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Abstract

Constrained Markov game is a fundamental problem that covers many applications,
where multiple agents compete with each other under behavioral constraints. The
existing literature has proved the existence of Nash equilibrium for constrained
Markov games, which turns out to be PPAD-complete and cannot be computed
in polynomial time. In this work, we propose a surrogate notion of correlated
equilibrium (CE) for constrained Markov games that can be computed in polyno-
mial time, and study its fundamental properties. We show that the modification
structure of CE of constrained Markov games is fundamentally different from
that of unconstrained Markov games. Moreover, we prove that the corresponding
Lagrangian function has zero duality gap. Based on these results, we develop the
first primal-dual algorithm that provably converges to CE of constrained Markov
games. In particular, we prove that both the duality gap and the constraint violation
of the output policy converge at the rate O( 1√

T
). Moreover, when adopting the

V-learning algorithm as the subroutine in the primal update, our algorithm achieves
an approximate CE with ϵ duality gap with the sample complexity O(H9SA2ϵ−4).

1 Introduction

Markov game [43] is a fundamental problem in game theory where multiple agents compete with
each other by interacting with a dynamic environment. It has broad applications in diverse fields,
including board games [44], inverse reinforcement learning [61], market pricing [34], etc.

In the existing literature, the goal of Markov game is often formulated as achieving Nash equilibrium
(NE) – a product policy under which no agent can benefit via deviating from its own policy alone.
Although NE has been shown to exist for general Markov games [22], computing NE turns out to be
a PPAD-complete problem that cannot be solved in polynomial time [17, 32], except for some special
Markov games with zero-sum structure [11, 16, 21, 63, 64] or potential structure [35, 58]. This further
motivates researchers to consider other surrogate notions of equilibrium that are slightly weaker than
NE but are computationally tractable, and correlated equilibrium (CE) is such a classic and popular
surrogate notion [40] (see Section 2 for the formal definition) for which many convergent and efficient
algorithms have been developed very recently [31, 37, 46].

While Markov game has been well studied, its formulation has limited applicability to real-life
applications where the behavior of agents is usually subject to certain constraints. For example, in
an uplink time division multiple access (TDMA) cognitive radio network, each user’s total latency
cannot exceed a threshold on average [62]. In an anti-jamming system, the jammer aims to jam
ligitimate signal transmitter under average power constraint [27]. To overcome this limitation,
constrained Markov game has been introduced where agents compete with each other under local
behavioral constraints encoded by state value functions [4]. However, most existing works on
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constrained Markov game only studied Nash equilibrium (NE) that is PPAD-complete to compute
[3–6, 20, 24, 27–30, 45, 48, 51, 52, 55, 59, 60, 62], and a tractable notion of correlated equilibrium (CE)
has not been formally defined for constrained Markov games. To the best of our knowledge, [26] is
the only work that explored CE in constrained Markov games. However, they define CE based on
the unconstrained Lagrangian function associated with the constrained Markov game, which does
not correspond to an equilibrium of the original constrained Markov game. Therefore, the goal of
this work is to formally define a tractable notion of CE for constrained Markov games, study its
fundamental properties and develop provably convergent and computation-efficient algorithms for
achieving such an equilibrium, as we further elaborate below.

To achieve this goal, we need to explore and address several fundamental problems. First, while
one can generalize the definition of CE of Markov game to the constrained case, it may possess
fundamentally different structures due to the presence of constraints. Specifically, as we introduce
later in Definition 2.1, modification (of actions) is a key structure of CE. In standard Markov
games (without constraints), CE is equivalent under both stochastic and deterministic modifications.
However, it is unclear if such equivalence still holds in constrained Markov games, which critically
affects the formal definition of CE as well as the algorithm design. Second, a classic and powerful
tool to handle constrained problems is the strong duality of the associated Lagrangian, which has
been established for NE of constrained Markov games [30, 62]. Thus, we are inspired to explore if
strong duality holds for CE of constrained Markov games, which is a challenging problem due to
the complex modification structure of CE and the nonconvex Lagrangian. Lastly, once we have a
comprehensive understanding of the above two problems, we can hope for a provably convergent
and efficient primal-dual algorithm for finding CE of constrained Markov games. In particular,
it is much desired to analyze the non-asymptotic convergence rate and sample complexity of the
proposed algorithm, as the existing algorithms for constrained Markov games either lack convergence
guarantee [30] or only have asymptotic convergence guarantee [26, 62].

1.1 Our Contributions

We define a notion of CE for constrained Markov games as a generalization of the CE for Markov
games. It is defined as an equilibrium at which no feasible stochastic modification of the joint
policy from any agent alone can improve the associated value function (see Definition 3.2). Such a
generalized CE turns out to possess a structure of modification that is fundamentally different from
the CE of Markov games. Specifically, we prove in Theorem 1 that our proposed CE for constrained
Markov games is strictly stronger with stochastic modification than with deterministic modification.
As a comparison, the CE of Markov games is equivalent with both types of modifications. This fact
motivates defining CE with stochastic modification for constrained Markov games, which further
lays the foundation for developing the strong duality result and the primal-dual algorithm later.

We study the Lagrangian function associated with the proposed CE for constrained Markov games
and prove that it has zero duality gap (See Theorem 3). Such a result is the key for developing
a convergent primal-dual algorithm. Compared with the strong duality established in the existing
works [2, 30, 42], the proof of our result for constrained Markov games requires new technical
developments. To elaborate, the existing works yield Lagrangian functions that are defined over the
entire unconstrained policy space. As a comparison, our Lagrangian function is defined over the set
of stochastically modified policies, which corresponds to a subset of the policy space over which the
Lagrangian function is nonconvex. To address this challenge, we transform the Lagrangian function
from the policy space to the corresponding space of probability measures on episodes induced by the
stochastically modified policies. We show that the transformed Lagrangian function is linear and the
transformed space is convex and compact, which further implies the desired strong duality.

Then, we propose the first primal-dual algorithm that provably converges to CE of constrained Markov
games. In particular, the primal update of our algorithm requires to compute an approximate CE of
an unconstrained Markov game associated with the Lagrangian function, which can be efficiently
solved by many existing algorithms, e.g., V-learning [31,46] and Nash Value Iteration [37]. We prove
that both the duality gap and the constraint violation of the output policy produced by our algorithm
converge at the rate O( 1√

T
), where T denotes the number of iterations. This rate is comparable

to that of the primal-dual algorithm for single-agent constrained reinforcement learning [18, 19].
Moreover, when adopting the V-learning algorithm as the subroutine in the primal update, our
algorithm achieves an approximate CE with ϵ duality gap and constrained violation with the sample
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complexity O(H9SA2ϵ−4), where H denotes the episode length, S,A denote the cardinality of the
state space and action space, respectively.

1.2 Other Related Work

Markov game: [53] introduced coarse correlated equilibrium (CCE) for Markov game that is weaker
than CE. Many algorithms such as V-learning [31, 39, 46] and Nash Value Iteration [37] can achieve
an approximate CCE with finite time convergence guarantee. Various other Markov game settings
have also been studied. For example, [14,25] studied mean-field Markov game with a large number of
agents. In a Stackelberg game [8,50], agents are partitioned into leaders and followers. The followers
select the best response to the leaders’ actions, and the leaders’ goal is to achieve Stackelberg
equilibrium which corresponds to the leaders’ optimal strategy. Strategic game can be seen as a
special case of Markov game without state and transition [41]. Extensive-form game [10, 23, 33, 65]
can be seen as a special case of Markov game where any state can only be reached from a unique
state at the previous step due to the tree structure of the game.

Constrained reinforcement learning: Single-agent constrained reinforcement learning (RL) is a
single-agent RL problem with behavioral constraints. It is usually formulated as constrained Markov
decision process [2], which can be seen as a special case of constrained Markov game with only
one agent. Various primal-dual algorithms have been proposed for single-agent constrained RL
[1, 2, 18, 19, 36, 47, 49, 56, 57]. Other types of algorithms include Lyapunov-based algorithms that use
Lyapunov functions [12,13], interior point methods that use logarithmic barrier functions [38], policy
network with a special layer to encode constraints [15], and primal algorithms that update the policy
via alternatively maximizing the objective function and minimizing the violated constraints [54].

2 Preliminaries of Markov Game

We consider M agents playing a Markov game over a finite time horizon of episode length H .
Specifically, at every time step h = 1, ...,H , the agents observe a global state sh ∈ S of the environ-
ment, where S denotes the state space. Then, the agents take a joint action ah = [a

(1)
h , . . . , a

(M)
h ]

following a joint stochastic policy πh(·|s1:h, a1:(h−1)), which corresponds to a distribution on the
joint action space A :=

∏M
m=1A(m) and depends on the past states s1:h := {st}ht=1 and past actions

a1:(h−1) := {at}h−1
t=1 . After that, the global state of the environment transfers to a new state sh+1 fol-

lowing the state transition kernel P(·|sh, ah), and each agent m receives a local reward r
(m)
0,h (sh, ah)

from the environment. We note that here the joint policy πh can be a non-product (i.e., cannot be
factorized into a product of independent policies associated with the agents) and non-Markov policy.

In the above Markov game, each agent m collects its own rewards over the episodes. Denote ρ as the
initial state distribution, we can define the following value function associated with agent m.

V
(m)
0 (π) := Eπ

[ H∑
h=1

r
(m)
0,h (sh, ah)

∣∣∣s1 ∼ ρ
]
, (1)

which corresponds to the expected cumulative reward received by agent m under joint policy π :=

{πh}Hh=1 and initial state s. The goal of agent m is to optimize its own policy π(m) := {π(m)
h }Hh=1

in order to maximize its associated value function V
(m)
0 (π). However, since every agent’s value

function is also affected by the other agents’ policies and actions, the agents must compete with each
other to gain more rewards until they reach a certain equilibrium. Here, we introduce two popular
equilibrium notions that will be discussed throughout the paper.

Nash Equilibrium (NE). A joint policy π is called an NE if the following two conditions are met:
(i) for any time step h, the joint policy πh is a product policy that can be factorized into a product
of independent policies, i.e., πh = π

(1)
h × . . . × π

(M)
h so that the agents take independent actions;

(ii) For any agent m with any associated policy π̃(m), it holds that V (m)
0 (π) ≥ V

(m)
0 (π̃(m) × π(\m)).

Here, π(\m) denotes the joint policy of all the other agents excluding the agent m, and ‘×’ means
that π̃(m) is independent from π(\m).

In other words, at NE, no agent can improve its value function by deviating from its associated policy.
In the existing literature, it has been shown that computing NE is a PPAD-complete problem [17, 32],
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for which it is not possible to develop polynomial-time algorithms. This observation has motivated
researchers to propose a surrogate correlated equilibrium (CE) notion [40]. Before introducing the
formal definition of CE, we first define the following stochastic modification operator.

Definition 2.1 (Stochastic modification). For any time step h, denote a
(m)
h as agent m’s action

induced by joint policy πh. Given the past states and actions s1:h, a1:(h−1), a stochastic modification

ϕ
(m)
h (associated with agent m) is a distribution that randomly maps a(m)

h to another action ã
(m)
h ,

i.e., ã(m)
h ∼ ϕ

(m)
h (·|s1:h, a1:h−1, a

(m)
h ). Moreover, we denote ϕ

(m)
h ◦ πh as the joint policy modified

by ϕ
(m)
h , i.e., πh first generates a joint action ah := [a

(m)
h , a

(\m)
h ], and then ϕ

(m)
h modifies a(m)

h to
another ã(m)

h at random. We also denote ϕ(m) := {ϕ(m)
h }Hh=1, ϕ(m) ◦ π := {ϕ(m)

h ◦ πh}Hh=1.

Correlated Equilibrium (CE). A joint policy π is called a CE if for any agent m and any stochastic
modification ϕ(m), it holds that V (m)

0 (π) ≥ V
(m)
0 (ϕ(m) ◦ π).

Intuitively, at CE, no agent can improve its value function by modifying its own action induced by the
joint CE policy. Compare to NE policies, CE policies do not require joint independence among all
the agents. In fact, it has been shown that any NE policy is guaranteed to be a CE policy [31, 37, 46],
and hence CE is a weaker equilibrium notion than NE. Moreover, CE can be reformulated as linear
programming and therefore is computationally tractable.

3 Correlated Equilibrium of Constrained Markov Game

In this section, we introduce constrained Markov game – a generalization of the standard Markov
game with constraints on agents’ behavior. We then propose and study a new notion of correlated
equilibrium for constrained Markov games.

3.1 Constrained Markov Game

In many real-life Markov games, the behavior of the agents is usually restricted by certain constraints,
e.g., constraints on total time delay, average power, etc. This motivates us to consider a constrained
version of Markov game [2]. Constrained Markov game follows the same state/action transition
as that of the standard Markov game introduced in Section 2. The key difference is that, after the
state transition at each time step h in a constrained Markov game, every agent m receives dm+1

number of rewards {r(m)
j,h (sh, ah)}dm

j=0. Here, the accumulation of the reward r
(m)
0,h corresponds to the

target that agent m aims to maximize. The other rewards {r(m)
j,h }

dm
j=1 are introduced to encode the

behavioral constraints of agent m. In this paper, we consider the type of covering constraints on the
accumulation of the rewards {r(m)

j,h (sh, ah)}dm
j=1 over the episode, which impose constraints on the

long-term behavior of agents. More specifically, define the following value functions associated with
the reward functions of agent m:

V
(m)
j (π) := Eπ

[ H∑
h=1

r
(m)
j,h (sh, ah)

∣∣∣s1 ∼ ρ
]
, j = 0, . . . , dm. (2)

Every agent m aims to optimize its own policy π(m) via the following constrained Markov game.

(Constrained Markov Game): max
π(m)

V
(m)
0 (π), s.t. V

(m)
j (π) ≥ c

(m)
j , j = 1, . . . , dm. (3)

where {c(m)
j }dm

j=1 ∈ R denote the thresholds of the constraints V
(m)
j (π) ≥ c

(m)
j . Intuitively, the

constraints on the value functions implicitly impose constraints on the joint policy π, and all the
agents aim to maximize their own target value functions and achieve a certain equilibrium under their
local constraints.

3.2 Nash Equilibrium and Correlated Equilibrium

For constrained Markov games, we can define the following notion of Nash equilibrium (NE) that is
similar to the standard Nash equilibrium but takes into account the constraints [3, 27, 45, 51, 55, 60].
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Definition 3.1 (NE of constrained Markov game). For a constrained Markov game, a joint policy π
is called an NE if the following conditions are met: (i) for any time step h, the joint policy πh is a
product policy that can be factorized into a product of independent policies; (ii) π is feasible, i.e., it
satisfies the constraints of all the agents; (iii) For any agent m with any associated policy π̃(m) such
that π̃(m) × π(\m) is feasible, it holds that V (m)

0 (π) ≥ V
(m)
0 (π̃(m) × π(\m)).

Compared with the NE of Markov game defined in Section 2, NE of constrained Markov game further
requires the joint policies π and π̃(m)×π(\m) to be feasible. It has been shown that such an NE exists
for general constrained Markov games [4]. Moreover, since constrained Markov game generalizes
the Markov game, computing NE of constrained Markov game is also a PPAD-complete problem.
Therefore, we are motivated to propose the following surrogate notion of correlated equilibrium (CE).
Definition 3.2 (CE of constrained Markov game). For a constrained Markov game, a joint policy π
is called a CE if the following conditions hold: (i) π is feasible, i.e., it satisfies the constraints of all
the agents; (ii) for any agent m and any stochastic modification ϕ(m) such that ϕ(m) ◦ π is feasible,
it holds that V (m)

0 (π) ≥ V
(m)
0 (ϕ(m) ◦ π).

In particular, if π is a product policy, it can be seen that ϕ(m) ◦ π is also a product policy and then CE
would reduce to NE. Therefore, the above definition of CE generalizes NE of constrained Markov
games. We note that [26] also defined CE for constrained Markov games, but in a very different
aspect. Specifically, they only defined CE based on the unconstrained Markov game associated
with a Lagrange function (i.e., with surrogate reward defined in eq. (8)), which does not necessarily
require π and ϕ(m) ◦ π to be feasible but our Definition 3.2 requires. Therefore, the existing CE
proposed in [26] essentially follows the CE of unconstrained Markov games, whose definition is
stated after our Definition 2.1. Moreover, [26] defined CE based on the state-action value function
and consider stationary Markov policies in the discounted infinite horizon setting, whereas we define
CE based on the state value function and consider non-Markov policies in the finite horizon setting.

It may seem that the CE in Definition 3.2 is a straightforward generalization of that of the standard
Markov game. However, it turns out to possess a fundamentally different structure of the modification
operator at the equilibrium point due to the presence of constraints, as elaborated in the following
fundamental result. Throughout the paper, we call a stochastic modification operator deterministic if
its pdf is supported on a single action.
Theorem 1 (Modification of CE).
1. For unconstrained Markov games. If a policy π satisfies that V (m)

0 (π) ≥ V
(m)
0 (ϕ(m) ◦ π) for any

agent m and any deterministic modification ϕ(m), then π must be a CE.
2. For constrained Markov games. Even if a feasible policy π satisfies that V (m)

0 (π) ≥ V
(m)
0 (ϕ(m) ◦

π) for any agent m and any feasible deterministic modification ϕ(m), π may not be a CE.

Theorem 1 shows that the structure of modification at the CE of Markov games is different from
that of constrained Markov games. To elaborate item 1, recall that a CE policy π of a Markov
game is defined to satisfy V (m)(π) ≥ V (m)(ϕ(m) ◦ π) for any stochastic modification ϕ(m) (see
Section 2). Since stochastic modifications include deterministic modifications, item 1 proves that
CE of Markov games can always be achieved by a deterministic modification. Therefore, it suffices
to define CE of Markov games using deterministic modifications, as adopted by many existing
works [31, 37, 46]. As a comparison, item 2 shows that for constrained Markov games, the CE
defined using deterministic modification is in general weaker than the CE defined using stochastic
modification (see Definition 3.2), which is the focus of this paper. More importantly, as we show
later in Theorem 2, defining CE of constrained Markov games using stochastic modification allows
us to establish a strong duality result, which is the key to develop convergent primal-dual algorithms.

The proof of Theorem 1 is non-trivial and we provide a proof sketch here. To prove item 1, our
strategy is to construct a simple deterministic modification ϕ(m) (see Appendix C for the construction)
for any optimal stochastic modification ϕ̃(m) and show that they achieve the same optimal value
function, i.e., V (m)

0 (ϕ(m) ◦ π) = V
(m)
0 (ϕ̃(m) ◦ π). To show this, we transform the value functions

from the policy space π to the space of probability measure pπ of episodes induced by the associated
policy, i.e., V (m)

0 (π) = Ṽ
(m)
0 (pπ) (see eq. (22)), so that the transformed value function Ṽ

(m)
0 is linear

in pπ . Then we consider the extrapolated probability measure pλ := λpϕ(m)◦π + (1− λ)pϕ̃(m)◦π and

show that there exists λ < 0 such that pλ is a measure induced by a modified policy ϕ
(m)
λ ◦ π for
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certain proper stochastic modification ϕ
(m)
λ . This together with the linearity of Ṽ (m)

0 proves item 1.
To prove item 2, we construct a counterexample of constrained Markov game such that its CE under
stochastic modification is shown to be strictly stronger than its CE under deterministic modification.

4 A Primal-Dual Algorithm for Constrained Markov Game

In this section, we develop a primal-dual algorithm for finding correlated equilibrium (CE) of
general constrained Markov games. Throughout this section, to simplify the notation, we denote
V (m)(π) := [V

(m)
1 (π), ..., V

(m)
dm

(π)] as the collection of all the value functions in the constraints,

and denote c(m) := [c
(m)
1 , ..., c

(m)
dm

] as the collection of all the thresholds of the constraints.

4.1 Strong Duality for Correlated Equilibrium

Consider any feasible policy π of a constrained Markov game, i.e., V (m)(π) ≥ c(m) holds entrywise.
The CE of constrained Markov game is related to the following constrained optimization problem.

For m = 1, ...,M , max
stochastic ϕ(m)

V
(m)
0 (ϕ(m) ◦ π) s.t. V (m)(ϕ(m) ◦ π) ≥ c(m), (4)

where ‘≥’ applies entrywise and the maximization is taken over all stochastic modifications. To
further explain, define the following duality gap for every agent m.

D(m)(π) := max
feasible ϕ(m)

V
(m)
0 (ϕ(m) ◦ π)− V

(m)
0 (π), (5)

where a modification ϕ(m) is called feasible if ϕ(m) ◦ π satisfies the constraint in eq. (4). Clearly, we
have D(m)(π) ≥ 0 as the identity modification (i.e., ϕ(m) ◦ π = π) is feasible. Moreover, it can be
seen that π is a CE of constrained Markov game if and only if maxm D(m)(π) = 0.

Since the problem in eq. (4) takes a constrained form, it is natural to consider its equivalent Lagrangian
formulation, which is written below.

max
ϕ(m)

min
λ(m)∈Rdm

+

L(m)(ϕ(m) ◦ π, λ(m)) := V
(m)
0 (ϕ(m) ◦ π) + λ(m)⊤(V (m)(ϕ(m) ◦ π)− c(m)

)
, (6)

where λ(m) ∈ Rdm
+ is the dual variable. In order to develop convergent primal-dual algorithms for

solving the constrained problem, a fundamental problem that needs to be addressed is the duality gap
of the above Lagrangian function. In conventional constrained convex optimization [9], strong duality
can be achieved under a Slater’s condition, which requires the existence of a strictly feasible point
under the constraints. Recently, this condition has also been introduced to establish strong duality
for single-agent constrained reinforcement learning [18, 19, 42]. For constrained Markov game, we
introduce the following Slater-type condition to study its duality gap.
Assumption 1 (Slater’s condition). For any agent m and any joint policy π, there exists a stochastic
modification ϕ(m) such that V (m)(ϕ(m) ◦ π)− c(m) ≥ ξ(m) for some strictly positive ξ(m).

The above Slater’s condition assumes that agents can always find a strictly feasible stochastic
modification, regardless of the joint policy. Such a condition is closely related to the existing Slater-
type condition for constrained Markov games [3, 4, 45], which replaces the modification operator
ϕ(m) by an independent local policy π̃(m) and is used to study NE. With the above Slater’s condition,
we are able to establish the following strong duality result for constrained Markov game.
Theorem 2 (Strong duality). Let Assumption 1 hold. Then, strong duality holds for constrained
Markov games, i.e., for any joint policy π and any agent m,

max
ϕ(m)

min
λ(m)∈Rdm

+

L(m)(ϕ(m) ◦ π, λ(m)) = min
λ(m)∈Rdm

+

max
ϕ(m)

L(m)(ϕ(m) ◦ π, λ(m)). (7)

To the best of our knowledge, such a strong duality result has not been established before for CE
of constrained Markov games, and later we show that this is essential for developing a primal-dual
algorithm for finding CE of constrained Markov games. In particular, compared to the strong
duality results of single-agent constrained RL [2, 42] and those for finding Nash equilibrium (NE) of
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constrained Markov game [30], the proof of Theorem 1 for finding CE of constrained Markov game
is substantially different and more challenging, as we elaborate below.

Technical novelty. Note that the constrained settings considered in the aforementioned existing
works [2, 30, 42] lead to Lagrangian functions defined over the entire unconstrained policy space,
which is clearly convex and helps establish the strong duality result. As a comparison, in order to
find CE, our Lagrangian function L(m) is a nonlinear function in ϕ(m) and is defined over the set of
modified policies {ϕ(m) ◦ π : ϕ(m) is stochastic modification} for a fixed π. Such a set is a subset
of the entire policy space and is not easy to analyze directly. To overcome this challenge, we first
rewrite L(m)(ϕ(m) ◦ π, λ(m)) as L̃(m)(pϕ(m)◦π, λ

(m)) (see eq. (23)), which is a function of pϕ(m)◦π
– the probability measure of the episode (s1:H , a1:H) induced by the modified policy ϕ(m) ◦ π.1

Since we showed that L̃(m) is linear in both of its arguments, strong duality would follow if we can
prove that the domain of the first argument X := {pϕ(m)◦π : ϕ(m) is stochastic modification} is a
convex and compact set, and the proof of this result requires substantial effort. More specifically, to
prove convexity we need to show that the convex combination λpϕ(m)◦π + (1− λ)pϕ̃(m)◦π for any

λ ∈ [0, 1] and any modifications ϕ(m), ϕ̃(m) is a valid probability measure of the episode induced by a
certain modified policy, and to prove compactness we need to show the closedness of any converging
sequence {p

ϕ
(m)

[k]
◦π}k. To prove these claims, we need to study the fundamental properties of the

measure pπ and the modified measure pϕ(m)◦π in Lemma A.1 and Lemma B.1.

4.2 A Primal-Dual Algorithm for Finding Correlated Equilibrium

Based on the strong duality result in Theorem 2, finding CE of constrained Markov game is equivalent
to solving the minimax optimization problem in eq. (7) for all agents m, which can be effectively
solved by a primal-dual algorithm that alternatively updates the primal variable ϕ(m) and the dual
variable λ(m). While λ(m) can be updated using the standard projected dual descent update, the
update of ϕ(m) requires further exploration as we elaborate below.

Specifically, with a fixed λ(m), the primal update needs to solve the optimization problem
maxϕ(m) L(m)(ϕ(m) ◦ π, λ(m)). Denote r

(m)
h (s, a) := [r

(m)
1,h (s, a), . . . , r

(m)
dm,h(s, a)]

⊤ as the col-
lection of the rewards associated with the constraints, and define the following weighted surrogate
reward R

(m)
λ,h and its associated value function V

(m)
λ .

R
(m)
λ,h (sh, ah) := r

(m)
0,h (sh, ah) + λ(m)⊤r

(m)
h (sh, ah), (8)

V
(m)
λ (π) := Eπ

[ H∑
h=1

R
(m)
λ,h (sh, ah)

∣∣∣s1 ∼ ρ
]
. (9)

Then, the optimization problem of the primal update can be rewritten as follows.

max
ϕ(m)

L(m)(ϕ(m) ◦ π, λ(m)) = max
ϕ(m)

{
V

(m)
λ (ϕ(m) ◦ π)

}
− λ(m)⊤c(m). (10)

Interestingly, the problem maxϕ(m) V
(m)
λ (ϕ(m) ◦ π) can be understood as finding CE of an uncon-

strained Markov game with associated reward R
(m)
λ,h and value function V

(m)
λ . Therefore, to perform

the primal update, we can apply any black-box algorithm for finding CE of unconstrained Markov
games to update the policy. In particular, some existing popular algorithms include the V-learning
algorithm [31,46] and the Nash Value Iteration algorithm [37], both of which can output a policy that
achieves ϵ-duality gap (defined in eq. (11)) with provable finite-time complexities.

We summarize this primal-dual algorithm in Algorithm 1, which alternatively updates the policy πt

via finding an approximated CE of an unconstrained Markov game (with fixed λ
(m)
t ), and updates

λ
(m)
t via projected dual descent (with fixed πt). In particular, the projection set Λ(m) ⊂ Rdm

+ must
contain the optimal dual variable and also be bounded to ensure a bounded surrogate reward R

(m)
λ,h .

We give a specific choice of Λ(m) in the next convergence analysis Section 5.
1 [30, 42] use occupation measure induced by policy instead of the joint probability measure pπ , as they

consider stationary Markov policies that select action at based on the current state st.
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Algorithm 1 Primal-Dual Algorithm for Finding CE of Constrained Markov Game

Input: ϵ, η > 0; Λ(m) ⊂ Rdm
+ for all m = 1, ...,M .

Initialize: λ(m)
0 = 0 for all m = 1, ...,M.

for iterations t = 0, 1, . . . , T − 1 do
• Let λ(m) ← λ

(m)
t . Solve unconstrained Markov game with rewards R(m)

λ,h (defined in eq. (8))
and obtain an approximate CE policy πt that satisfies

max
ϕ(m)

V
(m)
λ (ϕ(m) ◦ πt)− V

(m)
λ (πt) ≤ ϵ, ∀m = 1, ...,M. (11)

• Update λ
(m)
t via the following projected dual descent step

λ
(m)
t+1 = projΛ(m)

(
λ
(m)
t − η

(
V (m)(πt)− c(m)

))
, ∀m = 1, ...,M. (12)

end
Output: πt̃ where t̃ is sampled from {0, 1, . . . , T − 1} uniformly at random.

Comparison to the existing art. Some existing works have developed other primal-dual algorithms
with different primal policy improvement updates for constrained Markov games. For example, value
iteration (Algorithm 11.1 of [62]), simultaneous perturbation stochastic approximation (Algorithm
11.2 of [62]) and policy gradient [30] are used as the primal update to find NE of constrained Markov
games, and Q-learning [26] is used as the primal update to find CE of the Lagrangian function
associated with the constrained Markov game. However, none of these works have established non-
asymptotic convergence rate and sample complexity for the proposed algorithms. As a comparison,
our Algorithm 1 can use any black-box primal update that can compute an approximate CE of
unconstrained Markov games, and enjoys a provable non-asymptotic convergence rate and low
sample complexity as we show in the next section.

5 Convergence Analysis and Sample Complexity

In this section, we analyze the non-asymptotic convergence rate of the primal-dual Algorithm 1.
Then, we adopt the V-learning algorithm [31] as the primal update of Algorithm 1, and derive the
overall sample complexity required by Algorithm 1 to achieve an approximate CE with ϵ duality gap.

We adopt the following assumption of bounded reward that is commonly adopted in the analysis of
constrained RL [18, 19, 42], Markov game [31, 37, 46] and constrained Markov game [26].

Assumption 2 (Bounded reward). For all agents m = 1, ...,M , there exists constant r(m)
j,max > 0

such that 0 ≤ r
(m)
j,h ≤ r

(m)
j,max for all 1 ≤ h ≤ H and 0 ≤ j ≤ dm.

Under Assumptions 1 and 2, we choose the following projection set Λ(m) for Algorithm 1. In
particular, we prove in Lemma E.1 that such a set contains the optimal dual variable.

Λ(m) :=

[
0,

2Hr
(m)
0,max

ξ
(m)
1

]
×
[
0,

2Hr
(m)
0,max

ξ
(m)
2

]
× . . .×

[
0,

2Hr
(m)
0,max

ξ
(m)
dm

]
⊂ Rdm

+ . (13)

Theorem 3 (Convergence rate). Let Assumptions 1 and 2 hold. Run Algorithm 1 for T iterations
with stepsize η = 1√

T
and projection set Λ(m) defined in eq. (13). Then, the output policy πt̃ achieves

the following duality gap (defined in eq. (5)).

E
[
D(m)(πt̃)

]
≤ 2(HR

(m)
max)2√
T

+ ϵ, ∀m = 1, ...,M, (14)

where R
(m)
max :=

√∑dm

j=1(r
(m)
j,max)

2. Moreover, define the constraint violation of the output policy πt̃

as W (m)(πt̃) :=
∑dm

j=1(ξ
(m)
j )−1

(
c
(m)
j − V

(m)
j (πt̃)

)
+

, where (a)+ := max{0, a}. We obtain that

E
[
W (m)(πt̃)

]
≤ 2HR

(m)
max√
T

dm∑
j=1

(ξ
(m)
j )−2 +

2H(R
(m)
max)2

r
(m)
0,max

√
T

+
ϵ

Hr
(m)
0,max

, ∀m = 1, ...,M. (15)
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The above theorem shows that both the duality gap and the constraint violation associated with the
output policy converge at the rate O( 1√

T
+ ϵ), where ϵ is the target duality gap of the unconstrained

Markov game in the primal update. In particular, a larger slackness {ξ(m)
j }j,m implies a faster

convergence of the constraint violation. These convergence rates are comparable to those of primal-
dual algorithms for single-agent constrained RL [18, 19, 36], and the analysis is a generalization of
the single-agent case. Specifically, the updated policy πt in the primal-dual algorithm for single-agent
constrained RL is an approximate maximizer of the value function under the constraints, whereas the
πt in our case corresponds to an approximate CE at which all agents can benefit little (up to ϵ) by
modifying their own actions alone. Particularly for each agent, the duality gap convergence criterion
in eq. (11) can be understood as a convergence criterion of single-agent constrained RL, and there the
proof logic partially follows the analysis of single-agent case [19].

As our Algorithm 1 can adopt any existing algorithm for unconstrained Markov games in the primal
update, we consider adopting the V-learning algorithm developed in [31]. This is a decentralized
algorithm that incrementally updates the state value functions, which are further used to update
the agents’ policies via adversarial bandit algorithms. In particular, thanks to the use of state value
function, it requires much less memory than other algorithms based on state-action value functions
[26]. In Theorem 7 of [31], it is proved that the V-learning algorithm achieves an approximate CE
with ϵ duality gap for any unconstrained Markov game with the state-of-the-art sample complexity
Õ(H5SA2ϵ−2), where Õ hides the logarithm factors and S = |S|, A = maxm |A(m)| correspond to
the cardinality of the state space and action space, respectively. We then obtain the following sample
complexity result.

Corollary 5.1 (Sample complexity). Let Theorem 3 hold and assume r
(m)
0,max ≥ 1

H . Ap-
ply the V-learning algorithm [31] to the primal update of Algorithm 1 and choose T =

maxm 4ϵ−2(HR
(m)
max)2

(∑dm

j=1(ξ
(m)
j )−2 + HR

(m)
max

)2
. Then, the output policy πt̃ achieves

max
(
E[D(m)(πt̃)],E[W (m)(πt̃)]

)
≤ 2ϵ with the sample complexity Õ(H9SA2ϵ−4).

To the best of our knowledge, this is the first finite-time sample complexity result establsihed for
constrained Markov games. Next, we compare our sample complexity with that of two popular RL
algorithms. The first one is the V-learning algorithm [31] developed for finding CE of unconstrained
Markov games, and it achieves the state-of-the-art sample complexity Õ(H5SA2ϵ−2). The infor-
mation theoretical lower bound is Ω(H3SAϵ−2) [31]. As a comparison, the sample complexity of
our primal-dual V-learning algorithm is higher since we require additional projected dual descent
steps (12) to account for the constraints. The other one is the basic primal-dual algorithm for solving
single-agent constrained RL problems, which uses natural policy gradient in the primal update
and achieves the state-of-the-art sample complexity O(ϵ−4) [7]. Such a complexity has the same
dependence on ϵ as the sample complexity of our algorithm.

6 Conclusion

In this work, we propose a surrogate notion of correlated equilibrium (CE) for constrained Markov
games and show that it possesses a fundamentally different modification structure from that of CE
of Markov game. Moreover, we prove that the corresponding Lagrangian function has zero duality
gap. Based on this result, we develop the first primal-dual algorithm that provably converges to
CE of constrained Markov games with the convergence rate O( 1√

T
). Moreover, when adopting the

V-learning algorithm as the subroutine in the primal update, our algorithm achieves an approximate
CE with ϵ duality gap with the sample complexity O(H9SA2ϵ−4). Limitations: In this work,
we only develop the basic primal-dual algorithm for constrained Markov games. An interesting
future direction is to develop other advanced algorithms such as Nesterov’s momentum-accelerated
primal-dual algorithms. Negative social impacts: This is a fundamental theoretical study and does
not have any potential negative social impact.
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