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Abstract

Recently, diffusion models have been used to solve various inverse problems in
an unsupervised manner with appropriate modifications to the sampling process.
However, the current solvers, which recursively apply a reverse diffusion step
followed by a projection-based measurement consistency step, often produce sub-
optimal results. By studying the generative sampling path, here we show that
current solvers throw the sample path off the data manifold, and hence the error
accumulates. To address this, we propose an additional correction term inspired
by the manifold constraint, which can be used synergistically with the previous
solvers to make the iterations close to the manifold. The proposed manifold
constraint is straightforward to implement within a few lines of code, yet boosts
the performance by a surprisingly large margin. With extensive experiments,
we show that our method is superior to the previous methods both theoretically
and empirically, producing promising results in many applications such as image
inpainting, colorization, and sparse-view computed tomography. Code available
here

1 Introduction

Diffusion models have shown impressive performance both as generative models themselves [41, 13],
and also as unsupervised inverse problem solvers [41, 8, 9, 25] that do not require problem-specific
training. Specifically, given a pre-trained unconditional score function (i.e. denoiser), solving the
reverse stochastic differential equation (SDE) numerically would amount to sampling from the data
generating distribution [41]. For many different inverse problems (e.g. super-resolution [8, 9],
inpainting [41, 9], compressed-sensing MRI (CS-MRI) [40, 9], sparse view CT (SV-CT) [40], etc.),
it was shown that simple incorporation of the measurement process produces satisfactory conditional
samples, even when the model was not trained for the specific problem.

Nevertheless, for certain problems (e.g. inpainting), currently used algorithms often produce unsat-
isfactory results when implemented naively (e.g. boundary artifacts, as shown in Fig. 1 (b)). The
authors in [32] showed that in order to produce high quality reconstructions, one needs to iterate
back and forth between the noising and the denoising step at least > 10 times per iteration. These
iterations are computationally demanding and should be avoided, considering that diffusion models
are slow to sample from even without such iterations. On the other hand, a classic result of Tweedie’s
formula [37, 42] shows that one can perform Bayes optimal denoising in one step, once we know
the gradient of the log density. Extending such result, it was recently shown that one can indeed
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Figure 1: Visual schematic of the MCG correction step. (a) 1© Unconditional reverse diffusion
generates xi; 2© Qi maps the noisy xi to generate x̂0; 3©Manifold Constrained Gradient (MCG)
∂
∂xi
‖W (y−Hx̂0)‖22 is applied to fix the iteration on manifold; 4© Takes the orthogonal complement;

5© Samples from p(yi|y), then combines Ax′i−1 and yi. (b) Representative results of inpainting,
compared with score-SDE [41]. Reconstructions with score-SDE produce incoherent results, while
our method produces high fidelity solutions.

perform a single-step denoising with learned score functions for denoising problems from the general
exponential family [28].

In this work, we leverage the denoising result through Tweedie’s formula and show that such
denoised samples can be the key to significantly improving the performance of reconstruction using
diffusion models across arbitrary linear inverse problems, despite the simplicity in the implementation.
Moreover, we theoretically prove that if the score function estimation is globally optimal, the
correction term from the manifold constraint enforces the sample path to stay on the plane tangent
to the data manifold1, so by combining with the reverse diffusion step, the solution becomes more
stable and accurate.

2 Related Works

2.1 Diffusion Models

Continuous Form For a continuous diffusion process x(t) ∈ Rn, t ∈ [0, 1], we set x(0) ∼
p0(x) = pdata, where pdata represents the data distribution of interest, and x(1) ∼ p1(x), with
p1(x) approximating spherical Gaussian distribution, containing no information of data. Here, the
forward noising process is defined with the following Itô stochastic differential equation (SDE) [41]:

dx = f̄(x, t)dt+ ḡ(t)dw, (1)

with f̄ : Rd 7→ Rd defining the linear drift function, ḡ(t) : R 7→ R defining a scalar diffusion
coefficient, and w ∈ Rn denoting the standard n−dimensional Wiener process. The forward SDE in
(1) is coupled with the following reverse SDE by the Anderson’s theorem [1, 41]:

dx = [f̄(x, t)− ḡ(t)2∇x log pt(x)]dt+ ḡ(t)dw̄, (2)

with dt denoting the infinitesimal negative time step, and w̄ defining the standard Wiener process
running backward in time. Note that the reverse SDE defines the generative process through the
score function∇x log pt(x), which in practice, is typically replaced with∇x log p0t(x(t)|x(0)) to
minimize the following denoising score-matching objective

min
θ

Et∼U(ε,1),x(0)∼p0(x),x(t)∼p0t(x(t)|x(0))

[
‖sθ(x(t), t)−∇xt

log p0t(x(t)|x(0))‖22
]
. (3)

Once the parameter θ∗ for the score function is estimated, one can replace the score function in (2)
with sθ∗(x(t), t) to solve the reverse SDE [41].

Discrete Form Due to the linearity of f̄ and ḡ, the forward diffusion step can be implemented with
a simple reparameterization trick [29]. Namely, the general form of the forward diffusion is

xi = aix0 + biz, z ∼ N (0, I), (4)

1We coin our method Manifold Constrained Gradient (MCG).
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where we have replaced the continuous index t ∈ [0, 1] with the discrete index i ∈ N. On the other
hand, the discrete reverse diffusion step can in general be represented as

xi−1 = f(xi, sθ∗) + g(xi)z, z ∼ N (0, I), (5)

where we have replaced the ground truth score function with the trained one. We detail the choice of
ai, bi,f , g in Appendix. B.

2.2 Conditional Generative models for Inverse problems

The main problem of our interest in this paper is the inverse problem, retrieving the unknown x ∈ Rn
from a measurement y:

y = Hx+ ε, y ∈ Rm,H ∈ Rm×n, (6)

where ε ∈ Rm is the noise in the measurement. Accordingly, for the case of the inverse problems,
our goal is to generate samples from a conditional distribution with respect to the measurement
y, i.e. p(x|y). Accordingly, the score function ∇x log pt(x) in (2) should be replaced by the
conditional score ∇x log pt(x|y). Unfortunately, this strictly restricts the generalization capability
of the neural network since the conditional score should be retrained whenever the conditions change.
To address this, recent conditional diffusion models [22, 41, 8, 9] utilize the unconditional score
function∇x log pt(x) but rely on a projection-based measurement constraint to impose the conditions.
Specifically, one can apply the following:

x′i−1 = f(xi, sθ) + g(xi)z, z ∼ N (0, I), (7)

xi−1 = Ax′i−1 + bi, (8)

where A, bi are functions of H,y, and x0. Note that (7) is identical to the unconditional reverse
diffusion step in (5), whereas (8) effectively imposes the condition. It was shown in [9] that any
general contraction mapping (e.g. projection onto convex sets, gradient step) may be utilized as (8) to
impose the constraint.

Another recent work [25] advancing [26] establishes the state-of-the-art (SOTA) in solving noisy
inverse problems with unconditional diffusion models, by running the conditional reverse diffusion
process in the spectral domain achieved by performing singular value decomposition (SVD), and
leveraging approximate gradient of the log likelihood term in the spectral space. The authors show
that feasible solutions can be obtained with as small as 20 diffusion steps.

Prior to the development of diffusion models, Plug-and-Play (PnP) models [47, 53, 44] were used
in a similar fashion by utilizing a general-purpose unconditional denoiser in the place of proximal
mappings in model-based iterative reconstruction methods [5, 3]. Similarly, outside the context of
diffusion models, iterative denoising followed by projection-based data consistency was proposed
in [44]. In such view, diffusion models can be understood as generative variant of PnPs trained with
multiple scales of noise.

GAN-based solvers are also widly explored [4, 10, 20], where the pre-trained generators are tuned at
the test time by optimizing over the latent, the parameters, or jointly.

2.3 Tweedie’s formula for denoising

In the case of Gaussian noise, a classic result of Tweedie’s formula [37] tells us that one can achieve
the denoised result by computing the posterior expectation:

E[x|x̃] = x̃+ σ2∇x̃ log p(x̃), (9)

where the noise is modeled by x̃ ∼ N (x, σ2I). If we consider a diffusion model in which the forward
step is modeled as xi ∼ N (aix0, b

2
i I) (discrete form), the Tweedie’s formula can be rewritten as:

E[x0|xi] = (xi + b2i∇xi
log p(xi))/ai. (10)

Tweedie’s formula is in fact not only relevant to Gaussian denoising in the Bayesian framework, but
have also been extended to be in close relation with kernel regression [34]. Moreover, it was shown
that it can be applied to arbitrary exponential noise distributions beyond Gaussian [14, 28]. In the
following, we use this key property to develop our algorithm.
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3 Conditional Diffusion using Manifold Constraints

Although our original motivation of using the measurement constraint step in (8) was to utilize the
unconditionally trained score function in the reverse diffusion step in (7), there is room for imposing
additional constraints while still using the unconditionally trained score function.

Specifically, the Bayes rule p(x|y) = p(y|x)p(x)/p(y) leads to

∇x log p(x|y) = ∇x log p(x) +∇x log p(y|x). (11)

Hence, the score function in the reverse SDE in (7) can be replaced by (11), leading to

x′i−1 = f(xi, sθ)− α
∂

∂xi
‖W (y −Hxi)‖22 + g(xi)z, z ∼ N (0, I) (12)

where α andW depend on the noise covariance, if the noise ε in (6) is Gaussian.

Now, one of the important contributions of this paper is to reveal that the Bayes optimal denoising step
in (10) from the Tweedie’s formula leads to a preferred condition both empirically and theoretically.
Specifically, we define the set constraint for xi, called the manifold constrained gradient (MCG), so
that the gradient of the measurement term stays on the manifold (see Theorem 1):

x ∈ Xi, where Xi = {x ∈ Rn | x = (x+ b2i sθ(x, i))/ai} (13)

To deal with the potential deviation from the measurement consistency, we again impose the data
consistency step (8). Putting them together, the discrete reverse diffusion under the additional
manifold constraint and the data consistency can be represented by

x′i−1 = f(xi, sθ)− α
∂

∂xi
‖W (y −Hx̂0(xi))‖22 + g(xi)z, z ∼ N (0, I), (14)

xi−1 = Ax′i−1 + b. (15)

We illustrate our scheme visually in Fig. 1 (a), specifically for the task of image inpainting. The
additional step leads to a dramatic performance boost, as can be seen in Fig. 1 (b). Note that while the
mapping (10) does not rely on the measurement, our gradient term in (14) incorporates the information
of y so that the gradient of the measurement terms stays on the manifold. In the following, we study
the theoretical properties of the method. Further algorithmic details and adaptations to each problem
that we tackle are presented in Section C.

We note that the authors of [19] proposed a similar gradient method for the application of temporal
imputation and super-resolution. When combining (14) with (15), one can arrive at a similar gradient
method proposed in [19], and hence our method can be seen as a generalization to arbitrary linear
inverse problems. Furthermore, there are vast literature in the context of PnP models that utilize pre-
trained denoisers together with gradient of the log-likelihood to solve inverse problems [30, 48, 11].
Among them, [30] is especially relevant to this work since their method relies on modified Langevin
diffusion, together with Tweedie’s denoising and projections to the measurement subspace.

4 Geometry of Diffusion Models and Manifold Constrained Gradient

In this section, we theoretically support the effectiveness of the proposed algorithm by showing the
problematic behavior of the earlier algorithm and how the proposed algorithm resolves the problem.
We defer all proofs in the supplementary section. To begin with, we borrow a geometrical viewpoint
of the data manifold.

Notation For a scalar a, points x,y and a set A, we use the following notations. aA := {ax : x ∈
A}; d(x, A) := infy∈A ||x − y||2; Br(A) := {x : d(x, A) < r}; TxM: the tangent space to a
manifoldM at x; Jf : the Jacobian matrix of a vector valued function f . We define p0 = pdata.

To develop the theory, we need an assumption on the data distribution.
Assumption 1 (Strong manifold assumption: linear structure). SupposeM ⊂ Rn is the set of all
data points, here we call the data manifold. Then, the manifold coincides with the tangent space with
dimension l� n.

M∩BR(x0) = Tx0
M∩BR(x0) and Tx0

M∼= Rl.
Moreover, the data distribution p0 is the uniform distribution on the data manifoldM.
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(a) Geometry of diffusion model (b) MCG correction

Figure 2: In both (a) and (b), the central manifolds represent the data manifoldM, encircled by
manifolds of noisy dataMi. The concentration on the manifold of noisy data and the distance from
the clean data manifold are prescribed by Proposition 1. In (a), the backward (resp. forward) step
depicted by blue (resp. red) arrows can be considered as transitions fromMi toMi−1 (resp.Mi−1

toMi). In (b), arrows refer to the directions of conventional projection onto convex sets (POCS) step
(green arrow) and MCG step (red arrow) which can be predicted by Theorem 1.

We need to recall that the conventional manifold assumption is about the intrinsic geometry of data
points having a low dimensional nature. However, we assume more in this work: the manifold
is locally linear. Although this stronger assumption might narrow the practice of the theory, the
geometric approach may provide new insights on diffusion models. Under this assumption, the
following proposition shows how the data perturbed by noise lies in the ambient space, illustrated
pictorially in Fig. 2a.
Proposition 1 (Concentration of noisy data). Consider the distribution of noisy data pi(xi) =∫
p(xi|x)p0(x)dx, p(xi|x) ∼ N (aix, b

2
i I). Then pi(xi) is concentrated on (n− 1)-dim manifold

Mi := {y ∈ Rn : d(y, aiM) = ri := bi
√
n− l}. Rigorously, pi(Bεri(Mi)) > 1 − δ, for some

small ε, δ > 0.
Remark 1 (Geometric interpretation of the diffusion process). Considering Proposition 1, the mani-
folds of noisy data can be interpreted as interpolating manifolds between the two: the hypersphere,
where pure noise N (a∞x0, b

2
∞) is concentrated, and the clean data manifold. In this regard, the

diffusion steps are mere transitions from one manifold to another and the diffusion process is a
transport from the data manifold to the hypersphere through interpolating manifolds. See Fig. 2a.
Remark 2. We can infer from the proposition that the score functions are trained only with the data
points concentrated on the noisy data manifolds. Therefore, inaccurate inference might be caused by
application of a score function on points away from the noisy data manifold.

Proposition 2 (score function). Suppose sθ is the minimizer of the denoising score matching loss in
(3). Let Qi be the function that maps xi to x̂0 for each i,

Qi : Rd → Rd,xi 7→ x̂0 :=
1

ai
(xi + b2i sθ(xi, i)).

Then, Qi(xi) ∈ M and J2
Qi

= JQi = JTQi
: Rd → TQi(xi)M. Intuitively, Qi is locally an

orthogonal projection ontoM.

According to the proposition, the score function only concerns the normal direction of the data
manifold. In other words, the score function cannot discriminate two data points whose difference is
tangent to the manifold. In solving inverse problems, however, we desire to discriminate data points
to reconstruct the original signal, and the discrimination is achievable by measurement fidelity. In
order to achieve the original signal, the measurement plays a role in correcting the tangent component
near the data manifold. Furthermore, with regard to remark 2, diffusion model-based inverse problem
solvers should follow the tangent component. The following theorem shows how existing algorithms
and the proposed method are different in this regard.
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Figure 3: Inpainting results on FFHQ (1st, 2nd row) and ImageNet (3rd, 4th row). (a) Measurement,
(b) Ground truth, (c) IAGAN [20] for FFHQ, LaMa [43] for ImageNet, (d) DDRM [25], (e) Score-
SDE [41], (f) RePAINT [32], (g) MCG (Ours). Out of 256 × 256 image, the 1st and the 3rd row is
masked with size 128× 128 box. 92% of pixels (all RGB channels) from the images in the 2nd and
4th row are blocked.

Theorem 1 (Manifold constrained gradient). A correction by the manifold constrained gradient does
not leave the data manifold. Formally,

∂

∂xi
‖W (y −Hx̂0)‖22 = −2JTQi

HTW TW (y −Hx̂0) ∈ Tx̂0
M,

the gradient is the projection of the data fidelity term onto Tx̂0
M,

This theorem suggests that in diffusion models, the naive measurement fidelity step (without consid-
ering the data manifold) pushes the inference path out of the manifolds and might lead to inaccurate
reconstruction. (To see this pictorially, see section. D, and Fig. 7.) On the other hand, our correction
term from the manifold constraint guides the diffusion to lie on the data manifold, leading to better
reconstruction. Such geometric views are illustrated in Fig. 2b.

Remark 3. One may concern that the suboptimality of the denoising score matching loss optimization
may lead to inaccurate inference of the MCG steps. In practice, however, most of the error in denoising
score matching is concentrated on t ∼ 1[9], and in such region, the Tweedie’s inference cannot make
meaningful images. That is, the score function cannot detect the data manifold. Nonetheless, in this
regime, the magnitudes of the MCGs are small when the denoising score is inaccurate, and hence
the matters arising from suboptimality is minimal. As t → 0, the estimation becomes exact, and
subsequently leads to accurate implementation of the MCG.

5 Experiments

For all tasks, we aim to verify the superiority of our method against other diffusion model-based
approaches, and also against strong supervised learning-based baselines. Further details can be found
in Section. F.

Datasets and Implementation For inpainting, we use FFHQ 256×256 [24], and ImageNet
256×256 [12] to validate our method. We utilize pre-trained models from the open sourced reposi-
tory based on the implementation of ADM (VP-SDE) [13]. We validate the performance on 1000
held-out validation set images for both FFHQ and ImageNet dataset. For the colorization task, we
use FFHQ 256×256, and LSUN-bedroom 256×256 [51]. We use pre-trained score functions from
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FFHQ (256× 256) ImageNet (256× 256)

Box Random Extreme Wide masks Box Random Wide masks
Method FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
MCG (ours) 23.7 0.089 21.4 0.186 30.6 0.366 22.1 0.099 25.4 0.157 34.8 0.308 21.9 0.148

Score-SDE [41] 30.3 0.135 109.3 0.674 48.6 0.488 29.8 0.132 43.5 0.199 143.5 0.758 25.9 0.150
RePAINT∗ [32] 25.7 0.093 38.1 0.240 35.9 0.398 24.2 0.108 26.1 0.156 59.3 0.387 37.0 0.205
DDRM [25] 28.4 0.109 111.6 0.774 48.1 0.532 27.5 0.113 88.8 0.386 99.6 0.767 80.6 0.398
LaMa [43] 27.7 0.086 188.7 0.648 61.7 0.492 23.2 0.096 26.8 0.139 134.1 0.567 20.4 0.140
AOT-GAN [52] 29.2 0.108 97.2 0.514 69.5 0.452 28.3 0.106 35.3 0.163 119.6 0.583 29.8 0.161
ICT [49] 27.3 0.103 91.3 0.445 56.7 0.425 26.9 0.104 31.9 0.148 131.4 0.584 25.4 0.148
DSI [35] 27.9 0.096 126.4 0.601 77.5 0.463 28.3 0.102 34.5 0.155 132.9 0.549 24.3 0.154
IAGAN [20] 26.3 0.098 41.5 0.279 56.1 0.417 23.8 0.110 - - - - - -

Table 1: Quantitative evaluation (FID, LPIPS) of inpainting task on FFHQ and ImageNet. ∗: Re-
implemented with our score function. MCG, Score-SDE, RePAINT, and DDRM all share the same
score function and differ only in the inference method. Bold: Best, under: second best.

score-SDE [41] based on VE-SDE. We use 300 validation images for testing the performance with re-
spect to the LSUN-bedroom dataset. For experiments with CT, we train our model based on ncsnpp
as a VE-SDE from score-SDE [41], on the 2016 American Association of Physicists in Medicine
(AAPM) grand challenge dataset, and we process the data as in [23]. Specifically, the dataset contains
3839 training images resized to 256×256 resolution. We simulate the CT measurement process with
parallel beam geometry with evenly-spaced 180 degrees. Evaluation is performed on 421 held-out
validation images from the AAPM challenge.

Data FFHQ(256×256) LSUN(256×256)
Method SSIM ↑ LPIPS ↓ SSIM ↓ LPIPS ↓
MCG (ours) 0.951 0.146 0.959 0.160
Score-SDE [41] 0.936 0.180 0.945 0.199
DDRM [25] 0.948 0.154 0.957 0.182
cINN [2] 0.952 0.166 0.952 0.180
pix2pix [21] 0.935 0.184 0.947 0.174

Table 2: Quantitative evaluation (SSIM, LPIPS) of
colorization task. Bold: best, under: second best.

Inpainting Score-SDE [41], REPAINT [32],
DDRM [25] were chosen as baseline diffu-
sion models to compare against the proposed
method. For a fair comparison, we use the
same score function for all methods includ-
ing MCG, and only differentiate the inference
method that is used. Another class of generative
models: GAN-based inverse problem solver, IA-
GAN [20] is considered as a comparison method
for FFHQ specifically. We also include compar-
isons against supervised learning based base-
lines: LaMa [43], AOT-GAN [52], ICT [49], and DSI [35]. We use various forms of inpainting masks:
box (128 × 128 sized square region is missing2), extreme (only the box region is existent), random
(90-95% of pixels are missing), and LaMa-wide. Quantitative evaluation is performed with two
metrics - Frechet Inception Distance (FID)-1k [17], and Learned Perceptual Image Patch Similarity
(LPIPS) [54].

AAPM (256× 256)

Views 18 30
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
MCG (ours) 33.57 0.956 36.09 0.971
Score-CT [40] 29.85 0.897 31.97 0.913
SIN-4c-PRN [50] 26.96 0.850 30.23 0.917
cGAN [15] 24.38 0.823 27.45 0.927
FISTA-TV [3] 21.57 0.791 23.92 0.861

Table 3: Quantitative evaluation (PSNR, SSIM) of
CT reconstruction task. Bold: best.

Our method outperforms the diffusion model
baselines [41, 32, 25] by a large margin. More-
over, our method is also competitive with, or
even better than the best-in-class fully super-
vised methods, as can be seen in Table 1. In
Fig. 3, we depict representative results that show
the superiority of the method, where we see
in both the box-type and random dropping that
MCG performs very well on all experiments.

Colorization We choose score-SDE [41], and
DDRM [25] as diffusion-model based compar-
ison methods, and also compare against cINN [2], and pix2pix [21]. Two metrics were used for
evaluation: structural similarity index (SSIM), and LPIPS. Consistent with the findings from in-
painting, we achieve much improved performance than score-SDE, and also is favorable against
state-of-the-art (SOTA) superivsed learning based methods. In Table 2, we see that the proposed

2The location of the box is sampled uniformly within 16 pixel margin of each side.

7



Figure 4: Colorization results on FFHQ / LSUN-bedroom, Sparse view CT reconstruction results on
AAPM.

method outperforms all other methods in terms of both PSNR/LPIPS in LSUN-bedroom, and also
achieves strong performance in the colorization of FFHQ dataset.

CT reconstruction To the best of our knowledge, [40] is the only method that tackles CT recon-
struction directly with diffusion models. We compare our method against [40], which we refer
to as score-CT henceforth. We also compare with the best-in-class supervised learning methods,
cGAN [15] and SIN-4c-PRN [50]. As a compressed sensing baseline, FISTA-TV [3] was included,
along with the analytical reconstruction method, FBP. We use two standard metrics - peak-signal-
to-noise-ratio (PSNR), and SSIM for quantitative evaluation. From Table 3, we see that the newly
proposed MCG method outperforms the previous score-CT [40] by a large margin. We can observe
the superiority of MCG over other methods more clearly in Fig. 4, where MCG reconstructs the
measurement with high fidelity and detail. All other methods including the fully supervised baselines
fall behind the proposed method.

Method Wall-clock time [s]

Score-SDE [41] 38.68
RePAINT [32] 247.6
DDRM [25] 2.117
LaMa [43] 0.629
AOT-GAN [52] 0.082
ICT [49] 144.6
DSI [35] 36.64
IAGAN [20] 518.47

Ours 81.59

Table 4: Runtime for each algorithm in
Wall-clock time: Computed with a single
GTX 1080Ti GPU.

Ablation studies We perform three ablation studies: 1)
As both the MCG term and the projection term contain in-
formation about the measurement y, we observe the contri-
bution of each term to the fixed solution. To further clarify
the efficacy of the gradient step combined with Tweedie’s
denoising, we also consider the case where the gradient
of the log likelihood is computed not in the noiseless
regime, but in the noise level matching the current iteration.
Specifically, we define x′i−1 := f(xi, sθ) + g(xi)z, z ∼
N (0, I) , yi−1 ∼ p(yi−1|y0), and implement the gra-
dient step as ∇xi

‖yi−1 −Hx′i−1‖22. 2) As the perfor-
mance of diffusion models depend heavily on the number
of NFEs, we observe the trade-off of each diffusion model
when varying the NFE from 20 to 1000. Moreover, for
completeness, we measure the runtime of each algorithms
including the non-diffusion based methods in wall-clock time computed with a commodity GPU in
Table. 4. 3) Setting α = 0.0 reduces our method to [9]. We show the difference in the performance
by varying the values of α.

Method LPIPS(↓) MSE(MC)

Proj. 0.138 0
∇xi
‖yi−1 −Hx′i−1‖22 0.271 12.99

∇xi
‖yi−1 −Hx′i−1‖22 + Proj. 0.128 0

∇xi
‖y −Hx̂0‖22 0.124 10.7

∇xi‖y −Hx̂0‖22 + Proj. (Ours) 0.089 0

Table 5: LPIPS & Measurement consistency (MC)
vs. method

First, we see in Table. 5 that using only the MCG
step leads to improved performance in terms of
LPIPS, but introduces error in the measurement
consistency (measured with MSE). Combining
both the projection and MCG leads to perfect
data consistency along with further improved
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(a) LPIPS vs. NFE (b) LPIPS vs. α′

Figure 5: Ablation studies performed with box inpainting task on FFHQ 256×256 data.

reconstruction. When considering gradient steps without Tweedie’s denoising (i.e. keeping the noise
level at the ith step), the performance heavily degrades, especially when implemented without the
projection steps. Here, we see that the proposed denoising step to utilize x̂0 is indeed the key to the
superior performance.

Second, looking at Fig. 5a, we immediately see that the graph of MCG stays in the lowest (best)
LPIPS regime across all NFEs by a large margin, except for when the NFE drops below 100. Here,
DDRM [25] takes over the 1st place - allegedly due to the DDIM sampling strategy they take. The
performance of RePAINT deteriorates rapidly as we decrease NFE. Furthermore, we observe that
the LPIPS of score-SDE [41] actually increases (i.e. worsen), as we increase the number of NFEs
from a few hundred to one thousand. This suggests that the inference process that score-SDE takes
(i.e. projection only) is inherently flawed, and cannot be corrected by taking small enough steps. In
Table. 4, we list the runtime of all the methods that were used for comparison in the task of inpainting.
Note that the proposed method takes longer for compute than score-SDE albeit having the same
NFE. The gap is due to the backpropagation steps that are required for the MCG step, where the gap
can be potentially ameliorated by switching to JAX [6] implementation from the current PyTorch
implementation.

Lastly, we observe the difference in the performance as we vary the values of α. Implementation-wise,
we find that we yield superior results when normalizing the squared norm with the norm of itself
(e.g. α = α′/‖W (y −Hx̂0)‖, where α′ is some constant). In order to avoid cluttered notation, we
instead experiment with changing the values of α′ in Fig. 5b. Inspecting Fig. 5b, we see that α values
within the range [0.1, 1.0] produce satisfactory results. α values that are too low do not fully enjoy
the advantages of MCG and collapses to the projection-only method, while using too high values of
α results in exploding gradients, and the reconstruction saturates.

Properties of our method Our proposed method is fully unsupervised and is not trained on solving
a specific inverse problem. For example, our box masks and random masks have very different
forms of erasing the pixel values. Nevertheless, our method generalizes perfectly well to such
different measurement conditions, while other methods have a large performance gap between
the different mask shapes. We further note two appealing properties of our method as an inverse
problem solver: 1) the ability to generate multiple solutions given a condition, and 2) the ability to
maintain perfect measurement consistency. The former ability often lacks in supervised learning-
based methods [43, 50], and the latter is often not satisfied for some unsupervised GAN-based
solutions [10, 4].

6 Conclusion

In this work, we proposed a general framework that can greatly enhance the performance of the
diffusion model-based solvers for solving inverse problems. We showed several promising appli-
cations - inpainting, colorization, sparse view CT reconstruction, and showed that our method can
outperform the current state-of-the-art methods. We analyzed our method theoretically and show that
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MCG prevents the data generation process from falling off the manifold, thereby reducing the errors
that might accumulate at every step. Further, we showed that MCG controls the direction tangent to
the data manifold, whereas the score function controls the direction that is normal, such that the two
components complement each other.

Limitations and Broader Impact The proposed method is inherently stochastic since the diffusion
model is the main workhorse of the algorithm. When the dimension m is pushed to low values, at
times, our method fails to produce high quality reconstructions, albeit being better than the other
methods overall. For extreme cases of inpainting (e.g. Half masks) with the ImageNet model, we
often observe artifacts in our reconstruction (e.g. generating perfectly symmetric images), which we
discuss in further detail in Sec. E. We note that our method is slow to sample from, inheriting the
existing limitations of diffusion models. This would likely benefit from leveraging recent solvers
aimed at accelerating the inference speed of diffusion models. In line with the arguments of other
generative model-based inverse problem solvers, our method is a solver that relies heavily on the
underlying diffusion model, and can thus potentially create malicious content such as deepfakes.
Further, the reconstructions could intensify the social bias that is already existent in the training
dataset.
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A Proofs

First, we remind our notation and the assumption.

Notation For a scalar a, points x,y and a set A, we use the following notations: aA := {ax : x ∈
A}; d(x, A) := infy∈A ||x − y||2; Br(A) := {x : d(x, A) < r}; TxM: the tangent space to a
manifoldM at x; Jf : the jacobian matrix of a vector valued function f .

Assumption 1 (Strong manifold assumption: linear structure). SupposeM ⊂ Rn is the set of all
data points, here we call the data manifold. Then, the manifold coincides with the tangent space with
dimension l� n.

M∩BR(x0) = Tx0M∩BR(x0) and Tx0M∼= Rl.

Moreover, the data distribution p0 is the uniform distribution on the data manifoldM.

We state our proofs below.

Proposition 1 (Concentration of noisy data). Consider the distribution of noisy data pi(xi) =∫
p(xi|x)p0(x)dx, p(xi|x) ∼ N (aix, b

2
i I). Then pi(xi) is concentrated on (n− 1)-dim manifold

Mi := {y ∈ Rn : d(y, aiM) = ri := bi
√
n− l}. Rigorously, pi(Bεri(Mi)) > 1 − δ, for some

small ε, δ > 0.

Proof. Suppose that the data manifold is an l-dimensional linear subspace. By rotation and translation,
we safely assume thatM = {x ∈ Rn : xl+1 = xl+2 = · · · = xn = 0}. Then, we can simply write

d(x,M) =
√
x2
l+1 + · · ·+ x2

n, andMi = {x ∈ Rn : x2
l+1 + · · · + x2

n = r2
i }. For a given point

x′ = (x′1, x
′
2, . . . ) ∈M, we consider p(x|x′) ∼ N (aix

′, b2i I) and obtain a concentration inequality
independent to the choice of x′. We need the standard Laurent-Massart bound for a chi-square
variable [31]. When X is a chi-square distribution with k degrees of freedom,

P [X − k ≥ 2
√
kt+ 2t] ≤ e−t,

P [X − k ≤ −2
√
kt] ≤ e−t.

As x2
l+1

b2i
+ · · · + x2

n

b2i
is a chi-square distribution with n − l degrees of freedom, by substituting

t = (n− l)ε′ in the above bound,

P

[
−2(n− l)

√
ε′ ≤

x2
l+1

b2i
+ · · ·+ x2

n

b2i
− (n− l) ≤ 2(n− l)(

√
ε′ + ε′)

]
= P

[√
x2
l+1 + · · ·+ x2

n ∈ ( ri

√
1− 2

√
ε′, ri

√
1 + 2

√
ε′ + 2ε′ )

]
≥ 1− 2e−(n−l)ε′ .

Note that the above inequality does not depend on x1, . . . xl, thus the choice of x′ ∈M. As a result,
by setting ε = min{1−

√
1− 2

√
ε′,
√

1 + 2
√
ε′ + 2ε′ − 1} and δ = 2e−(n−l)ε′ ,

p(x ∈ Bεri(Mi)|x′) > 1− δ,

thus

pi(x ∈ Bεri(Mi)) =

∫
p(x ∈ Bεri(Mi)|x′)p(x′)dx′ > 1− δ.

Proposition 2 (score function). Suppose sθ is the minimizer of the denoising score matching loss in
(3). Let Qi be the function that maps xi to x̂0 for each i,

Qi : Rd → Rd,xi 7→ x̂0 :=
1

ai
(xi + b2i sθ(xi, i)).

Then, Qi(xi) ∈ M and J2
Qi

= JQi
= JTQi

: Rd → TQi(xi)M. Intuitively, Qi is locally an
orthogonal projection ontoM.
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Proof. To minimize (3), or equivalently,∫
||sθ(xt, t)−∇xt log p(xt|x0)||22p(xt|x)p(x)dxdxtdt,

By differentiating the objective with respect to sθ(xt, t), we have∫ (
sθ(xt, t)−

atx− xt
b2t

)
p(xt|x)p(x)dx = 0∫

sθ(xt, t)p(xt)p(x|xt)dx =

∫
atx− xt

b2t
p(xt)p(x|xt)dx

sθ(xt, t)

∫
p(x|xt)dx =

∫
atx

b2t
p(x|xt)dx−

xt
b2t

∫
p(x|xt)dx

∴ sθ(xt, t) =
1

b2t
(−xt + at

∫
xp(x|xt)dx)∀xt, t,

where we used p(xt|x)p(x) = p(x,xt) = p(xt)p(x|xt), p(xt) > 0, and
∫
p(x|xt)dx = 1 in each

line. Here, Qi(xi) =
∫
xp(x|xi)dx is the weighted average vector of points on the data manifold as

p(x|xi) is supported on the data manifold. Combining it with the assumption that the manifold is
linear, Qi(xi) ∈M.

Considering the symmetry of p(x|xi) about xi, p(x|xi) is a radial function on M, centering
around the nearest point to xi onM. Hence, Qi(xi) shall be the nearest point to xi of all points
onM. Therefore, JQi

is the orthogonal projection onto TQi(xi)M. Stating more rigorously, let
u = ut + un ∈ Rn for ut ∈ TQi(xi)M,un ⊥ TQi(xi)M. Then, for a scalar s, Qi(xi + su) =
Qi(xi)+sut, as only tangent component to the manifold change the nearest point. By differentiating
with respect to s, we obtain JQi

u = ut, thus J2
Qi

= JQi
. For another vector v = vt + vn with

vt ∈ TQi(xi)M,vn ⊥ TQi(xi)M,

vTJQi
u = (vt + vn)Tut

= vTt ut

= (ut + un)Tvt

= uTJQi
v,

where we applied vTnut = 0 = uTnvt. Therefore, JQi
is symmetric, i.e. JTQi

= JQi
, which

concludes this proof.

Theorem 1 (Manifold constrained gradient). A correction by the manifold constrained gradient does
not leave the data manifold. Formally,

∂

∂xi
‖W (y −Hx̂0)‖22 = −2JTQi

HTW TW (y −Hx̂0) ∈ Tx̂0
M,

the gradient is the projection of the data fidelity term onto Tx̂0
M,

Proof.

∂

∂xi
‖W (y −Hx̂0)‖22 = −2JTWHQi

W (y −Hx̂0)

= −2JTQi
HTW TW (y −Hx̂0)

= JQi
d ∈ TQi(xi)M

where d = −2HTW TW (y −Hx̂0). The first and second equality is given by the chain rule and
the last line is by Proposition 2.

In Fig 6, we illustrate how the proposed algorithm benefits from mixing the MCG step with the
conventional POCS step. Pushing the points to the tangent directions, we expect less deviation from
the manifold which is attributed to POCS.

16



Figure 6: The advantage of mixing the MCG and the POCS steps over the conventional POCS step.
Each curve represents a manifold of (noisy) data. Arrows suggest the POCS steps (green arrows) and
steps mixing the MCG and the POCS (red arrows). Due to the path along the manifolds, proposed
mixing step alleviates reverse diffusion step leaving the manifolds (black arrows).

B Discrete forms of SDE

Here, we review the different types of SDEs and sampling algorithms that we use throughout the paper
for completeness. We assume that the time horizon [0, 1] is linearly split up into N discretization
segments, such that all intervals have the length 1/N , if not specified otherwise.

B.1 Forward diffusion

Due to the linearity of the drift and diffusion functions, we can analytically sample from p(xi|x0)
via reparameterization trick:

xi = aix0 + biz, z ∼ N (0, I). (16)

In VP-SDE [18], one defines a linearly increasing noise schedule β1, β2, . . . , βN ∈ (0, 1). Further,
we define αi = 1− βi, and ᾱi =

∏i
j=1 αj . Then, the forward diffusion process can be implemented

as

xi =
√
ᾱix0 +

√
1− ᾱiz, z ∼ N (0, I). (17)

In VE-SDE [41], one defines a geometrically increasing noise schedule σi = σ0

(
σN

σ0

) i−1
N−1

. Since
the drift function is zero, the forward diffusion simply becomes Brownian motion. Concretely,

xi = x0 + σiz, z ∼ N (0, I). (18)

B.2 Reverse diffusion

First, for the case of VP-SDE, the reverse diffusion step is implemented by

xi−1 =
1
√
αi

(
xi −

1− αi√
1− ᾱi

zθ(xi, i)

)
+
√
σ̃iz, z ∼ N (0, I), (19)

where zθ(xi, i) is trained with the epsilon-matching scheme as in [18], and σ̃i is set to a learn-
able parameter as in [13]. Note that eq. (19) was written in terms of zθ(xi, i) and not in terms
of the score function, sθ(xi, i). One can re-write the expression using the relation zθ(xi, i) =
−
√

1− ᾱisθ(xi, i), as

xi−1 =
1
√
αi

(xi + (1− αi)sθ(xi, i)) +
√
σiz, z ∼ N (0, I). (20)

Next, for the VE-SDE, the reverse diffusion step using the Euler-Maruyama solver [38] is given as

xi−1 = xi + (σ2
i − σ2

i−1)sθ(xi, i) +
√
σ2
i − σ2

i−1z, z ∼ N (0, I). (21)

Summary is presented in Table 6.
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Type ai bi f(xi, sθ) g(i)

VP-SDE
√
ᾱi
√

1− ᾱi 1√
ᾱi

(xi + (1− αi)sθ(xi, i))
√
σ̃i

VE-SDE 1 σi xi + (σ2
i − σ2

i−1)sθ(xi, i)
√
σ2
i − σ2

i−1

Table 6: Choice of ai, bi,f , g for each SDE realization.

Algorithm 1 Inpainting (VP, AS)

Require: y,P , {αi}Ni=1, {σ̃i}Ni=1, sθ, α
1: xN ∼ N (0, I) . Initial sampling
2: for i = N to 1 do . Reverse diffusion
3: s← sθ(xi, i) . Cache score function output
4: x′i−1 ← 1√

αi
(xi + (1− αi)s)

5: z ∼ N (0, I)
6: xi−1 ← x′i−1 + σ̃iz . Unconditional update
7: z ∼ N (0, I)
8: x̂0 ← 1√

ᾱi
(xi + (1− ᾱi)s) . x̂0 prediction

9: yi ←
√
ᾱiy +

√
1− ᾱiz

10: x′′i−1 ← x′i−1 − α ∂
∂xi
‖y − P x̂0‖22 . MCG

11: z ∼ N (0, I)
12: yi ←

√
ᾱiy +

√
1− ᾱiz

13: xi−1 ← (I − P TP )x′′i−1 + P Tyi . Data consistency
14: end for
15: return x0

C Algorithms

Inpainting The forward model for inpainting is given as

y = Px+ ε, P ∈ Rm×n, (22)

where P ∈ {0, 1}m×n is the matrix consisting of the columns with standard coordinate vectors
indicating the indices of measurement. For the steps in (14), (15), we choose the following

W = I, A = I − P TP , bi = P Tyi, yi ∼ q(yi|y) := N (yi|aiy, b2i I). (23)

Specifically,A takes the orthogonal complement of x′i−1, meaning that the measurement subspace
is corrected by yi, while the orthogonal components are updated from x′i−1. Note that we use yi
sampled from y to match the noise level of the current estimate.

We provide the algorithm used for inpainting in Algorithm. 1. The sampler is based on basic ancestral
sampling (AS) of [18], and the default configuration requires N = 1000, α = 1.0/‖y − P x̂0‖ for
sampling.

Colorization The forward model for colorization is specified as

y = Cx+ ε := PMx+ ε, P ∈ Rm×n, M ∈ Rn×n, (24)

where P is the matrix that was used in inpainting, andM is an orthogonal matrix that couples the
RGB colormaps3. MT is a matrix that de-couples the channels back to the original space. In other
words, one can view colorization as performing imputation in some spectral space. Subsequently, for
our colorization method we choose

W = CT , A = I −CTC, bi = CTyi, yi ∼ q(yi|y). (25)

Again, our forward measurement matrix is orthogonal, and we chooseA such that we only affect the
orthogonal complement of the measurement subspace.

3The matrix M is adopted from the colorization matrix of [41].
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Figure 7: Comparison of the evolution (i.e. generative path) between score-SDE [41], and our method.
First rows in (a),(b): Evolution of xi, second rows in (a),(b): Evolution of x̂0.

The sampler for colorization is based on the predictor-corrector (PC) sampler of [41] (VE-SDE), and
we choose to apply MCG after every iteration of both predictor, and corrector steps. N = 2000, α =
0.1/‖CT (y −Cx̂0)‖ are chosen as hyper-parameters.

CT Reconstruction For the case of CT reconstruction, the forward model reads

y = Rx+ ε, R ∈ Rm×n, (26)

whereR is the discretized Radon transfrom [7] that measures the projection images from different
angles. Note that for CT applications,RT corresponds to performing backprojection (BP), andR†

corresponds to performing filtered backprojection (FBP). We choose

W = R†, A = I −RT (RRT )†R, bi = RT (RRT )†yi, yi ∼ q(yi|y), (27)

where the choice of A reflects that the Radon transform is not orthogonal, and we need the term
(RRT )† as a term analogous to the filtering step. Indeed, this form of update is known as the
algebraic reconstruction technique (ART), a classic technique in the context of CT [16]. We note
that this choice is different from what was proposed in [40], where the authors repeatedly apply
projection/FBP by explicitly replacing the sinogram in the measured locations. From our experiments,
we find that repeated application of FBP is highly numerically unstable, often leading to overflow.
This is especially the case when we have limited resources for training data (we use 4k, whereas [40]
uses 50k), as we further show in Section 5.

Algorithm for SV-CT reconstruction uses PC sampler (VE-SDE), where we use MCG step after one
sweep of corrector-predictor update. We note that this is a design choice, and one may as well use
the MCG update step after both the predictor and corrector steps, as was proposed in [41]. We set
N = 2000, α = 0.1/‖R†(y −Rx̂0)‖.

D Generative process of the proposed method

In Fig. 7, we depict the comparison of the generative process between the two methods: score-
SDE [41], which relies on alternating projections; and our method, which utilizes MCG as correcting
steps. In Fig. 7 (a), we can clearly see the unnatural boundary between the masked and the unmasked
region forming, and evolving as t→ 0, without getting corrected (Visible more clearly in x̂0). On
the other hand, thanks to the additional gradient step that corrects the errors in the boundary, we see a
much more natural evolution of the signal as t→ 0 in Fig. 7 (b).
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E Limitations

Figure 8: Limitations of the proposed method. (a)
Measurement, (b) reconstruction with the proposed
method, (c) ground truth.

There exists a limitation specifically for the Im-
ageNet dataset when using the proposed algo-
rithm for inpainting. Specifically, as shown in
Fig. 8, for the case of half-mask (i.e. the left or
right half of the image is zeroed-out), we often
see the reconstructions are generated showing
symmetries that are unrealistic. Note that this
kind of effect is not observed in our FFHQ ex-
periments. Hence, we conjecture that this phe-
nomenon arises from the imperfectness of the
learned score function sθ. Namely, due to the
ImageNet dataset being much more diverse and
therefore widely known to be a much harder
dataset to learn, the subobtimality of the score
function may be greater than the FFHQ score
function. This could possibly lead to such defi-
ciencies.

F Experimental Details

F.1 Implementation details

Training of the score function For inpainting experiments, we take the pre-trained score functions
that are available online (FFHQ4, imagenet5). For CT reconstruction experiment, we train a ncsnpp
model with default configurations as guided in [41] with the VE-SDE framework. The model was
trained for 200 epochs with the full training dataset, with a single RTX 3090 GPU. Training took
about one week wall-clock time.

Required compute time for inference All our sampling steps detailed in Algorithm C was per-
formed with a single RTX 3090 GPU. The inpainting algorithm based on ADM [13] takes about
90 seconds (1000 NFE) to reconstruct a single image of size 256×256. Our colorization and CT
reconstruction algorithm based on score-SDE [41] takes about 600 seconds (4000 NFE) to infer a
single 256×256 image.

Code Availability We will open-source our code used in our experiments upon publication to boost
reproducibility.

F.2 Comparison methods

F.2.1 Inpainting, Colorization

Score-SDE Score-SDE [41] demonstrated that unconditional diffusion models can be adopted to
various inverse problems, such as inpainting and colorization. Our method without the MCG step is
identical to score-SDE, and hence we use the same score function, parameters, and sampler as used
in the proposed method for reconstruction.

RePAINT RePAINT [32] proposes to iterate between denoising-noising steps multiple times in
order to better incorporate inter-dependency between the known and the unknown regions in the case
of image inpainting. We use the same score function and sampler for RePAINT as in the proposed
method. Following the default configurations in [32], we take N = 200 (corresponding to T in [32]),
and U = 10, where U denotes the count of iterated denoising-noising steps used within a single
update index i.

4https://github.com/jychoi118/ilvr_adm
5https://github.com/openai/guided-diffusion
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DDRM DDRM [25] demonstrates that linear inverse problems can be solved via diffusion models
by decomposing the generative process with singular value decomposition (SVD), and performing
reverse diffusion sampling in the spectral space. The same score function adopted for the proposed
method is used. Using the notations from [25], we choose σy = 0, as we are aiming to solve noiseless
inverse problem, and η = 0.85, ηb = 1. The number of NFE is set to 20 with the DDRM sampling
steps.

LaMa LaMA contains fast Fourier convolution in generator architecture for reconstructing images.
We trained the model from scratch using adversarial loss with r1 regularization term with its coefficient
10 and gradient penalty coefficient 0.001. Adam optimizer is used with the fixed learning rate of
0.001 and 0.0001 for discriminator network. For FFHQ and Imagenet dataset, 500k iterations of
trainings were done with batch size of 8.

AOT-GAN AOT-GAN consists of a deep image generator with a AOT block which consists of
multiple length of residual blocks in parallel. The discriminator is the same architecture with
PatchGAN from [55]. We trained the model from the scratch with 0.0001 learning rate using Adam
optimizer β1 = 0 and β2 = 0.9 for both FFHQ and Imagent dataset. 500k iterations of trainings were
done with batch size of 8. Also, for style loss and the perceptual loss, VGG19 [39] pretrained on
ImageNet [12] was used.

ICT Image completion transformer (ICT) consists of two modules - a transformer model that
follows the tokenization procedure to process information in the lower dimensional space, and
another guided upsampling module to retrieve the data dimensionality. The encoded features are
sampled from a probability distribution via Gibbs sampling, such that one can capture multimodal
reconstructions from the same measurement. For both the FFHQ and Imagenet dataset, we used
pretrained models provided by the authors.

IAGAN Image adaptive GAN (IAGAN) uses a pre-trained generator and adapts it at test time
for the given forward model. Specifically, following compressed sensing using generative model
(CSGM) [4], one initializes the latent vector z such that z∗ = arg minz ‖y − AGθ(z)‖. Then,
the latent code and the neural network parameters are jointly optimized through some iterations of
z∗∗, θ∗ = arg minz,θ ‖y − AGθ(z)‖. The final result is achieved by the forward pass through the
generator, after which follows the projection into the measurement subspace. For tuning the generator,
we follow the default configurations from the official codebase. Since the codebase uses a GAN that
generates 1024×1024 images, we downscale the result into 256×256 image as a final post-processing
step.

DSI DSI is structured with the combination of VQ-VAE [46], structure generator and texture
generator. The architectures were trained separately, with Adam optimizer. When inference, only
structure and texture generator was used. We trained the model from scratch. During optimization,
the structure generator used linear warm-up schedular and square-root decay schedule used in [36].
We used Adam optimizer on training all models with learning rate of 0.0001 and β1 = 0.5 using
exponetial moving average (EMA). Training was done for 500k iteration for both FFHQ and Imagenet
dataset.

cINN cINN is an invertible neural network which can take in additional conditions as input,
and in our case grayscale images. We train the model using default configurations as advised in
https://github.com/VLL-HD/conditional_INNs without modifications. FFHQ model
was trained with the learning rate of 0.0001 for 100 epohcs using the Adam optimizer. LSUN
bedroom model was trained with the learning rate of 0.0001 for 30 epochs.

pix2pix Pix2pix is a variant of conditional GAN (cGAN) that takes in as input, the corrupted image.
The model is trained in a supervised fashion, with the loss consisting of the reconstruction loss, and
the adversarial loss. As the discriminator architecture, we adopt patchGAN [21], and utilize the
LSGAN [33] loss, weighting the adversarial loss by the value of 0.1. Similar to cINN, FFHQ model
was trained with the learning rate of 0.0001 for 100 epochs using Adam optimizer. LSUN bedroom
model was trained with the same configuration for 30 epochs.
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F.3 CT reconstruction

Score-CT We use the hyper-parameters as advised in [40] and set η = 0.246, λ = 0.841. The
measurement consistency step is imposed after every corrector-predictor sweep as in the proposed
method.

SIN-4c-PRN Directly using the official implementation6 [50], we train the sinogram inpainting
network (SIN) with the AAPM dataset for 200 epochs with the batch size of 8, and learning rate of
0.0001. We train two models separately for different number of views - 18, and 30.

cGAN We adopt the implementation of cGAN [15] from SIN-4c-PRN repository 6. We train the
two separate networks for 18 view, and 30 view projection, with the same configuration - 200 epochs,
learning rate of 0.0001, and batch size of 8.

FISTA-TV We perform FISTA-TV [3] reconstruction using TomoBAR [45], together with the
CCPi regularization toolkit [27]. Leveraging the default setting, we use the least-squares (LS) data
model, and run the FISTA iteration for 300 iterations per image, with the total variation regularization
strength set to 0.001.

G Further Experimental Results

We provide extensive set of comparison study for each task in Fig. 9, 11, and 12. Furthermore,
in order to illustrate the ability of our method to generate multimodal reconstructions given a
measurement, we present further experimental results of inpainting and colorization in the following
figures: Fig. 13, 14, 15, and 16

6https://github.com/anonyr7/Sinogram-Inpainting
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Figure 9: Inpainting results on FFHQ 256×256 data. (a) Measurement, (b) ground truth, (c)
IAGAN [20], (d) DSI [35], (e) LaMa [43], (f) DDRM [25], (g) score-SDE [41], (h) RePAINT [32],
(i) MCG (ours).

Figure 10: Inpainting results on FFHQ 256×256 data with the LaMa [43] wide mask. (a) Mea-
surement, (b) ground truth, (c) DSI [35], (d) LaMa [43], (e) DDRM [25], (f) score-SDE [41], (g)
RePAINT [32], (h) MCG (ours).
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Figure 11: Inpainting results on ImageNet 256×256 data.(a) Measurement, (b) ground truth, (c)
DSI [35], (d) LaMa [43], (e) DDRM [25], (f) score-SDE [41], (g) RePAINT [32], (h) MCG (ours).
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Figure 12: Sparse view CT reconstruction results on AAPM 256×256 data.(a) FBP, (b) FISTA-TV [3],
(c) cGAN [15], (d) SIN-4c-PRN [50], (e) Score-CT [41], (f) MCG (Ours), (g) ground truth (GT).
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Figure 13: Inpainting results on FFHQ 256×256 data with MCG. (a) Inpainting of 128×128 box
region. We show three stochastic samples generated with the proposed method. (b) 92 % pixel
missing imputation.
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Figure 14: Inpainting results on LSUN-bedroom 256×256 data with MCG. (a) Inpainting of 128×128
box region. We show three stochastic samples generated with the proposed method. (b) 92 % pixel
missing imputation.
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Figure 15: Inpainting results on ImageNet 256×256 data with MCG. (a) Inpainting of 128×128
box region. We show three stochastic samples generated with the proposed method. (b) 92 % pixel
missing imputation.

28



Figure 16: Colorization results on (left) FFHQ 256×256 dataset, and (right) LSUN-bedroom
256×256 dataset. We show 3 different reconstructions for each measurement that are sampled
with the proposed method.
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