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In this document, we provide additional materials that cannot fit into the main manuscript due to
the page limit. We first give the full deviation of the function similarity and the pseudo code for
the DeRy framework, and then conduct additional experiments to validate the proposed DeRy. Next,
we describe our implementation details, dataset settings, evaluation metrics, and hyper-parameter
settings.

1 Pseudo-code for DeRy

Algorithm 1 provides the pseudo-code of our two-stage solution for DeRy. Given a model zoo Z, we
run the joint network partition for R times. Each partition stage involves a tri-level optimization, with
a block partition step, an anchor selection step, and a block assignment step. The optimal network
partition yields a number of build blocks, which are then taken to reassemble a new network by
solving a constraint integer program with a training-free proxy.

Algorithm 1 Deep Model Reassembly
1: # Network Partition by Functional Equivalence
2: for run = 1, 2, . . . , R do
3: Initialize the network partition {B(k)

i }
K
k=1|0 and clustering A|0

4: for t = 1, 2, . . . , T and J(A|t, {B(k)
i }

K
k=1|t)− J(A|t−1, {B(k)

i }
K
k=1|t−1) ≤ ϵ do

5: Update the partition by network layer swapping {B(k)
i }

K
k=1|t ← argmax

B
(k)
i

J(A|t−1, {B(k)
i }

K
k=1|t−1)

6: Update the anchor blocks Baj
|t ← argmaxBaj

J(A|t−1, {B(k)
i }

K
k=1|t)

7: Update the block assignment A|t ← argmaxA J(A|t−1, {B(k)
i }

K
k=1|t)

8: end for
9: end for
10: Find the best partition in all runs A∗, {B∗

i
(k)}Kk=1 ← argmax

A,B
(k)
i

J(A, {B(k)
i }

K
k=1).

11: # Network Reassembly by Solving an Integer Program
12: for c = 1, 2, . . . , num_candidate do
13: Reassemble a network randomly M(X,Y ) under hard constraints.
14: Compute the training-free score Scores[c]← NASWOT(M(X,Y ))
15: end for
16: Find the best candidate with maximum score c∗ ← argmaxc Scores

2 Functional similarity

2.1 Full Derivation of Function Similarity

Following Def. 3, we are able to find the best proxy B′ of a given neural network B by solving
B′∗ = argmax

B′
s(B(X), B′(X′)), s.t. s(X,X′)− ϵ ≥ 0 (1)

Using Lagrange multipliers, our objective can be simplified to L(B′, λ) = s(B(X), B′(X′)) +
λs(X,X′) − λϵ. By omitting the last term (not related to our B′) and setting λ = 1, we have
S(B,B′) = s(B(X), B′(X′)) + s(X,X′) to characterize the function similarity of two neural
blocks, which is a weighted summation of its input-output similarity.
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2.2 Function Similarity and Knowledge Distillation

Knowledge distillation (KD) [6] aims to learn a compact student network S : Rdin → Rdout from the
teacher network T : Rd′

in → Rd′
out . For the typical KD problem where din = d′in and dout = d′out,

given the same input, we would like to minimize the difference between two models’ output logits.
Specifically,

• If we adopt mean-square-error (MSE), it measures the functional similarity using linear regression
R2

LR [8].

• If we adopt KL divergence DKL

(
S(X)|T (X)

)
as our distillation loss, it matches well

with the functional similarity with mutual information MI
(
S(X), T (X)

)
= H

(
T (X)

)
−

DKL

(
S(X)|T (X)

)
. We can drop the first term since the teacher output entropy H

(
T (X)

)
is considered as a constant.

The analogy can be brought up when distilling intermediate feature [16] from teacher to student.
Here we assume din = d′in and dout ̸= d′out. One typical solution is to add one linear layer
W ∈ Rdout×d′

out on top of the student network to match the output dimensions and then minimize the
MSE

(
T (X), S(X)W

)
. Because the R2

LR is invariant to invert-able linear transformation [8], as long
as W is invert-able, s

(
S(X)W,T (X)

)
= s

(
S(X), T (X)

)
. It again lies in our definition of functional

similarity. If we consider the feature distillation by maximizing the mutual information [19, 1], the
functional similarity with mutual information describes any form of non-linear transformation instead
of a single linear layer.

In sum, KD can be considered as a special case for our functional similarly, when din = d′in.

2.3 Function Similarity of Two Identical Networks

We now prove that function similarity is the necessary but insufficient condition for two identical
neural networks. By the term identical, we mean the two networks have exactly the same architecture
as well as the weights. Let us assume we have an arbitrary representation similarity s(·, ·) ∈ [0, 1]
and its corresponding functional similarly S(·, ·) ∈ [0, 2], it is clear that s(X,X) = 1. We show that
for two networks B and B′, (1) [B,B′ are identical ⇒ S(B,B′) = 2] but (2) [S(B,B′) = 2 ̸⇒
B,B′ are identical].

• Necessity. If two networks are identical, given the same input X, two networks ought to produce
the same output B(X) = B′(X), with s(B(X), B′(X)) = 1. Then, we have S(B,B′) =
s(B(X), B′(X)) + s(X,X) = 2.

• Insufficiency. We prove that [S(B,B′) = 2 ̸⇒ B,B′ are identical] by contradiction. Suppose B
is a single-layer linear neural network B(X) = WX, and B′ is 3-layer network with a scaling and
a descaling layer B′(X) = (kI)W ( 1k I)X. Though the two networks have the same output given
the same input, they are indeed not identical.

2.4 Computational Complexity Analysis and Solutions

In our formulation, we need to compute the feature similarity within each equivalence set. If we do
it along side with the network partition, each network need to be forwarded to get the intermediate
feature at every iteration, and then we compute the similarity between K×N blocks and K centroids
for three times (one for clustering and two for a forward and a backward layer swapping). Assume
there is n data points ( 1

20 of the full dataset). We run the optimization in Section 3.2 for t steps for
each run and repeat the experiment for R times, the time complexity for representation similarity is
O(K ×N ×K × t×R) and the time complexity for network inference is O(N × n×R). At the
same time, similarity computation for each pair of block is huge. Taking linear CKA as an example,
given two feature matrix X ∈ Rn×d1 and Y ∈ Rn×d2 , the computation of linear CKA envolves 3
matrix multiplication

CKA(XX⊤, Y Y ⊤) =
||Y ⊤X||2F

||XX⊤||F ||Y Y ⊤||F
(2)

Since the number of samples and feature dimension is large (n > 10000, d > 1000), the memory
consumption is extremely large. All above factors inevitably leads to huge computational over head.
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As the online computation is cumbersome in practice, we take an alternative path to fill in the feature
similarity table offline. We take 3 strategies to significantly reduces the computational complexity in
our implementation.

1. Reduce the Inference Time. We perform data inference on n samples offline, and save the
intermediate feature vectors to local files. This reduce the network inference complexity
from O(N × n×R) to O(N × n).

2. Reduce the Similarity Computation. We compute the similarity for all networks for∑N
i=1

∑N
j=1 Li × Lj times for each pair of layers. This reduces the time complexity from

O(K ×N ×K × t× R) to O(
∑N

i=1

∑N
j=1 Li × Lj). This seems to be trivial, however,

when we assume L = 20, t = 100, R = 200, K = 4, N = 28, the online version
needs 4 × 4 × 28 × 100 × 200 = 8, 960, 000 computations, and the offline version gets
28×28×20×20 = 313, 600 times. In fact, for each block similarity in online computation,
we need to do the pair-wise computation for three times (Line 58). There is a 1 ∼ 2 orders
of magnitude speed up.

3. Reduce the Memory for Large Matrix Multiplication. Since there involves large matrix
multiplication, the memory requirement is extremely large. We implement a mini-batch
version full CKA algorithm to save memory and do multi-thresholding. In [13], it has
been proved that the mini-batch CKA provides unbiased estimator of CKA value. We also
implement a torch-version CKA on GPU to accelerate the computation.

Then, the offline computation for each pair of networks reduces to around 1 ∼ 2 min. For a zoo of 28
models, we need around 28× 28× 1 ∼ 28× 28× 2 minutes, with about 12-24 hour in total. Once
the similarity computation is done, the partition and reassembly steps can be done without hassle.
Please review our code at similarity/get_rep.py and similarity/compute_sim.py on the
implementation details.

3 Limitation, Social Impact and Possible Solutions

Currently, our DeRyhas several limitations, especially with regards to privacy concerns and model
bias. The following discussion of each of those factors provides a more comprehensive reflection on
the current research.

• Privacy Concern. DeRy combines multiple trained models by reusing some of their
parameters. Thus, the reassembled model could contain information from multiple models.
Criminals may embezzle the private information or intellectual property of the upstream
model by attacking the reassembled model. The problem might be solved by increasing the
number of trained models so that the reserved parameters of each model are not sufficient to
recover the complete model information.

• Model Bias. While DeRy inherits the privileged knowledge of its predecessors, the data bias
and knowledge bias may also be transferred to the reassembled model. To tackle this problem,
two techniques could be incorporated into the DeRy framework to mitigate the predecessor
model bias. For starters, we can expand the model zoo size and limit the assembled size
for each model. It ensures that no single model bias is dominant in the reassembled model.
It is also possible to increase the diversity among the reassembled blocks instead of blindly
optimizing the target performance. A diversity-promoting regularization term could be
added to Equation 8 to provide unbiased predictions.

We will extend our study to those fields to eliminate the current limitation of DeRy.

4 Potential Applications

As DeRy provides a framework to integrate the trained networks and produce a new model, we discuss
potential applications on large model training and multi-task learning.

• Large model training. Large models have recently shown their remarkable potential in
building powerful AI systems with unprecedented generalization ability and robustness
capability. However, training a large model is extremely cumbersome and computationally
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intensive. Instead of training a network from scratch, DeRy allows us to take several
pre-trained small models, partition them into building blocks and assemble them into the
large model as an efficient method for network initialization. As suggested in the paper,
reassembling pre-trained models provides faster convergence and reduces the training cost.

• Multi-task Learning. Typical multi-tasking learning requires training a model on a complex
task combination. DeRy shed light on a very cheap alternative method for multi-task training.
Given a bunch of trained single-task models, we can develop a method to aggregate their
capacities into a reassembled model. For example, assemble a new model with a shared
backbone and multiple task prediction components, each taken from a single task. As such,
we reassemble a multi-task model at a very low cost using DeRy.

5 Additional Experimental Results

5.1 Heterogeneous Models VS Homogeneous Models

Although our DeRy was originally designed for fusing heterogeneous models, we would like extend
it to homogeneous models to demonstrate its generality. We, therefore, adopt DeRy on homogeneous
models and compare the results with those of the Zoo Tuning [18] on CIFAR-100, AirCraft and Cars
using the same homogeneous zoo setting as in [18]. Note that we do not further pre-train DeRy on
ImageNet to make sure the comparison is fair. As shown in Table 1, We improve the accuracy by
4.13% on Cars and 3.35% on AirCraft dataset, with marginal computational overhead. We indeed
outperform [18] significantly with the same experimental setup.

Param(M) CIFAR-100 AirCraft Cars
Zoo Tuning 23.71 83.39 85.51 89.73
DeRy(4, 30, 6) 24.89 84.05(+0.66) 88.86(+3.35) 93.86(+4.13)

Table 1: Performance and computation comparison on homogeneous model zoo.

In fact, a homogeneous model zoo is a simplified case for heterogeneous models. In our main paper,
we have focused on the more challenging heterogeneous models.

5.2 Ablation Study on Partition Number, Performance and Complexity

In our main paper, we assume the network partition number K = 4. We repeat the network partition
and reassembly steps with K = 5 and K = 6 to see how our method performs with different partition
granularities. We set the configuration to DeRy(K, 30, 6). The network is trained on ImageNet for
100 epochs. All other experimental settings remain the same as those used in the main paper. As
illustrated in Table 2, we observe that the partition number K has a minimal effect on the model
performance. As for the computational complexity, a large K does increase the search time with less
than 10% time growth. This ablation study suggests that our proposed DeRy is not sensitive to the
selection of partition number K.

K Param(M) GFLOPs Top1 Acc Top 5 Acc
4 24.89 4.47 79.63 94.81
5 21.14 5.53 79.68 94.89
6 23.38 5.39 79.83 95.02

Table 2: Ablation study for the partition number K.

5.3 Partition Results

We visualize the network partition hierarchy in Figure 1 with linear CKA when the partition number
K = 4 and K = 6. We name each block in the format of ModelName-NodeRange-StageIndex.
The anchor blocks are shown in the inner circle, while the outside ring lists all of the blocks in each
equivalence set. The panel color indicates the functional similarity between each block and its anchor
block.

We make the following observations
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1. The equivalent sets tend to cluster the blocks by stage index. For example, all Stage 0 blocks of
various pre-trained networks are within the same equivalence set. It provides valuable insight
that neural networks learn similar patterns at similar network stages, despite of its architecture or
training strategy.

2. Our network partition prefers ResNeXt- and RegNet-structured network as its anchor blocks.
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Figure 1: Model partition and assignment visualization.

5.4 Architecture or Pre-trained Weights?

We would like to investigate whether it is the searched architecture alone, or both the network structure
and the pre-trained weights contribute to the performance improvement in our DeRy solution. Figure 2
compares the test accuracy between full DeRy and DeRy with random weight initialization on 9 transfer
learning datasets. We observe that the DeRy model trained from scratch does not gain satisfying
transfer performance. It indicates that the searched architecture and the pre-trained weights bring
about the performance promotion collaboratively.
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Figure 2: Performance comparison between DeRy and DeRy with random weight initialization.

5.5 Visualizing the Representation Similarity

Figure 3 visualizes the pairwise network representation similarity heatmap. We include ImageNet1k
supervised ResNet-18 (R18), ResNet-50 (R50), ResNet-101 (R101), ResNeXt-50 (RX50),
MobileNetv3 Large (MBNv3), Vision Transformer Large (ViT-L), ResNetY-8G (RegY8G),
ImageNet1k BYOL ResNet-50 (R50BYOL), and ImageNet1k MoCov3 Vision Transformer Base (ViT-
B MoCov3). We have the following observations

• Diagonal Pattern. For models trained with diverse network structures, random seeds, and training
recipes, representations at similar depth generally have high similarity, resulting in the diagonal
pattern in each pairwise heatmap. It again indicates that neural networks learn similar patterns at
similar depths.

• Self-supervised Models Learn High-level Semantics. As shown in the last row (ViT-B MoCov3)
and last column (R50 BYOL) in Figure 3, the self-supervised models achieve high representation
similarity with the supervised models at the top layers (top-right on each heatmap). It suggests
that the self-supervised learning might be able to learn the high-level semantics of the supervised
pre-training. On the contrary, two training paradigms learn distinctive low-level patterns.
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(g) RX50-R18
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(q) RegY8G-R18
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Figure 3: Feature similarity heatmap of heterogeneous pre-trained models on ImageNet.
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5.6 Numerical Results for Transfer Learning

Table 3 and Table 4 provide the numerical performance on 9 tasks from pre-trained weights or from
random initialization. The same results are also shown in Figure 11 in the main paper.

Network Init. #Param(M) CIFAR100 CIFAR10 Caltech101 Flowers Cars Aircraft DTD Pets CUB
ResNet-50 iNat2021 23.51 84.81 97.39 92.54 97.86 91.47 84.54 72.83 91.11 82.37
ResNet-50 BYOL 23.51 86.14 97.85 88.74 98.66 91.95 87.04 75.21 90.32 81.72
ResNet-50 MoCov2 23.51 83.26 96.88 80.52 98.31 92.6 88.41 68.35 86.23 79.60
ResNet-50 SimCLR 23.51 82.57 96.44 85.70 98.69 91.78 83.88 71.01 88.38 85.61
ResNet-18 In1K 11.69 83.00 96.17 91.70 97.26 91.00 82.70 71.60 89.90 80.75
ResNet-50 In1k 23.51 84.34 96.77 91.77 97.51 91.72 86.63 73.16 90.54 83.02
ResNet-101 In1K 42.52 86.81 97.68 93.12 97.94 91.69 85.57 74.21 92.02 83.88
ResNeXt 50 32x4d In1K 25.03 84.62 97.18 91.91 97.18 91.47 85.39 72.92 90.94 82.63
ResNeXt 101 32x8d In1K 88.79 85.75 97.41 93.47 97.68 91.03 84.66 72.5 90.83 82.63
MobileNet v3 Large 0.75 In1K 4.00 80.60 95.74 89.14 96.63 91.11 82.83 70.88 88.51 79.77
MobileNet v3 Large 1.0 In1K 5.40 82.31 96.13 91.07 97.52 91.80 86.80 71.03 88.99 81.70
RegNetY-800m in1k 6.30 83.58 96.57 87.16 99.47 87.90 79.99 70.96 89.19 74.82
RegNetY-1.6GF in1k 9.19 85.96 97.14 90.72 99.58 91.83 86.94 74.15 91.74 82.69
RegNetY-3.2GF in1k 20.60 85.94 94.57 86.31 98.79 89.57 83.01 74.38 87.69 84.38
RegNetY-8GF in1k 39.20 86.23 97.72 90.91 99.31 93.04 86.38 75.37 92.57 82.93
RegNetY-16GF in1k 83.59 87.53 96.32 89.76 98.96 92.34 85.01 75.74 87.69 84.38
RegNetY-32GF in1k 145.05 90.92 96.87 93.31 99.69 93.51 85.01 74.38 90.69 86.38
Swin-B in21k 87.77 90.30 98.93 94.90 99.45 93.30 89.00 76.10 91.70 86.80
Swin-T in1k 28.29 86.56 97.41 92.25 98.74 91.94 83.51 67.04 86.12 85.39
Swin-S in1k 49.61 89.98 98.71 93.45 99.46 91.24 85.63 78.40 93.83 86.88
Swin-B in1k 87.77 89.52 98.41 92.76 99.04 91.94 84.51 77.82 89.14 85.97
Swin-L in1k 196.53 90.76 98.43 92.25 99.24 92.94 86.78 78.14 91.10 87.39
ViT-S MoCov3 22.88 88.29 96.16 90.62 98.97 88.63 83.76 74.33 88.15 83.11
ViT-B MAE 86.86 91.82 98.76 93.12 99.63 90.55 80.29 78.40 91.51 86.16
ViT-T In1k 5.72 87.74 98.09 89.98 99.14 83.67 69.75 73.03 88.54 80.98
ViT-S In1k 22.88 91.82 98.76 93.13 99.63 90.55 80.29 78.40 91.51 86.16
ViT-B in1k 86.86 91.70 98.71 91.99 99.74 92.05 79.48 75.90 91.02 86.74
ViT-L In1K 304.72 90.65 98.34 93.21 97.35 91.98 85.33 73.42 92.47 86.73

DeRy(4,10,3)-FT DeRy+in1k 7.64 84.41 96.89 88.81 99.58 93.12 86.19 73.46 92.01 77.43
DeRy(4,20,5)-FT DeRy+in1k 14.19 86.06 97.46 91.67 99.60 93.31 89.17 75.74 92.89 83.28
DeRy(4,30,6)-FT DeRy+in1k 24.89 87.44 97.60 91.67 99.34 93.11 89.08 76.40 92.64 85.22
DeRy(4,50,10)-FT DeRy+in1k 40.41 87.55 98.26 94.78 99.25 92.77 89.58 77.23 93.78 87.11

Table 3: Pre-trained transfer performance on 9 image classification tasks.

6 Extension to Other Vision Tasks

Apart from classification, DeRy can be indeed applied to other vision tasks. There are several
advantages of DeRy when it is applied to downstream tasks.

First, as DeRy directly searches for a general backbone, we may readily apply the same network to
other tasks without any hassle. Second, the training-free proxy of NASWOT does not depend on the
ground-truth label and is therefore label-agnostic. It enables us to assemble new networks on any task
and any modality of input. Third, DeRy is highly computationally efficient; it only requires several
hours to search for the optimal structure on a large-sized dataset.

We look forward to extending DeRy to other vision tasks in our future work.

7 Implementation details

7.1 Source Code

We implement the model training with the mmClassification1 framework alongside the Pytorch
backend. To support the extraction of sub-model, we require the Pytorch version > 1.10 with the
support for torch.fx. The NASWOT score is taken from the official implementation2. We apply

1https://github.com/open-mmlab/mmclassification
2https://github.com/BayesWatch/nas-without-training
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Network Init. #Param(M) CIFAR100 CIFAR10 Caltech101 Flowers Cars Aircraft DTD Pets CUB
ResNet-18 Rand 11.69 77.08 94.03 64.66 90.94 90.11 83.71 61.93 79.10 75.85
ResNet-50 Rand 23.51 78.63 94.17 65.61 87.88 88.51 79.65 62.33 78.09 75.17
ResNet-101 Rand 42.52 79.87 94.81 73.33 87.84 88.21 78.67 62.63 76.22 75.35
ResNeXt 50 32x4d Rand 25.03 78.34 95.13 72.48 90.51 89.64 81.06 63.11 75.40 75.77
ResNeXt 101 32x8d Large Rand 88.79 80.23 96.06 74.61 91.77 90.88 88.23 65.51 77.82 77.61
MobileNet v3 Large 0.75 Rand 4.00 75.26 93.68 67.71 89.93 88.58 81.33 63.66 78.50 75.08
MobileNet v3 Large 1.0 Rand 5.40 75.50 94.07 73.11 91.88 89.02 82.69 63.14 80.12 75.44
RegNetY-800m Rand 6.30 79.53 95.35 73.55 91.22 90.08 82.14 62.88 78.61 76.53
RegNetY-1.6GF Rand 9.19 80.07 95.53 73.82 91.89 89.64 82.82 61.31 79.86 76.37
RegNetY-3.2GF Rand 20.60 80.81 96.05 72.38 90.82 89.33 78.44 60.70 80.28 74.94
RegNetY-8GF Rand 39.20 81.34 94.61 74.88 88.73 88.57 78.21 61.14 77.08 75.03
RegNetY-16GF Rand 83.59 82.35 95.61 77.23 92.73 90.26 81.21 63.67 78.08 79.03
RegNetY-32GF Rand 145.05 82.35 95.61 77.23 92.73 90.26 81.21 63.67 78.08 79.03
Swin-T Rand 28.29 61.12 53.55 46.65 5.32 60.73 68.40 12.13 52.69 42.44
Swin-S Rand 49.61 67.83 55.61 47.14 13.51 51.64 67.69 25.08 43.17 49.53
Swin-B Rand 57.77 70.96 56.05 55.43 13.91 62.70 68.79 36.77 51.21 80.48
Swin-L Rand 196.53 72.91 64.28 56,32 24.26 59.92 64.91 59.58 66.91 76.47
ViT-T Rand 5.72 52.94 79.53 39.55 84.35 14.01 16.82 46.65 32.69 28.36
ViT-S Rand 22.88 58.36 84.16 43.28 87.28 19.52 18.18 50.25 37.26 33.35
ViT-B Rand 86.86 63.26 85.63 45.77 88.27 21.36 19.98 51.37 38.46 36.17
ViT-L Rand 304.72 67.26 87.71 47.39 88.12 30.18 23.57 52.38 40.07 38.05

DeRy(4,10,3)-FT DeRy 7.64 82.67 95.84 75.02 97.72 89.88 82.09 63.82 80.18 70.93
DeRy(4,20,5)-FT DeRy 14.19 83.10 96.32 80.19 98.44 92.86 87.34 65.52 83.07 74.12
DeRy(4,30,6)-FT DeRy 24.89 84.05 96.42 82.19 98.61 93.35 88.86 70.84 86.9 79.81
DeRy(4,50,10)-FT DeRy 40.41 84.25 97.07 84.66 99.5 93.97 88.92 71.85 88.69 80.77

Table 4: Randomly-initialized transfer performance on 9 image classification tasks.

distributed training and FP16 half-precision training to accelerate the model training
and save the GPU memory. The code is documented and attached in a zipped file.

7.2 Stitching Layer Structure

Our stitching layer structures are shown in Table 5. For any two network blocks with different
input-output sizes, we use one layer of Norm-Conv1× 1-Activation to align the dimensions and
feed the output of the previous block to the next.

Mode Structure

CNN-to-CNN BN→ Conv1×1 → LeakyReLU
CNN-to-Trans/MLP BN→ Conv1×1 → LeakyReLU → Flatten
Trans/MLP-to-CNN Reshape(H,W)→ BN → Conv1×1 → LeakyReLU
Trans/MLP-to-Trans/MLP LN→ Linear → LeakyReLU

Table 5: Stitching Layer Structure.

7.3 Node Definition

Since DeRy assumes that all models are line graphs, we need to manually specify the axiom node
in each neural network. In fact, not every operation in the DNN can be treated as an atomic node.
Consider a Conv->ReLU with skip-connection; we cannot make the single convolution layer as our
node because a skip-connection breaks the line graph assumption. DeRy, in this current form, can
not cut off multiple parallel paths at the same time. Therefore, we need to specify the node in
each network. For example, a ViT-B contains 12 transformer blocks and hence has 12 nodes, and a
ResNet-18 has 8 residual blocks and hence has 8 nodes.. The node definition can be found in our
source code at file

blocklize/block_meta.py
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7.4 Dataset and Pre-processing

Dataset. We evaluated the DeRy models on 10 image classification datasets in Table 6. These datasets
cover a wide range of image classification tasks, including 4 object classification tasks CIFAR-
10 [10], CIFAR-100 [10], Caltech-101 [5] and ImageNet1k [17]; 5 fine-grained classification tasks
Flower-102 [14], Stanford Cars [9], FGVC Aircraft[12], Oxford-IIIT Pets [15], and CUB-Bird [20]
alongside 1 testure classification task DTD [2]. The evaluation metric is either the top-1 accuracy or
the per-class mean accuracy, as listed in Table 6.

Dataset #Classes #Train #Test Accuracy metric
CIFAR-10 10 50,000 10,000 top-1
CIFAR-100 100 50,000 10,000 top-1
Stanford Cars 196 8,144 8,041 top-1
FGVC Aircraft 100 6,667 3,333 mean per-class
Describable Textures (DTD) 47 3,760 1,880 top-1
Oxford-IIIT Pets 37 3,680 3,669 mean per-class
Caltech-101 102 3,060 6,084 mean per-class
Oxford 102 Flowers 102 2,040 6,149 mean per-class
CUB-200-Bird 200 5,994 5,794 top-1
ImageNet1k 1000 1,281,167 50,000 top-1

Table 6: Statistics and evaluation metric of datasets.

Data Pre-processing. Following previous works [7, 4], we train and evaluate on all datasets at the
image resolution of 224× 224 to align the pre-training and fine-tuning input size. For CIFAR-10 and
CIFAR-100 images with original size of 32× 32, we first resize them to 224× 224. For the other 8
datasets, a crop of random resize ratio r ∈ [0.08, 1.0] of the original image size and a random aspect
ratio a ∈ [0.75, 1.33] of the original aspect ratio are applied to each training image, and we resize the
crop to the 224× 224. We apply the same data augmentation on 9 transfer learning evaluations, with
a random horizontal image flip with probability of 0.5, a RandAug [3], a random Gaussian noise with
maximum kernel size of 10 and probability of 0.1, a RandomErasing [23] with a relative area size
s ∈ [0.02, 0.33] and probability of 0.2, a Mixup [22] operation and a CutMix [21] operation. On the
ImageNet evaluation, we utilize a similar data augmentation, just without the Gaussian noise and
RandomErasing.

7.5 Hyper-parameter Setting

ImageNet. Following recent training recipe for ImageNet, we train all models using the following
setting

• Batch Size. We utilize 8 GPUs for distributed training, each contains 128 samples. The
overall batch-size is 1024.

• Optimizer. The networks are optimized with AdamW [11] with initial learning rate 0.001,
weight decay of 0.05. Weight decay is not applied to normalization layers and bias term.

• Training Time. The models are optimized for 100 epochs for SHORT-TRAINING and 300
epochs for FULL-TRAINING.

• Learning rate schedule. We apply the cosine learning decay, with warm-up of 5 epochs.

• Exponential Moving Average (EMA). We utilize EMA technique with decay 0.9995.

• Label Smoothing. We apply label smoothing with ϵ = 0.1.

Nine Transfer Learning Tasks. We apply grid search to fine the best hyper-parameter setting for
each model-task combination.

• Batch Size. The batch-size is selected from {64, 128, 256}.
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• Optimizer. The networks are either optimized with AdamW [11] with initial learning
rate of 0.0005

512 × batch-size or SGD with initial learning rate of {0.1, 0.01} and Nesterov
momentum of 0.9.

• Training Time. The models are optimized for {20k, 40k} iterations.

• Learning rate schedule. We apply the cosine learning decay, without warm-up.

• Exponential Moving Average (EMA). We utilize EMA technique with decay 0.9995.

• Label Smoothing. We apply label smoothing with ϵ = 0.1.
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