι

ndρh(s, a, b)
+

cH2ι

ndρh(s, a, b)
+

cH2ι

ndρh(s, a, b)



≤c2Eµ∗,ν

H∑
h=1


√√√√H

[
Ph(V h+1 − V ref

h+1)
2
]
(s, a, b)ι

ndρh(s, a, b)
+

H2ι

ndρh(s, a, b)



≤c2
H∑

h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b)


√√√√H

[
Ph(V h+1 − V ref

h+1)
2
]
(s, a, b)ι

ndm
+

H2ι

ndm



≤c2
√√√√ H∑

h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b)


√√√√∑H

h=1

∑
(s,a,b) Hd

µ∗,ν
h (s, a, b)

[
Ph(V h+1 − V ref

h+1)
2
]
(s, a, b)ι

ndm
+

H2ι

ndm


(Cauchy-Schwarz Inequality)

≤c2
√
H

√√√√Hι
∑H

h=1

∑
(s,a,b) d

µ∗,ν
h (s, a, b)

[
Ph(V h+1 − V ref

h+1)
2
]
(s, a, b)

ndm
+

c2H3ι

ndm

≤c2
√
Hι

√√√√Hι
∑H

h=1

∑
(s,a,b) d

µ∗,ν
h (s, a, b)

[
Ph(V ∗

h+1 − V ref
h+1)

2
]
(s, a, b)

ndm
+

c2H3ι

ndm
(V ∗

h+1 ≥ V h+1 ≥ V ref
h+1)

=c2
√
Hι

√
H2
∑H

h=1

∑
s d

µ∗,ν
h+1 (s)(V

∗
h+1(s)− V ref

h+1(s))

ndm
+

c2H3ι

ndm

≤c2
√
Hι

√√√√H264
√

H5ι2

nrefdm

ndm
+

c2H3ι

ndm
(Theorem D.2)

=c2

√
192H3ι

√
H5ι2

(ndm)3/2
+

c2H3ι

ndm

≤Õ

√ H3

ndm

 . (n ≥ H4/dm)

Theorem D.5. Suppose dm = min {dρh(s, a, b) : h ∈ [H], (s, a, b) ∈ S ×A× B} and Assumption
3.1 holds. For any 0 < δ < 1 and n ≥ H4/dm, with probability 1− δ, the output policy π = (µ, ν)
of Algorithm 2 satisfies

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤ Õ

√ H3

ndm

 , V ∗,ν
1 (s1)− V ∗

1 (s1) ≤ Õ

√ H3

ndm

 .

As a result, we have

Gap(µ, ν) ≤ Õ

√ H3

ndm

 .
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Proof.

V
µ∗,ν
1 (s1)− V 1(s1)

≤2Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh) + 2Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh) (Lemma C.4)

≤Õ

√ H3

ndm

√
V

µ∗,ν
1 (s1)− V 1(s1)

+ Õ

√ H3

ndm

 (Lemma D.3 and Lemma D.4)

≤Õ

√ H3

ndm

+ Õ

(
H3

ndm

)
(Lemma E.5)

=Õ

√ H3

ndm

 .

By the definition of NE, we have

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤ V

µ∗,ν
1 (s1)− V 1(s1) ≤ Õ

√ H3

ndm

 .

The second argument can be proven in a similar manner. Combining two arguments together and
we can derive that

Gap(µ, ν) ≤ Õ

√ H3

ndm

 .

D.2 Turn-based Markov Games

For turn-based Markov games, there always exists a pure (deterministic) NE equilibrium strategy.
As a result, we can have that µ∗, ν∗, µ, ν, µ, ν are all pure strategy.

Theorem D.6. Suppose Assumption 2.2 holds. For any 0 < δ < 1, with probability 1−δ, the output
policy π = (µ, ν) of Algorithm 1 satisfies

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤ 64

√
C∗SH5ι2

n
, V ∗,ν

1 (s1)− V ∗
1 (s1) ≤ 64

√
C∗SH5ι2

n
.

As a result, we have

Gap(µ, ν) ≤ Õ

(√
C∗SH5

n

)
.

Proof. By Lemma B.3, with probability 1− δ we have

V µ∗,∗
1 (s1)− V

µ,∗
1 (s1)

≤2
H∑

h=1

Eµ∗,νbh(sh, ah,bh)

=2

H∑
h=1

Eµ∗,ν

[
4

√
H2ι

nh(s, a, b) ∨ 1

]

≤2
H∑

h=1

Eµ∗,ν

[
32

√
H3ι2

ndρh(s, a, b)

]
(Lemma B.1)
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=2

H∑
h=1

∑
(s,a,b)

d
µ∗,ν
h (s, a, b)

[
32

√
H3ι2

ndρh(s, a, b)

]

≤64
H∑

h=1

∑
(s,a,b)

√d
µ∗,ν
h (s, a, b)C∗H3ι2

n


=64

H∑
h=1

∑
s∈S

√d
µ∗,ν
h (s, µ∗(s), ν(s))C∗H3ι2

n

 (µ∗,ν are deterministic strategy.)

≤64
√
SH ·

√∑H
h=1

∑
s∈S d

µ∗,ν
h (s, µ∗(s), ν(s))C∗H3ι2

n
(Cauchy-Schwarz Inequality)

=64

√
C∗SH5ι2

n
.

Theorem D.7. Suppose Assumption 2.2 holds. For any 0 < δ < 1 and policy µ, ν, with probability
1− δ, the pessimistic value V h of Algorithm 1 satisfies

Eµ∗,ν [V
∗
h (sh)− V h(sh)] ≤ 64

√
C∗SH5ι2

n
,

Eµ,ν∗
[
V h(sh)− V ∗

h (sh)
]
≤ 64

√
C∗SH5ι2

n
,

where sh is sampled from the trajectory following the strategy in the expectation at timestep h.

Proof. By Lemma B.3, under good event G for all state s we have

V ∗
h (s)− V

µ,∗
h (s)

≤2
H∑
t=h

Eµ∗,ν [bh(st, at, bt)|sh = s]

We define ν′ = (ν1, · · · , νh−1, νh, · · · , νH). Then we have

Eµ∗,ν [V
∗
h (sh)− V h(sh)] ≤Eµ∗,ν

[
2

H∑
t=h

Eµ∗,ν [bh(st, at, bt)|sh = s] |s

]

=2
H∑
t=h

Eµ∗,ν′ [bh(st, at, bt)] .

Then following the proof of Theorem D.6, we can prove the argument.

Lemma D.8. For n ≥ C∗SH3, we have

Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh) ≤ Õ

(√
C∗SH3

n

√
V

µ∗,ν
1 (s1)− V 1(s1)

)
+ Õ

(√
C∗SH3

n

)
.

Proof.

Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh)

=cEµ∗,ν

H∑
h=1


√√√√VarP̂h,0(s,a,b)

(V ref
h+1)ι

nh,0(s, a, b) ∨ 1
+

Hι

nh,0(s, a, b) ∨ 1
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≤cEµ∗,ν

H∑
h=1

√cVarPh(s,a,b)(V
ref
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ndρh(s, a, b)
+

cHι

ndρh(s, a, b)
+
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d
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ref
h+1)ι

n
+

C∗Hι

n


(µ∗, ν are deterministic strategies.)

≤c2
√
SH ·

√
C∗ι

∑H
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∑
s∈S d

µ∗,ν
h (s, µ∗(s), ν(s))VarPh(s,µ∗(s),ν(s))(V

ref
h+1)
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c2SC∗Hι

n
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√
C∗SHι ·
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VarPh(s,a,b)(V

ref
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]
n

+
c2SC∗Hι

n

≤c2
√
C∗SHι ·
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VarPh(s,a,b)(V
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h+1 ) + 2H[Ph(V

µ∗,ν
h+1 − V ref
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+

c2SC∗Hι

n
(Lemma E.4)

≤c2
√
C∗SHι ·

√√√√H2 + 2H
∑H

h=1 Eµ∗,ν

[
V

µ∗,ν
h+1 (sh+1)− V ref

h+1(sh+1)
]

n
+

c2SC∗Hι

n
(Lemma C.5)

=c2
√
C∗SHι ·

√√√√H2 + 2H
∑H

h=1 Eµ∗,ν
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V

µ∗,ν
h+1 (sh+1)− V ∗

h+1(sh+1) + V ∗
h+1(sh+1)− V ref

h+1(sh+1)
]

n
+

c2SC∗Hι

n

≤c2
√
C∗SHι ·

√√√√H2 + 2H2(V
µ∗,ν
1 (s1)− V 1(s1)) + 128H

√
C∗SH5ι2

nref

n
+

c2SC∗Hι

n
(Lemma C.6 and Theorem D.7)

≤c2
√
C∗SH3ι√

n
+

c2
√
384C∗SH2ι

√
C∗SH5ι2

n3/4
+

c
√
2C∗SH3ι√

n

√
V

µ∗,ν
1 (s1)− V 1(s1) +

c2SC∗Hι

n

≤Õ

(√
C∗SH3

n

√
V

µ∗,ν
1 (s1)− V 1(s1)

)
+ Õ

(√
C∗SH3

n

)
. (n ≥ C∗SH3)

Lemma D.9. For n ≥ C∗SH4, we have

Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh) ≤ Õ

(√
C∗SH3

n

)
.

Proof.

Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh)

=cEµ∗,ν

H∑
h=1


√√√√VarP̂h,0(s,a,b)

(V h+1 − V ref
h+1)ι

nh,1(s, a, b) ∨ 1
+

Hι
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≤cEµ∗,ν

H∑
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√cH VarPh(s,a,b)(V h+1 − V ref
h+1)ι
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+
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cH2ι
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≤c2Eµ∗,ν
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h+1)
2
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H2ι
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s∈S
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2
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+
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(Cauchy-Schwarz Inequality)

≤c2
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SHι
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s∈S d

µ∗,ν
h (s, µ∗(s), ν(s))
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Ph(V h+1 − V ref

h+1)
2
]
(s, µ∗(s), ν(s))

n
+

c2SH3C∗ι
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SHι
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[
Ph(V ∗

h+1 − V ref
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2
]
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n
+

c2C∗SH3ι

n

(V ∗
h+1 ≥ V h+1 ≥ V ref

h+1)

=c2
√
SHι

√
H2C∗∑H
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∑
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µ∗,ν
h+1 (s)(V
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h+1(s)− V ref

h+1(s))

n
+

c2C∗SH3ι

n

≤c2
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SHι

√√√√H2C∗64
√

C∗SH5ι2

nref

n
+

c2SH3C∗ι

n
(Theorem D.7)

=c2

√
192C∗SH3ι

√
C∗SH5ι2

n3/2
+

c2C∗SH3ι

n

≤Õ

(√
C∗SH3

n

)
. (n ≥ C∗SH4)

Theorem D.10. Suppose Assumption 2.2 holds for a turn-based Markov game and n ≥ C∗SH4.
For any 0 < δ < 1, with probability 1− δ, the output policy π = (µ, ν) of Algorithm 1 satisfies

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤ Õ

(√
C∗SH3

n

)
,

V ∗,ν
1 (s1)− V ∗

1 (s1) ≤ Õ

(√
C∗SH3

n

)
.

As a result, we have

Gap(µ, ν) ≤ Õ

(√
C∗SH3

n

)
.

Proof.

V
µ∗,ν
1 (s1)− V 1(s1)
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≤2Eµ∗,ν

H∑
h=1

bh,0(sh, ah, bh) + 2Eµ∗,ν

H∑
h=1

bh,1(sh, ah, bh) (Lemma C.4)

≤Õ

(√
C∗SH3

n

√
V

µ∗,ν
1 (s1)− V 1(s1)

)
+ Õ

(√
C∗SH3

n

)
(Lemma D.8 and Lemma D.9)

≤Õ

(√
C∗SH3

n

)
+ Õ

(
C∗SH3

n

)
(Lemma E.5)

=Õ

(√
C∗SH3

n

)
.

By the definition of NE, we have

V ∗
1 (s1)− V

µ,∗
1 (s1) ≤ V

µ∗,ν
1 (s1)− V 1(s1) ≤ Õ

(√
C∗SH3

n

)
.

The second argument can be proven in a similar manner. Combining these two arguments and we
can derive that

Gap(µ, ν) ≤ Õ

(√
C∗SH3

n

)
.

E Auxiliary Lemmas

Lemma E.1. (Multiplicative Chernoff bound). Let X be a binomial random variable with parame-
ter p, n. For any 1 ≥ θ > 0, we have that

P[(1− θ)pn < X < (1 + θ)pn] < 2e−
θ2pn

2

Lemma E.2. For all (sh, ah,bh) ∈ Kh and any ∥V ∥∞ ≤ H , with probability 1− δ we have√
Var

P̂ †
sh,ah,bh

(V ) ≤
√

Var
P †

sh,ah,bh

(V ) + cH

√
ι

ndµh(sh, ah,bh)
.

Proof. The is a direct application of Lemma E.3 with a union bound.

Lemma E.3. (Empirical Berstein Inequality [Maurer and Pontil, 2009]) Let n ≥ 2 and V ∈ RS be
any functions with ∥V ∥∞ ≤ H , P be any S-dimensional distribution and P̂ be its empirical version
using n samples. Then with probability 1− δ,∣∣∣∣∣√Var

P̂
(V )−

√
n− 1

n
Var
P

(V )

∣∣∣∣∣ ≤ 2H

√
log(2/δ)

n− 1
.

Lemma E.4. For 0 ≤ V ≤ V ′ ≤ H , we have

Var
Ph(s,a,b)

(V ) ≤ Var
Ph(s,a,b)

(V ′) + 2H[Ph(V
′ − V )](s, a, b).

Proof.

Var
Ph(s,a,b)

(V )− Var
Ph(s,a,b)

(V ′)

≤
[
Ph(V )2 − (PhV )2 − Ph(V

′)2 + (PhV
′)2
]
(s, a, b)

= [Ph(V + V ′)(V − V ′) + [Ph(V
′ − V )][Ph(v

′ + v)]] (s, a, b)

≤2H[Ph(V
′ − V )](s, a, b).
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Lemma E.5. If x ≤ a
√
x+ b for a, b > 0, then we have

x ≤ 2a2 + 2b.

Proof. We have

(
√
x− a

2
)2 ≤ b+

a2

4
.

If
√
x < a

2 , the argument holds directly. Otherwise we have

√
x− a

2
≤
√
b+

a2

4
≤
√
b+

a

2
.

So we have
√
x ≤
√
b+ a, which implies x ≤ 2(a2 + b).
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