Appendix

Table of Contents

A Policy-Induced Joint Measure 14
B Properties of Modification 15
C Proof of Theorem 1 17
C. 1 Proof of item 1 for unconstrained Markov game 17
C. 2 Proof of item 2 for constrained Markov game 18
D Proof of Theorem 2 19
E The Range of the Optimal Dual Variable 20
F Proof of Theorem 3 20
G Proof of Corollary 5.1 23

A Policy-Induced Joint Measure

We introduce policy-induced joint measure as a useful tool to help prove Theorems 1 and 2 . Specifically, for any h, h^{\prime}, we define $p_{\pi}\left(s_{1: h}, a_{1: h^{\prime}}\right)$ as the joint distribution of $\left(s_{1: h}, a_{1: h^{\prime}}\right)$ induced by policy π. Based on the underlying Markov decision process, it can be easily verified that p_{π} takes the following forms.

$$
\begin{align*}
& p_{\pi}\left(s_{1}\right)=\rho\left(s_{1}\right), \tag{16}\\
& p_{\pi}\left(s_{1: h}, a_{1: h-1}\right)=p_{\pi}\left(s_{1: h-1}, a_{1: h-1}\right) \mathcal{P}\left(s_{h} \mid s_{h-1}, a_{h-1}\right), \tag{17}\\
& p_{\pi}\left(s_{1: h}, a_{1: h}\right)=\rho\left(s_{1}\right) \pi_{1}\left(a_{1} \mid s_{1}\right) \prod_{h^{\prime}=2}^{h} \mathcal{P}\left(s_{h^{\prime}} \mid s_{h^{\prime}-1}, a_{h^{\prime}-1}\right) \pi_{h^{\prime}}\left(a_{h^{\prime}} \mid s_{1: h^{\prime}}, a_{1: h^{\prime}-1}\right) . \tag{18}
\end{align*}
$$

Eqs. (17) and (18) further imply that

$$
\begin{equation*}
p_{\pi}\left(s_{1: h}, a_{1: h}\right)=p_{\pi}\left(s_{1: h}, a_{1: h-1}\right) \pi\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right) \tag{19}
\end{equation*}
$$

Conversely, given a proper joint probability measure p, we can infer its corresponding inducing policy π as follows.
Lemma A.1. Consider any joint probability measure p that satisfies eqs. 16) and 17) (replace all p_{π} with p). Then, the following policy π induces p.

$$
\pi_{h}\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right)=\left\{\begin{array}{l}
\frac{p\left(s_{1: h}, a_{1: h}\right)}{p\left(s_{1: h}, a_{1: h-1}\right)}, \text { if } p\left(s_{1: h}, a_{1: h-1}\right)>0 \tag{20}\\
\text { arbitrary distribution, if } p\left(s_{1: h}, a_{1: h-1}\right)=0
\end{array}\right.
$$

Proof. It suffices to prove that $p_{\pi}\left(s_{1: h}, a_{1: h}\right)=p\left(s_{1: h}, a_{1: h}\right)$ for any $s_{1: h}, a_{1: h}$, i.e., p is exactly the joint measure p_{π} induced by π. We consider the following two cases.

Case 1: $p\left(s_{1: h}, a_{1: h-1}\right)>0$. In this case, we must have that $p\left(s_{1: h^{\prime}}, a_{1: h^{\prime}-1}\right)>0$ for any $1 \leq h^{\prime} \leq h$. Therefore, by eq. 200 we have $\pi_{h^{\prime}}\left(a_{h^{\prime}} \mid s_{1: h^{\prime}}, a_{1: h^{\prime}-1}\right)=\frac{p\left(s_{1: h^{\prime}}, a_{1: h^{\prime}}\right)}{p\left(s_{1: h^{\prime}}, a_{1: h^{\prime}-1}\right)}$ for any $1 \leq h^{\prime} \leq h$. Substitute this policy π into eq. 18) and note that $\rho\left(s_{1}\right)=p\left(s_{1}\right)$, we obtain that

$$
p_{\pi}\left(s_{1: h}, a_{1: h}\right)=p\left(s_{1}\right) \frac{p\left(s_{1}, a_{1}\right)}{p\left(s_{1}\right)} \prod_{h^{\prime}=2}^{h} \mathcal{P}\left(s_{h^{\prime}} \mid s_{h^{\prime}-1}, a_{h^{\prime}-1}\right) \frac{p\left(s_{1: h^{\prime}}, a_{1: h^{\prime}}\right)}{p\left(s_{1: h^{\prime}}, a_{1: h^{\prime}-1}\right)}
$$

$$
\stackrel{(i)}{=} p\left(s_{1}, a_{1}\right) \prod_{h^{\prime}=2}^{h} \frac{p\left(s_{1: h^{\prime}}, a_{1: h^{\prime}}\right)}{p\left(s_{1: h^{\prime}-1}, a_{1: h^{\prime}-1}\right)}=p\left(s_{1: h}, a_{1: h}\right)
$$

where (i) follows from eq. 17) (replace all p_{π} with p).
Case 2: $p\left(s_{1: h}, a_{1: h-1}\right)=0$. In this case, we have that $p\left(s_{1: h}, a_{1: h}\right)=0$. Hence, it suffices to prove that $p_{\pi}\left(s_{1: h}, a_{1: h}\right)=0$ as well. We further consider the following two subcases.
(Case 2.1) If $p\left(s_{1}\right)=\rho\left(s_{1}\right)=0$, then $p_{\pi}\left(s_{1: h}, a_{1: h}\right)=0$ by substituting $\rho\left(s_{1}\right)=0$ into eq. 18 .
(Case 2.2) If $p\left(s_{1}\right)=\rho\left(s_{1}\right)>0$ and because Case 2 assumes that $p\left(s_{1: h}, a_{1: h-1}\right)=0$, then there must exist $1 \leq h^{\prime} \leq h-1$ such that $p\left(s_{1: h^{\prime}}, a_{1: h^{\prime}-1}\right)>0$ and $p\left(s_{1: h^{\prime}+1}, a_{1: h^{\prime}}\right)=0$. On the other hand, note that eq. 18 implies that $p_{\pi}\left(s_{1: h}, a_{1: h}\right)$ contains the following multiplicative factor

$$
\begin{align*}
& \pi_{h^{\prime}}\left(a_{h^{\prime}} \mid s_{1: h^{\prime}}, a_{1: h^{\prime}-1}\right) \mathcal{P}\left(s_{h^{\prime}+1} \mid s_{h^{\prime}}, a_{h^{\prime}}\right) \\
& =\mathcal{P}\left(s_{h^{\prime}+1} \mid s_{h^{\prime}}, a_{h^{\prime}}\right) \frac{p\left(s_{1: h^{\prime}}, a_{1: h^{\prime}}\right)}{p\left(s_{1: h^{\prime}}, a_{1: h^{\prime}-1}\right)} \stackrel{(i)}{=} \frac{p\left(s_{1: h^{\prime}+1}, a_{1: h^{\prime}}\right)}{p\left(s_{1: h^{\prime}}, a_{1: h^{\prime}-1}\right)}=0 \tag{21}
\end{align*}
$$

where (i) uses eq. 17. Thus we conclude that $p_{\pi}\left(s_{1: h}, a_{1: h}\right)=0$.

With the policy-induced joint measure p_{π}, we can rewrite the value function $V_{j}^{(m)}(\pi):=$ $\mathbb{E}_{\pi}\left[\sum_{h=1}^{H} r_{j, h}^{(m)} \mid s_{1} \sim \rho\right]$ and the Lagrangian function eq. 6, as follows.

$$
\begin{gather*}
V_{j}^{(m)}(\pi)=\widetilde{V}_{j}^{(m)}\left(p_{\pi}\right):=\sum_{s_{1: H}, a_{1: H}} p_{\pi}\left(s_{1: H}, a_{1: H}\right) \sum_{h=1}^{H} r_{j, h}^{(m)}\left(s_{h}, a_{h}\right), \tag{22}\\
L^{(m)}\left(\pi, \lambda^{(m)}\right)=\widetilde{L}^{(m)}\left(p_{\pi}, \lambda^{(m)}\right):=\widetilde{V}_{0}^{(m)}\left(p_{\pi}\right)+\sum_{j=1}^{d_{m}} \lambda_{j}\left(\widetilde{V}_{j}^{(m)}\left(p_{\pi}\right)-c_{j}^{(m)}\right) . \tag{23}
\end{gather*}
$$

Thus, both the value function $V_{j}^{(m)}(\pi)$ and the Lagrangian function $L^{(m)}\left(\pi, \lambda^{(m)}\right)$ can be rewritten as linear functions of p_{π}. Such a linear form helps simplify the problem and prove the key Theorems 1 and 2

B Properties of Modification

In this section, we present some useful properties of the modification operator. Recall that for any policy π and any modification operator $\phi^{(m)}$, the modified policy $\phi_{h}^{(m)} \circ \pi_{h}$ at time step h is defined as follows: we first generate joint action $a_{h}=\left[a_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \sim \pi_{h}\left(\cdot \mid s_{1: h}, a_{1: h-1}\right)$. Then, $\phi_{h}^{(m)}$ randomly modifies $a_{h}^{(m)}$ to $\widetilde{a}_{h}^{(m)} \sim \phi_{h}^{(m)}\left(\cdot \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)$. To summarize, the modified policy $\phi_{h}^{(m)} \circ \pi_{h}$ takes the following form.

$$
\begin{align*}
\left(\phi_{h}^{(m)} \circ \pi_{h}\right) & \left(\left[\widetilde{a}_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \mid s_{1: h}, a_{1: h-1}\right) \\
& =\sum_{a_{h}^{(m)}} \phi_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right) \pi_{h}\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right) \tag{24}
\end{align*}
$$

Next, let $p_{\phi^{(m)} \circ \pi}$ and $p_{\widetilde{\phi}^{(m)} \circ \pi}$ be the joint measures induced by the modified policies $\phi^{(m)} \circ \pi$ and $\widetilde{\phi}^{(m)} \circ \pi$, respectively, for any $\phi^{(m)}, \widetilde{\phi}^{(m)}$. In the proof of Theorems 1 and 2 , we introduce the following linear combination of these two joint measures.

$$
\begin{equation*}
p_{\lambda}:=\lambda p_{\phi^{(m)} \circ \pi}+(1-\lambda) p_{\widetilde{\phi}^{(m)} \circ \pi}, \lambda \in \mathbb{R} . \tag{25}
\end{equation*}
$$

We note that $\sum_{s_{1: h}, a_{1: h}} p_{\lambda}\left(s_{1: h}, a_{1: h}\right)=1$ for any $\lambda \in \mathbb{R}$, so p_{λ} is also a proper probability measure if λ is selected such that $p_{\lambda}\left(s_{1: h}, a_{1: h}\right) \geq 0$ for any $s_{1: h}, a_{1: h}$. In this case, since the joint measures $p_{\phi^{(m)} \circ \pi}$ and $p_{\widetilde{\phi}(m) \circ \pi}$ satisfy eqs. (16) and (17) by definition, it is easy to verify that p_{λ} also satisfies eqs. (16) and (17) and hence is a proper joint measure. Therefore, by Lemma A.1 we can find its inducing policy π_{λ} using eq. 20. Next, we show that such an inducing policy π_{λ} can actually be viewed as the policy π modified by a certain stochastic modification.

Lemma B.1. Regarding the p_{λ} defined in eq. (25), if $\lambda \in \mathbb{R}$ is selected such that the following two conditions hold for any $s_{1: h}, a_{1: h-1}, a_{h}^{(m)}, \widetilde{a}_{h}^{(m)}$:

$$
\begin{align*}
& p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right) \geq 0 \tag{26}\\
& \lambda p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right) \phi_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right) \\
& \quad+(1-\lambda) \widetilde{\phi}_{\boldsymbol{\phi}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right) \widetilde{\phi}_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right) \geq 0 \tag{27}
\end{align*}
$$

then its inducing policy (defined by eq. (20) can be written as $\pi_{\lambda}=\phi_{\lambda}^{(m)} \circ \pi$, where the stochastic modification $\phi_{\lambda}^{(m)}$ takes the following form.

$$
\begin{align*}
& \phi_{\lambda, h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)= \\
& \begin{cases}\frac{1}{p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)}\left[\lambda p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right) \phi_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)\right. \\
\left.\quad+(1-\lambda) p_{\widetilde{\phi}(m) \circ \pi}\left(s_{1: h}, a_{1: h-1}\right) \widetilde{\phi}_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)\right], & \text { if } p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)>0 \\
& \text { if } p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)=0\end{cases} \tag{28}
\end{align*}
$$

Proof. We first show that $\left.\phi_{\lambda, h}^{(m)}\left(\cdot \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)\right)$ is a proper stochastic modification. By eq. 28 , we only need to consider the case $p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)>0$. In this case, based on the condition in eq. 27, we conclude that $\phi_{\lambda, h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right) \geq 0$. In addition,

$$
\begin{aligned}
& \sum_{\widetilde{a}_{h}^{(m)} \in \mathcal{A}^{(m)}} \phi_{\lambda, h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right) \\
= & \frac{1}{p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)}\left(\lambda p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right) \sum_{\widetilde{a}_{h}^{(m)} \in \mathcal{A}^{(m)}} \phi_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)\right. \\
& \left.+(1-\lambda) p_{\widetilde{\phi}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right) \sum_{\widetilde{a}_{h}^{(m)} \in \mathcal{A}^{(m)}} \widetilde{\phi}_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)\right) \\
= & \frac{1}{p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)}\left(\lambda p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right)+(1-\lambda){\widetilde{\sigma^{(m)} \circ \pi}}\left(s_{1: h}, a_{1: h-1}\right)\right)=1 .
\end{aligned}
$$

Therefore, ϕ_{λ} is a proper stochastic modification.
Next, we prove that the policy that induces p_{λ} takes the form $\pi_{\lambda}=\phi_{\lambda}^{(m)} \circ \pi$. We consider two cases.
Case 1: $p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)>0$. In this case, we obtain that

$$
\begin{aligned}
& \pi_{\lambda, h}\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right) \\
& \stackrel{(i)}{=} \frac{1}{p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)}\left(\lambda p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right)+(1-\lambda) p_{\boldsymbol{\phi}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right)\right) \\
& \stackrel{(i i)}{=} \frac{1}{p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)}\left(\lambda p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right)\left(\phi_{h}^{(m)} \circ \pi_{h}\right)\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right)\right. \\
& \left.\quad+(1-\lambda) p_{\widetilde{\phi}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right)\left(\widetilde{\phi}_{h}^{(m)} \circ \pi_{h}\right)\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right)\right) \\
& \stackrel{(i i i)}{=} \frac{1}{p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)} \sum_{\widetilde{a}_{h}^{(m)}}\left(\lambda p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right) \pi_{h}^{(m)}\left(\left[\widetilde{a}_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \mid s_{1: h}, a_{1: h-1}\right)\right. \\
& \quad \phi_{h}^{(m)}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widetilde{a}_{h}^{(m)}\right)+(1-\lambda) p_{\widetilde{\phi}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right) \\
& \left.\pi_{h}^{(m)}\left(\left[\widetilde{a}_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \mid s_{1: h}, a_{1: h-1}\right) \widetilde{\phi}_{h}^{(m)}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widetilde{a}_{h}^{(m)}\right)\right) \\
& \stackrel{(i v)}{=} \sum_{\widetilde{a}_{h}^{(m)}} \pi_{h}^{(m)}\left(\left[\widetilde{a}_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \mid s_{1: h}, a_{1: h-1}\right) \phi_{\lambda, h}^{(m)}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widetilde{a}_{h}^{(m)}\right)
\end{aligned}
$$

where (i) uses eqs. (20) and (25), (ii) uses eq. (19), (iii) uses eq. (24), and (iv) uses eq. 28). This proves the claim due to eq. 24.
Case 2: $p_{\lambda}\left(s_{1: h}, a_{1: h-1}\right)=0$. In this case, both $\phi_{\lambda, h}^{(m)}$ and π_{λ} can be arbitrarily defined. Hence, we can simply define π_{λ} by eq. 24.

C Proof of Theorem 1

C. 1 Proof of item 1 for unconstrained Markov game

Throughout the proof, for any policy π, we denote $\widetilde{\phi}^{(m)}$ as the optimal stochastic modification associated with π, i.e., $V_{0}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right)$ achieves the maximum value over all stochastic modifications. In order for π to be a CE, it must satisfy $V_{0}^{(m)}(\pi) \geq V_{0}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right)$.
If for any optimal stochastic modification $\widetilde{\phi}^{(m)}$ associated with π, we can construct a corresponding deterministic modification $\phi^{(m)}$ such that $V_{0}^{(m)}\left(\phi^{(m)} \circ \pi\right)=V_{0}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right)$, then the condition of item 1 guarantees that π is a CE and then item 1 is proved.
Next, for any policy π and any associated optimal stochastic modification $\widetilde{\phi}^{(m)}$, we construct a deterministic modification $\phi^{(m)}$ as follows: for any $s_{1: h}, a_{1: h-1}, a_{h}^{(m)}$, select an arbitrary $\widetilde{a}_{h}^{(m)}$ such that $\widetilde{\phi}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)>0$ (this always exists) and then simply define $\phi^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)=1$, and 0 otherwise. It suffices to prove that $V_{0}^{(m)}\left(\phi^{(m)} \circ \pi\right)=$ $V_{0}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right)$ for any π satisfying the condition of item 1.
To proceed, we claim that one can find $\lambda<0$ such that the joint measure $p_{\lambda}:=\lambda p_{\phi^{(m)} \circ \pi}+(1-$ 1) $p_{\tilde{\phi}^{(m)} \circ \pi}$ satisfies eqs. 26) and (27). We will prove the validity of this claim later. Suppose this claim holds. Then based on Lemma B.1, the inducing policy of p_{λ} takes the form $\pi_{\lambda}=\phi_{\lambda}^{(m)} \circ \pi$, where $\phi_{\lambda}^{(m)}$ is defined by eq. 28). Then, we obtain that

$$
\begin{aligned}
& V_{0}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right) \stackrel{(i)}{\geq} V_{0}^{(m)}\left(\phi_{\lambda}^{(m)} \circ \pi\right) \stackrel{(i i)}{=} \widetilde{V}_{0}^{(m)}\left(p_{\lambda}\right) \\
&=\widetilde{V}_{0}^{(m)}\left(\lambda p_{\phi^{(m)} \circ \pi}+(1-\lambda) p_{\widetilde{\phi}^{(m)} \circ \pi}\right) \\
& \stackrel{(i i i)}{=} \lambda \widetilde{V}_{0}^{(m)}\left(p_{\phi^{(m)} \circ \pi}\right)+(1-\lambda) \widetilde{V}_{0}^{(m)}\left(p_{\tilde{\phi}^{(m)} \circ \pi}\right) \\
& \stackrel{(i v)}{=} \lambda V_{0}^{(m)}\left(\phi^{(m)} \circ \pi\right)+(1-\lambda) V_{0}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right),
\end{aligned}
$$

where (i) uses the optimality of $\widetilde{\phi}^{(m)}$, (ii)-(iv) use the linear form of $\widetilde{V}_{0}^{(m)}\left(p_{\pi}\right)$ defined in eq. 22). The above inequality along with $\lambda<0$ implies that $V_{0}^{(m)}\left(\phi^{(m)} \circ \pi\right) \geq V_{0}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right)$. On the other hand, $V_{0}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right) \geq V_{0}^{(m)}\left(\phi^{(m)} \circ \pi\right)$ based on the optimality of the stochastic modification $\widetilde{\phi}^{(m)}$. Hence, $V_{0}^{(m)}\left(\phi^{(m)} \circ \pi\right)=V_{0}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right)$ as desired. All left is to find $\lambda<0$ such that the joint measure p_{λ} satisfies eqs. 26) and (27). We prove them as follows.
Proof of eq. 26): Recall that $p_{\lambda}=\lambda p_{\phi^{(m)} \circ \pi}+(1-\lambda) p_{\bar{\phi}^{(m)} \circ \pi}$ and $\lambda<0$. If $p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right)=$ 0 , it is clear that eq. 26) holds. So we just need to consider the other case where $p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right)>0$. In this case and by eq. (18), we must have that $\rho\left(s_{1}\right),\left(\phi_{1}^{(m)} \circ\right.$ $\left.\pi_{1}\right)\left(a_{1} \mid s_{1}\right), \mathcal{P}\left(s_{h} \mid s_{h-1}, a_{h-1}\right),\left(\phi_{h}^{(m)} \circ \pi_{h}\right)\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right)>0$ for any $h=2, \ldots, H$. Then, eq. 24) implies that for any $h=2, \ldots, H$,

$$
\begin{aligned}
0 & <\left(\phi_{h}^{(m)} \circ \pi_{h}\right)\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right) \\
& =\sum_{\widetilde{a}_{h}^{(m)}} \phi_{h}^{(m)}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widetilde{a}_{h}^{(m)}\right) \pi_{h}\left(\left[\widetilde{a}_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \mid s_{1: h}, a_{1: h-1}\right) .
\end{aligned}
$$

Hence, there must exist $\widehat{a}_{h}^{(m)}$ such that $\phi_{h}^{(m)}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widehat{a}_{h}^{(m)}\right) \pi_{h}\left(\left[\widehat{a}_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \mid s_{1: h}, a_{1: h-1}\right)>$ 0 . As $\phi_{h}^{(m)}$ is the deterministic modification constructed at the beginning of this proof, we must have
$\phi_{h}^{(m)}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widehat{a}_{h}^{(m)}\right)=1$ and therefore the corresponding stochastic modification satisfies
$\widetilde{\phi}_{h}^{(m)}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widehat{a}_{h}^{(m)}\right)>0$. Then, eq. 24) implies that

$$
\begin{aligned}
& \left(\widetilde{\phi}_{h}^{(m)} \circ \pi_{h}\right)\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right) \\
& =\sum_{\widetilde{a}_{h}^{(m)}} \widetilde{\phi}_{h}^{(m)}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widetilde{a}_{h}^{(m)}\right) \pi_{h}\left(\left[\widetilde{a}_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \mid s_{1: h}, a_{1: h-1}\right) \\
& \geq \widetilde{\phi}_{h}^{(m)}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widehat{a}_{h}^{(m)}\right) \pi_{h}\left(\left[\widehat{a}_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \mid s_{1: h}, a_{1: h-1}\right)>0 .
\end{aligned}
$$

Similarly, we can prove that $\left(\widetilde{\phi}_{1}^{(m)} \circ \pi_{1}\right)\left(a_{1} \mid s_{1}\right)>0$ from $\left(\phi_{1}^{(m)} \circ \pi_{1}\right)\left(a_{1} \mid s_{1}\right)>0$. Therefore, based on eq. 18, it is proved that whenever $p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right)>0$, we have

$$
\begin{align*}
& p_{\widetilde{\phi}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right) \\
& =\rho\left(s_{1}\right)\left(\widetilde{\phi}_{1}^{(m)} \circ \pi_{1}\right)\left(a_{1} \mid s_{1}\right) \prod_{h^{\prime}=2}^{h} \mathcal{P}\left(s_{h^{\prime}} \mid s_{h^{\prime}-1}, a_{h^{\prime}-1}\right)\left(\widetilde{\phi}_{h^{\prime}}^{(m)} \circ \pi_{h^{\prime}}\right)\left(a_{h^{\prime}} \mid s_{1: h^{\prime}}, a_{1: h^{\prime}-1}\right)>0 \tag{29}
\end{align*}
$$

Therefore, eq. 26) holds for

$$
0>\lambda \geq-\frac{p_{\widetilde{\phi}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right)}{p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right)-p_{\widetilde{\phi}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right)}:=w\left(s_{1: h}, a_{1: h}\right)
$$

for any $s_{1: h}, a_{1: h}$ whenever $p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right)>p_{\widetilde{\phi}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right)$, which implies that $p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right)>0$ and therefore $p_{\widetilde{\phi}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right)>0$ based on eq. 29. Thus, we conclude that $w\left(s_{1: h}, a_{1: h}\right)<0$. Consider the finite (and possibly empty) set $A_{1}:=\left\{w\left(s_{1: h}, a_{1: h}\right)\right.$: $\left.1 \leq h \leq H, p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right)>p_{\widetilde{\phi}^{(m) \circ \pi}}\left(s_{1: h}, a_{1: h}\right)\right\}$. If it is non-empty, eq. 26p holds for all $0>\lambda \geq \max A_{1}$ for constant max $A_{1}<0$; Otherwise, eq. 26 holds for all $\lambda<0$.
Proof of eq. 27): If $p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right) \phi_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)=0$ and $\lambda<0$, then eq. 27h holds. Consider the other case $p_{\phi^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h-1}\right) \phi_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)>0$ and $\lambda<0$. In this case, we have $p_{\widetilde{\phi}^{(m) \circ \pi}}\left(s_{1: h}, a_{1: h-1}\right)>0$ as proved in the proof of eq. 26, and we also have $\phi_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)=1>0$ and thus $\widetilde{\phi}_{h}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)>0$ based on the construction of $\phi_{h}^{(m)}$. Following the same proof logic as that of eq. 26, we can find a constant $A_{2}<0$ such that eq. 27) holds for all $0>\lambda \geq A_{2}$.
In summary, we have proved that there exists $\lambda<0$ that guarantees both eqs. (26) and (27).

C. 2 Proof of item 2 for constrained Markov game

Here we construct a counter example to prove item 2. Consider a constrained Markov game with only one state $\mathcal{S}=\{s\}$, two agents with action spaces $\mathcal{A}_{1}=\mathcal{A}_{2}=\{0,1\}$ and horizon $H=1$. For simplicity, we drop the time step index $h=1$ and state s in all notations throughout this example. Specifically, we denote $\pi\left(a^{(1)}, a^{(2)}\right), \pi^{(m)}\left(a^{(m)}\right), \phi^{(m)}\left(\widetilde{a}^{(m)} \mid a^{(m)}\right), m=1,2$, as the joint policy, marginal policy and stochastic modification, respectively.
For both agents $m=1,2$, we define rewards $r_{0}^{(m)}=a^{(m)}, r_{1}^{(m)}=a^{(0)}+a^{(1)}, r_{2}^{(m)}=2-a^{(0)}-$ $a^{(1)}$ and constraint thresholds $c_{1}^{(m)}=c_{2}^{(m)}=0.6$. Therefore, $V_{0}^{(m)}(\pi)=\mathbb{E}_{\pi} r_{0}^{(m)}=\pi^{(m)}(1)$, $V_{1}^{(m)}(\pi)=\mathbb{E}_{\pi} r_{1}^{(m)}=\pi^{(1)}(1)+\pi^{(2)}(1)$ and $V_{2}^{(m)}(\pi)=\mathbb{E}_{\pi} r_{2}^{(m)}=2-\pi^{(1)}(1)-\pi^{(2)}(1)=$ $\pi^{(1)}(0)+\pi^{(2)}(0)$. Therefore, for both agents $m=1,2$, their value function constraints $V_{1}^{(m)}(\pi) \geq$ $0.6, V_{2}^{(m)}(\pi) \geq 0.6$ are equivalent to the following condition

$$
\begin{equation*}
0.6 \leq \pi^{(1)}(1)+\pi^{(2)}(1) \leq 1.4 \tag{30}
\end{equation*}
$$

Now consider a uniform policy $\bar{\pi}$ where $\bar{\pi}\left(a^{(1)}, a^{(2)}\right)=0.25$ for all $a^{(1)}, a^{(2)} \in\{0,1\}$. This is a product policy which generates independent uniformly distributed actions $a^{(1)}, a^{(2)}$ with $\bar{\pi}^{(1)}(1)=$ $\bar{\pi}^{(2)}(1)=0.5$ that satisfy the constraints in eq. 30). Note that $\mathcal{A}^{(1)}$ only includes two actions. Hence, the set of all possible deterministic modifications $\phi^{(1)}$ includes the following three cases.
(i) $\phi^{(1)} \circ \bar{\pi}=\bar{\pi}$: either $\phi^{(1)}$ modifies any $a^{(1)}$ to $a^{(1)}$ or modifies any $a^{(1)}$ to $1-a^{(1)}$;
(ii) $\phi^{(1)} \circ \bar{\pi}=\pi^{\prime}$ that always generates $a^{(1)}=0$ and generates $a^{(2)}$ uniformly at random: $\phi^{(1)}$ modifies any $a^{(1)}$ to 0 ;
(iii) $\phi^{(1)} \circ \bar{\pi}=\pi^{\prime \prime}$ that always generates $a^{(1)}=1$ and generates $a^{(2)}$ uniformly at random: $\phi^{(1)}$ modifies any $a^{(1)}$ to 1 .

However, π^{\prime} and $\pi^{\prime \prime}$ do not satisfy the constraint (30) since $\pi^{\prime(1)}(1)+\pi^{\prime(2)}(1)=0.5$ and $\pi^{\prime \prime(1)}(1)+$ $\pi^{\prime \prime(2)}(1)=1.5$. Hence, the only feasible deterministic modifications $\phi^{(1)}$ are the two ones in (i) with $\phi^{(1)} \circ \bar{\pi}=\bar{\pi}$, which implies that $V_{0}^{(1)}\left(\phi^{(1)} \circ \bar{\pi}\right)=V_{0}^{(1)}(\bar{\pi})=\bar{\pi}^{(1)}(1)=0.5$. Therefore, such a $\bar{\pi}$ satisfies the assumption of item 2 .

Now consider a stochastic modification $\phi^{(1)}$ defined by $\phi^{(1)}\left(1 \mid a_{1}\right)=0.9$ and $\phi^{(1)}\left(0 \mid a_{1}\right)=0.1$ for $a_{1} \in\{0,1\}$. Then $\phi^{(1)} \circ \bar{\pi}$ independently generates Bernoulli distributed actions $a^{(1)} \sim \operatorname{Bern}(0.9)$ and $a^{(2)} \sim \operatorname{Bern}(0.5)$. Hence, $\left(\phi^{(1)} \circ \bar{\pi}\right)^{(1)}(1)+\left(\phi^{(1)} \circ \bar{\pi}\right)^{(2)}(1)=1.4$, which means $\phi^{(1)}$ is feasible based on eq. (30). In addition, $V_{0}^{(1)}\left(\phi^{(1)} \circ \bar{\pi}\right)=\left(\phi^{(1)} \circ \bar{\pi}\right)^{(1)}(1)=0.9$, which is strictly larger than $V_{0}^{(1)}(\bar{\pi})=0.5$. Therefore, $\bar{\pi}$ is not a CE as defined in Definition 3.2.

D Proof of Theorem[2]

For any policy π and its associated joint measure p_{π}, recall the following equivalent Lagrangian functions defined in eq. 23.)

$$
L^{(m)}\left(\pi, \lambda^{(m)}\right)=\widetilde{L}^{(m)}\left(p_{\pi}, \lambda^{(m)}\right)
$$

Then, the desired strong duality result shown in eq. 77 is equivalent to the following equation.

$$
\max _{p \in \mathcal{X}} \min _{\lambda(m) \in \mathbb{R}_{+}^{d_{m}}} \widetilde{L}^{(m)}\left(p, \lambda^{(m)}\right)=\min _{\lambda(m) \in \mathbb{R}_{+}^{d_{m}}} \max _{p \in \mathcal{X}} \widetilde{L}^{(m)}\left(p, \lambda^{(m)}\right),
$$

where the set $\mathcal{X}:=\left\{p_{\phi^{(m)} \circ \pi}: \phi^{(m)}\right.$ is a stochastic modification $\}$ is defined for the fixed π. The nice property of the Lagrangian function $\widetilde{L}^{(m)}\left(p, \lambda^{(m)}\right)$ is that it is a linear function in p, which has an advantage toward establishing strong duality.
Based on the minimax theorem (Lemma 9.2 of [2]), it suffices to prove the following properties:
(I). $\widetilde{L}^{(m)}(p, \cdot)$ is convex and lower semi-continuous, and $\widetilde{L}^{(m)}(\cdot, p)$ is concave. These properties directly follow from the definition of \widetilde{L} in eq. 23 .
(II). $\mathbb{R}_{+}^{d_{m}}$ is a convex set, which holds obviously.
(III). \mathcal{X} is a convex set, which follows from Lemma B.1 since eqs. (26) and 27) always hold for $\lambda \in[0,1]$.
(IV). \mathcal{X} is a compact set.

Hence, it remains to prove (IV).
As the state space \mathcal{S}, action apace \mathcal{A} and the horizon H are finite, we can represent p_{π} as a vector with entries $p_{\pi}\left(s_{1: H}, a_{1: H}\right)$ for every $s_{1: H}, a_{1: H} \in \mathcal{S}^{H} \times \mathcal{A}^{H}$. Hence, the set $\mathcal{X} \subset[0,1]^{(|\mathcal{S} \| \mathcal{A}|)^{H}}$ is bounded. Then, it suffices to prove that \mathcal{X} is a closed set, i.e., $p \in \mathcal{X}$ if $p_{\phi_{[k]}^{(m)} \circ \pi}\left(s_{1: H}, a_{1: H}\right) \xrightarrow{k}$ $p\left(s_{1: H}, a_{1: H}\right), \forall s_{1: H}, a_{1: H}$ for some $p_{\phi_{[k]}^{(m)} \circ \pi} \in \mathcal{X}$ (Note that the notation $\phi_{[k]}^{(m)}$ indexed by k differs from $\phi_{h}^{(m)}$ where h denotes time step).

Similar to \mathcal{X}, any stochastic modification $\phi^{(m)}$ can also be seen as a bounded finite-dimensional vector with entries $\phi^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right) \in[0,1]$. Hence, $\left\{\phi_{[k]}^{(m)}: k \in \mathbb{N}^{+}\right\}$has a convergent subsequence $\left\{\phi_{\left[k_{i}\right]}^{(m)}: i \in \mathbb{N}^{+}\right\}$such that $\phi_{\left[k_{i}\right]}^{(m)}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right) \xrightarrow{i} \phi^{*}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)$ for any $s_{1: h}, a_{1: h-1}, a_{h}^{(m)}, \widetilde{a}_{h}^{(m)}$, which implies that $\phi^{*}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right) \geq 0$ and $\sum_{\widetilde{a}_{h}^{(m)}} \phi^{*}\left(\widetilde{a}_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, a_{h}^{(m)}\right)=1$. Therefore, ϕ^{*} is a proper stochastic modification.

Then based on eq. 24, it holds for any $s_{1: h}, a_{1: h}$ that

$$
\begin{align*}
& \left(\phi_{\left[k_{i}\right], h}^{(m)} \circ \pi_{h}\right)\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right) \\
& =\sum_{\widetilde{a}_{h}^{(m)}} \phi_{\left[k_{i}\right], h}^{(m)}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widetilde{a}_{h}^{(m)}\right) \pi_{h}\left(\left[\widetilde{a}_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \mid s_{1: h}, a_{1: h-1}\right) \\
& \xrightarrow[\rightarrow]{i} \sum_{\widetilde{a}_{h}^{(m)}} \phi_{h}^{*}\left(a_{h}^{(m)} \mid s_{1: h}, a_{1: h-1}, \widetilde{a}_{h}^{(m)}\right) \pi_{h}\left(\left[\widetilde{a}_{h}^{(m)}, a_{h}^{(\backslash m)}\right] \mid s_{1: h}, a_{1: h-1}\right) \\
& =\left(\phi_{h}^{*} \circ \pi_{h}\right)\left(a_{h} \mid s_{1: h}, a_{1: h-1}\right) . \tag{31}
\end{align*}
$$

On one hand, the above inequality and eq. (18) imply that for any $s_{1: h}, a_{1: h}, p_{\phi_{\left[k_{i}\right]}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right) \xrightarrow{i}$ $p_{\phi^{*} \circ \pi}\left(s_{1: h}, a_{1: h}\right)$. On the other hand, $p_{\phi_{\left[k_{i}\right]}^{(m)} \circ \pi}\left(s_{1: h}, a_{1: h}\right) \xrightarrow{i} p\left(s_{1: h}, a_{1: h}\right)$. Therefore, $p=p_{\phi^{*} \circ \pi}$ for ϕ^{*} being a stochastic modification, and thus $p \in \mathcal{X}$.

E The Range of the Optimal Dual Variable

Before proving Theorem 3 and Corollary 5.1 on the non-asymptotic convergence of Algorithm 1 , we first consider the optimal dual variable $\lambda_{*}^{(m)}$ of the minimax optimization problem in eq. (7) and derive its range below, which is important for the selection of the projection set $\Lambda^{(m)}$ in Algorithm 1
Lemma E.1. The optimal dual variable $\lambda_{*}^{(m)}$ satisfies the following range.

$$
\begin{equation*}
\lambda_{*, j}^{(m)} \leq \frac{H r_{0, \max }^{(m)}}{\xi_{j}^{(m)}}, j=1, \ldots, d_{m} \tag{32}
\end{equation*}
$$

Proof. Given π, denote $\phi_{*}^{(m)}$ as the optimal solution to the constrained optimization problem in eq. (4) and denote $\widetilde{\phi}^{(m)}$ as the stochastic modification that satisfies Assumption 1. i.e., $V^{(m)}\left(\widetilde{\phi^{(m)}} \circ\right.$ $\pi)-c^{(m)} \geq \xi^{(m)}$. Then we have

$$
\begin{aligned}
H r_{0, \max }^{(m)} & \stackrel{(i)}{\geq} V_{0}^{(m)}\left(\phi_{*}^{(m)} \circ \pi\right) \\
& \stackrel{(i i)}{=} \max _{\phi^{(m)}} L^{(m)}\left(\phi^{(m)} \circ \pi, \lambda_{*}^{(m)}\right) \\
& \geq L^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi, \lambda_{*}^{(m)}\right) \\
& =V_{0}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right)+\sum_{j=1}^{d_{m}} \lambda_{*, j}^{(m)}\left(V_{j}^{(m)}\left(\widetilde{\phi}^{(m)} \circ \pi\right)-c_{j}^{(m)}\right) \\
& \stackrel{(i i i)}{\geq} \sum_{j=1}^{d_{m}} \lambda_{*, j}^{(m)} \xi_{j}^{(m)},
\end{aligned}
$$

where (i) and (iii) use $V_{0}^{(m)}(\pi) \in\left[0, H r_{0, \max }^{(m)}\right], \forall j=0,1, \ldots, d_{m}$ which is directly implied by Assumption 2 (ii) uses Theorem 2 which implies the equivalence between the constrained optimization problem in eq. 4p and the minimax optimization problem in eq. (7), and (iii) also uses $\lambda_{*, j}^{(m)} \geq 0$ and $V_{j}^{(m)}(\pi)-c_{j}^{(m)} \geq \xi_{j}^{(m)}$. Since $\xi_{j}^{(m)}>0$, the above inequality implies eq. 32,

F Proof of Theorem 3

Assumption 2 and the value functions defined in eq. (4) imply that for any $m=1, \ldots, M, j=$ $0,1, \ldots, d_{m}$ and joint policy π, we have

$$
\begin{equation*}
0 \leq V_{j}^{(m)}(\pi)=\mathbb{E}_{\pi}\left[\sum_{h=1}^{H} r_{j, h}^{(m)}\left(s_{h}, a_{h}\right) \mid s_{1} \sim \rho\right] \leq H r_{j, \max }^{(m)} \tag{33}
\end{equation*}
$$

Hence, for any $m=1, \ldots, M$ and joint policy π

$$
\begin{equation*}
\left\|V^{(m)}(\pi)\right\|=\sqrt{\sum_{j=1}^{d_{m}} V_{j}^{(m)}(\pi)^{2}} \leq H \sqrt{\sum_{j=1}^{d_{m}}\left(r_{j, \max }^{(m)}\right)^{2}}=H R_{\max }^{(m)} \tag{34}
\end{equation*}
$$

Furthermore, Assumption 1 implies that there is a joint policy π^{\prime} such that $0 \leq c^{(m)} \leq V^{(m)}\left(\pi^{\prime}\right)$, so

$$
\begin{equation*}
\left\|c^{(m)}\right\| \leq\left\|V^{(m)}\left(\pi^{\prime}\right)\right\| \leq H R_{\max }^{(m)} \tag{35}
\end{equation*}
$$

Then,

$$
\begin{aligned}
0 & \leq\left\|\lambda_{T}^{(m)}\right\|^{2} \\
& \stackrel{(i)}{=} \sum_{t=0}^{T-1}\left(\left\|\lambda_{t+1}^{(m)}\right\|^{2}-\left\|\lambda_{t}^{(m)}\right\|^{2}\right) \\
& \stackrel{(i i)}{\leq} \sum_{t=0}^{T-1}\left(\left\|\lambda_{t}^{(m)}-\eta\left(V^{(m)}\left(\pi_{t}\right)-c^{(m)}\right)\right\|^{2}-\left\|\lambda_{t}^{(m)}\right\|^{2}\right) \\
& \stackrel{(i i i)}{\leq} 2 \eta \sum_{t=0}^{T-1} \lambda_{t}^{(m) \top}\left(c^{(m)}-V^{(m)}\left(\pi_{t}\right)\right)+\eta^{2} \sum_{t=0}^{T-1}\left(\left\|V^{(m)}\left(\pi_{t}\right)\right\|+\left\|c^{(m)}\right\|\right)^{2} \\
& \stackrel{(i v)}{\leq} 2 \eta \sum_{t=0}^{T-1} \lambda_{t}^{(m) \top}\left(V^{(m)}\left(\phi_{t *}^{(m)} \circ \pi_{t}\right)-V^{(m)}\left(\pi_{t}\right)\right)+4 T\left(\eta H R_{\max }^{(m)}\right)^{2},
\end{aligned}
$$

where (i) uses the initialization $\lambda_{0}^{(m)}=0$, (ii) uses eq. 12 and $0 \in \Lambda^{(m)}$, (iii) uses triangular inequality, and (iv) uses eqs. (34) and (35) and the constraint that $V^{(m)}\left(\phi_{t *}^{(m)} \circ \pi\right) \geq c^{(m)}$ satisfied by the optimal modification $\phi_{t *}^{(m)}$ of the constrained optimization problem in eq. $\sqrt{4}$ for $\pi=\pi_{t}$. Rearranging the above inequality yields that

$$
\begin{equation*}
\sum_{t=0}^{T-1} \lambda_{t}^{(m) \top}\left(V^{(m)}\left(\pi_{t}\right)-V^{(m)}\left(\phi_{t}^{(m)} \circ \pi_{t}\right)\right) \leq 2 \eta T\left(H R_{\max }^{(m)}\right)^{2} \tag{36}
\end{equation*}
$$

Note that

$$
\begin{align*}
0 & \leq \sum_{t=0}^{T-1}\left(\max _{\phi^{(m)}} L^{(m)}\left(\phi^{(m)} \circ \pi_{t}, \lambda_{t}^{(m)}\right)-L^{(m)}\left(\phi_{t *}^{(m)} \circ \pi_{t}, \lambda_{t}^{(m)}\right)\right) \\
& \stackrel{(i)}{=} \sum_{t=0}^{T-1}\left(\max _{\phi^{(m)}} V_{\lambda_{t}}^{(m)}\left(\phi^{(m)} \circ \pi_{t}\right)-V_{\lambda_{t}}^{(m)}\left(\phi_{t *}^{(m)} \circ \pi_{t}\right)\right) \\
& \stackrel{(i i)}{\leq} \sum_{t=0}^{T-1}\left(\epsilon+V_{\lambda_{t}}^{(m)}\left(\pi_{t}\right)-V_{\lambda_{t}}^{(m)}\left(\phi_{t *}^{(m)} \circ \pi_{t}\right)\right) \\
& \stackrel{(i i i)}{=} \sum_{t=0}^{T-1}\left(\epsilon+V_{0}^{(m)}\left(\pi_{t}\right)-V_{0}^{(m)}\left(\phi_{t *}^{(m)} \circ \pi_{t}\right)+\lambda_{t}^{(m) \top}\left(V^{(m)}\left(\pi_{t}\right)-V^{(m)}\left(\phi_{t *}^{(m)} \circ \pi_{t}\right)\right)\right) \tag{37}\\
& \stackrel{(i v)}{\leq} \sum_{t=0}^{T-1}\left(\epsilon-D^{(m)}\left(\pi_{t}\right)\right)+2 \eta T\left(H R_{\max }^{(m)}\right)^{2},
\end{align*}
$$

where (i) uses the rewritten Lagrangian function $L^{(m)}\left(\phi^{(m)} \circ \pi, \lambda^{(m)}\right)=V_{\lambda}^{(m)}\left(\phi^{(m)} \circ \pi\right)-$ $\lambda^{(m) \top} c^{(m)}$, (ii) uses eq. (11), (iii) uses $V_{\lambda}^{(m)}(\pi)=V_{0}^{(m)}(\pi)+\lambda^{(m) \top} V^{(m)}(\pi), \forall \pi$ implies by eqs. (2) and (9), and (iv) uses eqs. (5) and (36). Rearranging the above inequality yields that

$$
\left.\mathbb{E}_{\widetilde{t}}\left[D^{(m)}\left(\pi_{t}\right)\right]=\frac{1}{T} \sum_{t=0}^{T-1} D^{(m)}\left(\pi_{t}\right)\right) \leq 2 \eta\left(H R_{\max }^{(m)}\right)^{2}+\epsilon
$$

which proves the duality gap in eq. 14 by substituting $\eta=\frac{1}{\sqrt{T}}$.
Next, we prove the constraint violation in eq. 15 .
For any $\lambda^{(m)} \in \Lambda^{(m)}$, it holds that

$$
\begin{aligned}
& \left\|\lambda_{t+1}^{(m)}-\lambda^{(m)}\right\|^{2} \\
& \stackrel{(i)}{\leq}\left\|\lambda_{t}^{(m)}-\eta\left(V^{(m)}\left(\pi_{t}\right)-c^{(m)}\right)-\lambda^{(m)}\right\|^{2} \\
& \stackrel{(i i)}{\leq}\left\|\lambda_{t}^{(m)}-\lambda^{(m)}\right\|^{2}-2 \eta\left(\lambda_{t}^{(m)}-\lambda^{(m)}\right)^{\top}\left(V^{(m)}\left(\pi_{t}\right)-c^{(m)}\right)+\eta^{2}\left(\left\|V^{(m)}\left(\pi_{t}\right)\right\|+\left\|c^{(m)}\right\|\right)^{2} \\
& \stackrel{(i i i)}{\leq}\left\|\lambda_{t}^{(m)}-\lambda^{(m)}\right\|^{2}-2 \eta\left(\lambda_{t}^{(m)}-\lambda^{(m)}\right)^{\top}\left(V^{(m)}\left(\pi_{t}\right)-c^{(m)}\right)+4\left(\eta H R_{\max }^{(m)}\right)^{2}
\end{aligned}
$$

where (i) uses eq. (12) and $\lambda^{(m)} \in \Lambda^{(m)}$, (ii) uses triangular inequality, (iii) uses eqs. (34) and (35). Telescoping the above inequality over $t=0,1, \ldots, T-1$ and using $\lambda_{0}^{(m)}=0$ yields that

$$
\begin{equation*}
\eta \sum_{t=0}^{T-1}\left(\lambda_{t}^{(m)}-\lambda^{(m)}\right)^{\top}\left(V^{(m)}\left(\pi_{t}\right)-c^{(m)}\right) \leq \frac{1}{2}\left\|\lambda^{(m)}\right\|^{2}+2 T\left(\eta H R_{\max }^{(m)}\right)^{2} \tag{38}
\end{equation*}
$$

Since $V^{(m)}\left(\phi_{t *}^{(m)} \circ \pi_{t}\right) \geq c^{(m)}$ and $\lambda_{t}^{(m)} \in \mathbb{R}_{+}^{d_{m}}$, eq. 37) implies that

$$
\begin{equation*}
\eta \sum_{t=0}^{T-1} \lambda_{t}^{(m) \top}\left(c^{(m)}-V^{(m)}\left(\pi_{t}\right)\right) \leq \eta \sum_{t=0}^{T-1}\left(\epsilon+V_{0}^{(m)}\left(\pi_{t}\right)-V_{0}^{(m)}\left(\phi_{t *}^{(m)} \circ \pi\right)\right) \tag{39}
\end{equation*}
$$

Summing up eqs. (38) and (39) yields that

$$
\begin{align*}
\eta \sum_{t=0}^{T-1} \lambda^{(m) \top}\left(c^{(m)}-V^{(m)}\left(\pi_{t}\right)\right) \leq & \eta \sum_{t=0}^{T-1}\left(\epsilon+V_{0}^{(m)}\left(\pi_{t}\right)-V_{0}^{(m)}\left(\phi_{t *}^{(m)} \circ \pi\right)\right) \\
& +\frac{1}{2}\left\|\lambda^{(m)}\right\|^{2}+2 T\left(\eta H R_{\max }^{(m)}\right)^{2} \tag{40}
\end{align*}
$$

Denote $\Phi_{t}^{(m)}:=\left\{\phi^{(m)}: V^{(m)}\left(\phi^{(m)} \circ \pi_{t}\right) \geq \min \left(c^{(m)}, V^{(m)}\left(\pi_{t}\right)\right)\right\}$, which is a non-empty set that includes identity modification $\phi^{(m)}$ such that $I^{(m)} \circ \pi_{t}=\pi_{t}$. Hence,

$$
\begin{aligned}
V_{0}^{(m)}\left(\phi_{t *}^{(m)} \circ \pi_{t}\right) & =\max _{\phi^{(m)}} \min _{\lambda^{(m)} \in \mathbb{R}_{+}^{d_{m}}} L^{(m)}\left(\phi^{(m)} \circ \pi_{t}, \lambda^{(m)}\right) \\
& \stackrel{(i)}{=} \min _{\lambda^{(m)} \in \mathbb{R}_{+}^{d_{m}}} \max _{\phi^{(m)}} L^{(m)}\left(\phi^{(m)} \circ \pi_{t}, \lambda^{(m)}\right) \\
& \stackrel{(i i)}{\geq} \max _{\phi^{(m)} \in \Phi_{t}^{(m)}} L^{(m)}\left(\phi^{(m)} \circ \pi_{t}, \lambda_{t *}^{(m)}\right) \\
& =\max _{\phi^{(m)} \in \Phi_{t}^{(m)}}\left(V_{0}^{(m)}\left(\phi^{(m)} \circ \pi_{t}\right)+\left(\lambda_{t *}^{(m)}\right)^{\top}\left[V^{(m)}\left(\phi^{(m)} \circ \pi_{t}\right)-c^{(m)}\right]\right) \\
& \stackrel{(i i i)}{\geq \max _{\phi^{(m)} \in \Phi_{t}^{(m)}} V_{0}^{(m)}\left(\phi^{(m)} \circ \pi_{t}\right)+\left(\lambda_{t *}^{(m)}\right)^{\top} \min \left(0, V^{(m)}\left(\pi_{t}\right)-c^{(m)}\right)} \\
& \quad(i v) \\
& \geq V_{0}^{(m)}\left(\pi_{t}\right)-\left(\lambda_{t *}^{(m)}\right)^{\top}\left(c^{(m)}-V^{(m)}\left(\pi_{t}\right)\right)_{+}
\end{aligned}
$$

where (i) uses Theorem 2 (ii) uses the fact that $\Phi_{t}^{(m)}$ is only a subset of stochastic modifications and denotes that $\lambda_{t *}^{(m)}=\arg \min _{\lambda^{(m)} \in \mathbb{R}_{+}^{d_{m}}} \max _{\phi^{(m)}} L^{(m)}\left(\phi^{(m)} \circ \pi_{t}, \lambda^{(m)}\right)$, (iii) uses $\lambda_{t *}^{(m)} \in \mathbb{R}_{+}^{d_{m}}$ and the definition of $\Phi_{t}^{(m)}$, and (iv) uses the fact that the identity modification $\phi^{(m)} \in \Phi_{t}^{(m)}$. Substituting the above inequality into eq. 40) and rearranging it, we obtain that

$$
\eta \sum_{t=0}^{T-1}\left(\lambda^{(m) \top}\left(c^{(m)}-V^{(m)}\left(\pi_{t}\right)\right)-\left(\lambda_{t *}^{(m)}\right)^{\top}\left(c^{(m)}-V^{(m)}\left(\pi_{t}\right)\right)_{+}\right)
$$

$$
\begin{equation*}
\leq \frac{1}{2}\left\|\lambda^{(m)}\right\|^{2}+2 T\left(\eta H R_{\max }^{(m)}\right)^{2}+\eta T \epsilon \tag{41}
\end{equation*}
$$

Using eq. (32) and selecting $\lambda_{j}^{(m)}=\frac{2 H r_{0, \text { max }}^{(m)}}{\xi_{j}^{(m)}} \mathbb{1}\left\{V_{j}^{(m)}\left(\pi_{t}\right) \leq c_{j}^{(m)}\right\}$ (this satisfies $\lambda^{(m)} \in \Lambda^{(m)}$), we obtain that

$$
\begin{aligned}
& \lambda^{(m) \top}\left(c^{(m)}-V^{(m)}\left(\pi_{t}\right)\right)-\left(\lambda_{t *}^{(m)}\right)^{\top}\left(c^{(m)}-V^{(m)}\left(\pi_{t}\right)\right)_{+} \\
& \geq \sum_{j=1}^{d_{m}} \frac{H r_{0, \max }^{(m)}}{\xi_{j}^{(m)}}\left(c_{j}^{(m)}-V_{j}^{(m)}\left(\pi_{t}\right)\right)_{+}
\end{aligned}
$$

where the last inequality uses eq. (32). Substituting the above inequality into eq. (41) yields that

$$
\begin{aligned}
& \eta H r_{0, \max }^{(m)} \sum_{t=0}^{T-1} \sum_{j=1}^{d_{m}}\left(\xi_{j}^{(m)}\right)^{-1}\left(c_{j}^{(m)}-V_{j}^{(m)}\left(\pi_{t}\right)\right)_{+} \\
& \leq \frac{1}{2}\left\|\lambda^{(m)}\right\|^{2}+2 T\left(\eta H R_{\max }^{(m)}\right)^{2}+\eta T \epsilon \\
& \stackrel{(i)}{\leq} 2\left(H r_{0, \max }^{(m)}\right)^{2} \sum_{j=1}^{d_{m}}\left(\xi_{j}^{(m)}\right)^{-2}+2 T\left(\eta H R_{\max }^{(m)}\right)^{2}+\eta T \epsilon,
\end{aligned}
$$

where (i) uses $\left\|\lambda^{(m)}\right\| \leq 2 H r_{0, \max }^{(m)} \sqrt{\sum_{j=1}^{d_{m}}\left(\xi_{j}^{(m)}\right)^{-2}}$ for our choice $\lambda_{j}^{(m)}=\frac{2 H r_{0, \max }^{(m)}}{\xi_{j}^{(m)}}$ $\mathbb{1}\left\{V_{j}^{(m)}\left(\pi_{t}\right) \leq c_{j}^{(m)}\right\}$. Dividing both sides of the above inequality by $\eta T H r_{0, \text { max }}^{(m)}$ and substituting $\eta=\frac{1}{\sqrt{T}}$, we prove the constraint violation in eq. 15 .

G Proof of Corollary 5.1

The surrogate rewards defined in eq. 8 has the following bound

$$
\begin{align*}
0 & \leq R_{\lambda_{t}, h}^{(m)}\left(s_{h}, a_{h}\right)=r_{0, h}^{(m)}\left(s_{h}, a_{h}\right)+\lambda_{t}^{(m) \top} r_{h}^{(m)}\left(s_{h}, a_{h}\right) \\
& \leq r_{0, h}^{(m)}\left(s_{h}, a_{h}\right)+\left\|\lambda_{t}^{(m)}\right\|\left\|r_{h}^{(m)}\left(s_{h}, a_{h}\right)\right\| \\
& \stackrel{(i)}{\leq} r_{0, \max }^{(m)}+2 H r_{0, \max }^{(m)} R_{\max }^{(m)} \sqrt{\sum_{j=1}^{d_{m}}\left(\xi_{j}^{(m)}\right)^{-2}}:=\widetilde{R}_{\max }^{(m)} \tag{42}
\end{align*}
$$

where (i) uses Assumption 2 and $\lambda_{t, j}^{(m)} \in\left[0, \frac{2 H r_{0, \max }^{(m)}}{\xi_{j}^{(m)}}\right]$ (since $\lambda_{t}^{(m)} \in \Lambda^{(m)}$ based on eq. (12)). Note that the V-learning in [31] assumes the rewards to range in $[0,1]$. To adjust to this assumption, we apply V-learning to the scaled rewards $\frac{1}{\widetilde{R}_{\max }^{(m)}} R_{\lambda_{t}, h}^{(m)}\left(s_{h}, a_{h}\right) \in[0,1]$ with corresponding value function $\frac{1}{\widetilde{R}_{\text {max }}^{(m)}} V_{\lambda_{t}}^{(m)}$. Then based on Theorem 7 of [31], it takes $\widetilde{\mathcal{O}}\left(H^{5} S A^{2}\left(\epsilon / \widetilde{R}_{\text {max }}^{(m)}\right)^{-2}\right)=\widetilde{\mathcal{O}}\left(H^{5} S A^{2} \epsilon^{-2}\right)$ samples to reach the $\epsilon / \widetilde{R}_{\max }^{(m)}$-CE of this scaled Markov game with probability at least $1-\delta / T$ for any $\delta \in(0,1)$ (we replace δ with δ / T which only changes the hidden logarithm factor in \widetilde{O}), that is,

$$
\max _{\phi^{(m)}} \frac{1}{\widetilde{R}_{\max }^{(m)}} V_{\lambda}^{(m)}\left(\phi^{(m)} \circ \pi_{t}\right)-\frac{1}{\widetilde{R}_{\max }^{(m)}} V_{\lambda}^{(m)}\left(\pi_{t}\right) \leq \frac{\epsilon}{\widetilde{R}_{\max }^{(m)}}
$$

which is equivalent to eq. (11). Applying union bound over the T iterations yields that eq. (11) holds for all iterations $t=0,1, \ldots, T-1$ with probability at least $1-\delta$. In that case, the convergence rates in eqs. (14) and (15) hold. Substituting $T=\max _{m} 4 \epsilon^{-2}\left(H R_{\max }^{(m)}\right)^{2}\left(\sum_{j=1}^{d_{m}}\left(\xi_{j}^{(m)}\right)^{-2}+H R_{\max }^{(m)}\right)^{2}$ and $r_{0, \text { max }}^{(m)} \geq \frac{1}{H}$ into these convergence rates yields that

$$
\mathbb{E}_{\widetilde{t}}\left(D^{(m)}\left(\pi_{\tilde{t}}\right)\right) \leq \frac{2\left(H R_{\max }^{(m)}\right)^{2}}{\sqrt{T}}+\epsilon \leq 2 \epsilon
$$

$$
\begin{aligned}
\mathbb{E}_{\tilde{t}}\left(W^{(m)}\left(\pi_{\tilde{t}}\right)\right) & \leq \frac{2 H R_{\max }^{(m)}}{\sqrt{T}} \sum_{j=1}^{d_{m}}\left(\xi_{j}^{(m)}\right)^{-2}+\frac{2 H\left(R_{\max }^{(m)}\right)^{2}}{r_{0, \max }^{(m)} \sqrt{T}}+\frac{\epsilon}{H r_{0, \max }^{(m)}} \\
& \leq \frac{1}{\sqrt{T}}\left(2 H R_{\max }^{(m)} \sum_{j=1}^{d_{m}}\left(\xi_{j}^{(m)}\right)^{-2}+2\left(H R_{\max }^{(m)}\right)^{2}\right)+\epsilon \leq 2 \epsilon .
\end{aligned}
$$

The above two inequalities prove that $\max \left(\mathbb{E}_{\widetilde{t}} D^{(m)}\left(\pi_{\widetilde{t}}\right), \mathbb{E}_{\widetilde{t}} W^{(m)}\left(\pi_{\widetilde{t}}\right)\right) \leq 2 \epsilon$.
Since each of the $T=\mathcal{O}\left(H^{4} \epsilon^{-2}\right)$ iterations takes $\widetilde{\mathcal{O}}\left(H^{5} S A^{2} \epsilon^{-2}\right)$ samples, the required sample complexity is $T \widetilde{\mathcal{O}}\left(H^{5} S A^{2} \epsilon^{-2}\right)=\widetilde{\mathcal{O}}\left(H^{9} S A^{2} \epsilon^{-4}\right)$.

