
Confident Approximate Policy Iteration for Efficient
Local Planning in 𝑞𝜋-realizable MDPs

Gellért Weisz
DeepMind, London, UK

University College London, London, UK

András György
DeepMind, London, UK

Tadashi Kozuno
University of Alberta, Edmonton, Canada

Omron Sinic X, Tokyo, Japan

Csaba Szepesvári
DeepMind, London, UK

University of Alberta, Edmonton, Canada

Abstract

We consider approximate dynamic programming in 𝛾-discounted Markov deci-
sion processes and apply it to approximate planning with linear value-function
approximation. Our first contribution is a new variant of APPROXIMATE POL-
ICY ITERATION (API), called CONFIDENT APPROXIMATE POLICY ITERATION
(CAPI), which computes a deterministic stationary policy with an optimal error
bound scaling linearly with the product of the effective horizon 𝐻 and the worst-
case approximation error Y of the action-value functions of stationary policies.
This improvement over API (whose error scales with 𝐻2) comes at the price of
an 𝐻-fold increase in memory cost. Unlike Scherrer and Lesner [2012], who
recommended computing a non-stationary policy to achieve a similar improvement
(with the same memory overhead), we are able to stick to stationary policies. This
allows for our second contribution, the application of CAPI to planning with local
access to a simulator and 𝑑-dimensional linear function approximation. As such,
we design a planning algorithm that applies CAPI to obtain a sequence of policies
with successively refined accuracies on a dynamically evolving set of states. The
algorithm outputs an Õ(

√
𝑑𝐻Y)-optimal policy after issuing Õ(𝑑𝐻4/Y2) queries

to the simulator, simultaneously achieving the optimal accuracy bound and the best
known query complexity bound, while earlier algorithms in the literature achieve
only one of them. This query complexity is shown to be tight in all parameters ex-
cept 𝐻. These improvements come at the expense of a mild (polynomial) increase
in memory and computational costs of both the algorithm and its output policy.

1 Introduction

A key question in reinforcement learning is how to use value-function approximation to arrive at
scaleable algorithms that can find near-optimal policies in Markov decision processes (MDPs). A
flurry of recent results aims at solving this problem efficiently with varying models of interaction
with the MDP. In this paper we focus on the problem of planning with a simulator when using linear
function approximation. A simulator is a “device” that, given a state-action pair as a query, returns a
next state and reward generated from the transition kernel of the MDP that is simulated. Depending
on the application, such a simulator is often readily available (e.g., in chess, go, Atari). Planning
with simulator access comes with great benefits: for example, in a recent work, Wang et al. [2021]
showed that under some conditions it is exponentially more efficient to find a near-optimal policy if
a simulator of the MDP (that can reset to a state) is available compared to the online case where a
learner interacts with its environment by following trajectories but without the help of a simulator.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Our setting of offline, local planning considers the problem of finding a policy with near-optimal
value at a given initial state 𝑠0 in the MDP. The planner can issue queries to the simulator, and has to
find and output a near-optimal policy with high probability. The efficiency of a planner is measured in
four ways: the suboptimality of the policy found, that is, how far its value is from that of the optimal
policy; the query cost, that is, the number of queries issued to the simulator; the computational cost,
which is the number of operations used; and the memory cost, which is the amount of memory used
(we adopt the real computation model for these costs). There are several interaction models between
the planner and the simulator [Yin et al., 2022]. The most permissive one is called the generative
model, or random access. Here, the planner receives the set of all states and is allowed to issue
queries for any state and action. Coding a simulator that supports this model can be challenging, as
oftentimes the set of states is computationally difficult to describe. Instead of random access, we
consider the more practical and more challenging local access setting, where the planner only sees
the initial state and the set of states received as a result to a query to the simulator. Consequently, the
queries issued have to be for a state that has already been encountered this way (and any available
action), while the simulator needs to support the ability to reset the MDP state only to previously
seen states. A simple approach in practice to support this model is saving and reloading checkpoints
during the operation of the simulator.

To handle large, possibly infinite state spaces, we use linear function approximation to approximate
the action-value functions 𝑞𝜋 of stationary, deterministic policies 𝜋 (for background on MDPs, see the
next section). A feature-map is a good fit to an MDP if the worst-case error of using the feature-map
to approximate value functions of policies of the MDP is small:
Definition 1.1 (𝑞𝜋-realizability: uniform policy value-function approximation error). Given an
MDP, the uniform policy value-function approximation error induced by a feature map 𝜑, which
maps state-action pairs (𝑠, 𝑎) to the Euclidean ball of radius 𝐿 centered at zero in R𝑑 , over a set of
parameters belonging to the 𝑑-dimensional centered Euclidean ball of radius 𝐵 is

Y = sup
𝜋

inf
\ :∥ \ ∥2≤𝐵

sup
(𝑠,𝑎)
|𝑞𝜋 (𝑠, 𝑎) − ⟨𝜑(𝑠, 𝑎), \⟩ | ,

where the outermost supremum is over all possible stationary deterministic memoryless policies (i.e.,
maps from states to actions) of the MDP.

Our goal is to design algorithms that scale gracefully with the uniform approximation error Y at the ex-
pense of controlled computational cost. To achieve nontrivial guarantees, the uniform approximation
error needs to be “small”. This (implicit) assumption is stronger than the 𝑞★-realizability assumption
(where the approximation error is only considered for optimal policies), which Weisz et al. [2021]
showed an exponential query complexity lower bound for. At the same time, it is (strictly) weaker
than the linear MDP assumption [Zanette et al., 2020], for which there are efficient algorithms to find
a near-optimal policy in the online setting (without a simulator) [Jin et al., 2020], even in the more
challenging reward-free setting where the rewards are only revealed after exploration [Wagenmaker
et al., 2022].

In the local access setting, the planner learns the features 𝜑(𝑠, 𝑎) of a state-action pair only for those
states 𝑠 that have already been encountered. In contrast, in the random access setting, the whole
feature map 𝜑(·, ·), of (possibly infinite) size 𝑑 |S| |A| (where S and A are the state and action sets,
resp.), is given to the planner as input. In the latter setting, when only the query cost is counted, Du
et al. [2019] and Lattimore et al. [2020] proposed algorithms (the latter working in the misspecified,
Y > 0 regime) that issue a number of queries that is polynomial in the relevant parameters, but require
a barycentric spanner or near-optimal design of the input features. In the worst case, computing any
of these sets scales polynomially in |S| and |A|, which can be prohibitive.

In the case of local access, considered in this paper, the best known bound on the suboptimality of the
computed policy is achieved by CONFIDENT MC-POLITEX [Yin et al., 2022]. In the more permissive
random access setting, the best known query cost is achieved by Lattimore et al. [2020]. Our
algorithm, CAPI-QPI-PLAN (given in Algorithm 3), achieves the best of both while only assuming
local access. This is shown in the next theorem; in the theorem Y is as defined in Definition 1.1, 𝛾 is
the discount factor, and 𝑣★ and 𝑣𝜋 are the state value functions associated with the optimal policy
and policy 𝜋, respectively (precise definitions of these quantities are given in the next section). A
comparison to other algorithms in the literature is given in Table 1; there the accuracy parameter 𝜔
of the algorithms is set to Y, but a larger 𝜔 can be used to trade off suboptimality guarantees for an
improved query cost.

2

Theorem 1.2. For any confidence parameter 𝛿 ∈ (0, 1], accuracy parameter 𝜔 > 0, and initial state
𝑠0 ∈ S, with probability at least 1 − 𝛿, CAPI-QPI-PLAN (Algorithm 3) finds a policy 𝜋 with

𝑣★(𝑠0) − 𝑣𝜋 (𝑠0) = Õ
(
(Y + 𝜔)

√
𝑑 (1 − 𝛾)−1

)
, (1)

while executing at most Õ
(
𝑑 (1 − 𝛾)−4𝜔−2) queries in the local access setting.

CAPI-QPI-PLAN is based on CONFIDENT MC-LSPI, another algorithm of Yin et al. [2022], which
relies on policy iteration from a core set of informative state-action pairs, but achieves inferior
performance both in terms of suboptimality and query complexity. However, CAPI-QPI-PLAN’s
improvements come at the expense of increased memory and computational costs, as shown in the
next theorem: compared to CONFIDENT MC-LSPI, the memory and computational costs of our
algorithm increase by a factor of the effective horizon 𝐻 = Õ(1/(1 − 𝛾)), and the policy computed
by CAPI-QPI-PLAN uses a 𝑑𝐻 factor more memory for storage and a 𝑑2𝐻 factor more computation
to evaluate.
Theorem 1.3 (Memory and computational cost). The memory and computational cost of running
CAPI-QPI-PLAN (Algorithm 3) are Õ

(
𝑑2/(1 − 𝛾)

)
and Õ

(
𝑑4 |A|(1 − 𝛾)−5𝜔−2) , respectively, while

the memory and computational costs of storing and evaluating the final policy outputted by CAPI-
QPI-PLAN, respectively, are Õ

(
𝑑2/(1 − 𝛾)

)
and Õ

(
𝑑3 |A|/(1 − 𝛾)

)
.

Next we present a lower bound corresponding to Theorem 1.2 that holds even in the more permissive
random access setting, and shows that CAPI-QPI-PLAN trades of the query cost and the suboptimality
of the returned policy asymptotically optimally up to its dependence on 1/(1 − 𝛾):
Theorem 1.4 (Query cost lower bound). Let 𝛼 ∈ (0, 0.05𝛾

(1−𝛾) (1+𝛾)2), 𝛿 ∈ (0, 0.08], 𝛾 ∈ [7
12 , 1], 𝑑 ≥ 3,

and Y ≥ 0. Then there is a classM of MDPs with uniform policy value-function approximation error
at most Y such that any planner that guarantees to find an 𝛼-optimal policy 𝜋 (i.e., 𝑣★(𝑠0) − 𝑣𝜋 (𝑠0) ≤
𝛼) with probability at least 1 − 𝛿 for all 𝑀 ∈ M when used with a simulator for 𝑀 with random
access, the worst-case (overM) expected number of queries issued by the planner is at least

max
(
exp

(
Ω

(𝑑Y2

𝛼2 (1 − 𝛾)2
))
, Ω

(
𝑑2

𝛼2 (1 − 𝛾)3

))
. (2)

If 𝜔 is set to Y for CAPI-QPI-PLAN, the first term of Eq. (2) implies that any planner with an
asymptotically smaller (apart from logarithmic factors) suboptimality guarantee than Eq. (1) executes
exponentially many queries in expectation. The second term of Eq. (2), which is shown to be a lower
bound in Theorem H.3 even in the more general setting of linear MDPs with zero misspecification
(Y = 0), matches the query complexity of Theorem 1.2 up to an Õ((1 − 𝛾)2) factor. Thus, the lower
bound implies that the suboptimality and query cost bounds of Theorem 1.2 are tight up to logarithmic
factors in all parameters except the 1/(1 − 𝛾)-dependence of the query cost bound.

At the heart of our method is a new algorithm, which we call CONFIDENT APPROXIMATE POLICY
ITERATION (CAPI). This algorithm, which belongs to the family of approximate dynamic pro-
gramming algorithms [Bertsekas, 2012, Munos, 2003, 2005], is a novel variant of APPROXIMATE
POLICY ITERATION (API) [Bertsekas and Tsitsiklis, 1996]: in the policy improvement step, CAPI
only updates the policy in states where it is confident that the update will improve the performance.
This simple modification allows CAPI to avoid the problem of “classical” approximate dynamic
programming algorithms (approximate policy and value iteration) of inflating the value function
evaluation error by a factor of 𝐻2 where 𝐻 = Õ(1/(1 − 𝛾)) (for discussions of this problem, see also
the papers by Scherrer and Lesner, 2012 and Russo, 2020), and reduce this inflation factor to 𝐻. A
similar result has already been achieved by Scherrer and Lesner [2012], who proposed to construct
a non-stationary policy that strings together all policies obtained while running either approximate
value or policy iteration. However, applying this result to our planning problem is problematic, since
the policies to be evaluated are non-stationary, and hence including them in the policy set we aim to
approximate may drastically increase the error Y as compared to Definition 1.1, which only considers
stationary memoryless policies.

While the improvements provided by CAPI allows CAPI-QPI-PLAN to match the performance
of CONFIDENT MC-POLITEX in terms of suboptimality, it is unlikely that a simple modification
of CONFIDENT MC-POLITEX would lead to an algorithm which matches CAPI-QPI-PLAN’s

3

Table 1: Comparison of suboptimality and query complexity guarantees of various planners (with the
approximation accuracy parameter 𝜔 set to Y). Drawbacks are highlighted with red, the best bounds with blue.

Algorithm [Publication] Query cost Suboptimality Access model

MC-LSPI [Lattimore et al., 2020] Õ
(

𝑑

Y2 (1−𝛾)4
)

Õ
(
Y
√
𝑑

(1−𝛾)2
)

random access

CONFIDENT MC-LSPI [Yin et al., 2022] Õ
(

𝑑2

Y2 (1−𝛾)4
)

Õ
(
Y
√
𝑑

(1−𝛾)2
)

local access

CONFIDENT MC-POLITEX [Yin et al., 2022] Õ
(

𝑑

Y4 (1−𝛾)5
)

Õ
(
Y
√
𝑑

1−𝛾
)

local access

CAPI-QPI-PLAN [This work] Õ
(

𝑑

Y2 (1−𝛾)4
)

Õ
(
Y
√
𝑑

1−𝛾
)

local access

performance in terms of query cost (see Table 1): Both methods evaluate a sequence of policies at
an Õ(Y) accuracy each (requiring Õ(1/Y2) queries, omitting the dependence on other parameters).
However, while CAPI-QPI-PLAN (and CONFIDENT MC-LSPI) evaluates O(log(1/Y)) (again in
terms of Y only) policies to find one which is Õ(Y)-optimal, CONFIDENT MC-POLITEX needs to
compute Õ(1/Y2) policies to achieve the same. As a consequence, CONFIDENT MC-POLITEX only
achieves Õ(1/Y4) query complexity, and to match CAPI-QPI-PLAN’s Õ(1/Y2) complexity, one
would need to come up with either significantly better policy evaluation methods (potentially using
the similarity in the subsequent policies) or a much faster (exponential vs. square-root) convergence
rate in the suboptimality of the policy sequence produced by CONFIDENT MC-POLITEX.

The rest of the paper is organized as follows: The model and notation are introduced in Section 2.
CAPI is introduced and analyzed in Section 3. Planning with 𝑞𝜋-realizability is introduced in
Section 4, with CAPI-QPI-PLAN being built-up and analyzed in Sections 4.1 and 4.2. In particular,
the proof of Theorem 1.2 is given in Section 4.2. Several proofs are relegated to appendices, in
particular, Theorem 1.3 is proved and implementation details of CAPI-QPI-PLAN are discussed in
Appendix G, while Theorem 1.4 is proved in Appendix H.

2 Notation and preliminaries

Let N = {0, 1, . . .} denote the set of natural numbers, N+ = {1, 2, . . .} the positive integers. For some
integer 𝑖, let [𝑖] = {0, . . . , 𝑖 − 1}. For 𝑥 ∈ R, let ⌈𝑥⌉ denote the smallest integer i such that 𝑖 ≥ 𝑥. For
a positive definite 𝑉 ∈ R𝑑×𝑑 and 𝑥 ∈ R𝑑 , let ∥𝑥∥2𝑉 = 𝑥⊤𝑉𝑥. For matrices 𝐴 and 𝐵, we say that 𝐴 ⪰ 𝐵
if 𝐴 − 𝐵 is positive semidefinite. Let I be the 𝑑-dimensional identity matrix. For compatible vectors
𝑥, 𝑦, let ⟨𝑥, 𝑦⟩ be their inner product: ⟨𝑥, 𝑦⟩ = 𝑥⊤𝑦. Let M1 (𝑋) denote the space of probability
distributions supported on the set 𝑋 (throughout, we assume that the 𝜎-algebra is implicit). We write
𝑎 ≈Y 𝑏 for 𝑎, 𝑏, Y ∈ R if |𝑎 − 𝑏 | ≤ Y. We denote by Õ(·) and Θ̃(·) the variants of the big-O notation
that hide polylogarithmic factors.

A Markov Decision Process (MDP) is a tuple 𝑀 = (S,A,Q), where S is a measurable state space,
A is a finite action space, and Q : S × A → M1 (S × [0, 1]) is the transition-reward kernel. We
define the transition and reward distributions 𝑃 : S × A →M1 (S) and R : S × A →M1 ([0, 1])
as the marginals of Q. By a slight abuse of notation, for any 𝑠 ∈ S and 𝑎 ∈ A, let 𝑃(·|𝑠, 𝑎) and
R(·|𝑠, 𝑎) denote the distributions 𝑃(𝑠, 𝑎) and R(𝑠, 𝑎), respectively. We further denote by 𝑟 (𝑠, 𝑎) =∫ 1

0 𝑥 dR(𝑥 |𝑠, 𝑎) the expected reward for an action 𝑎 ∈ A taken in a state 𝑠 ∈ S. Without loss of
generality, we assume that there is a designated initial state 𝑠0 ∈ S.

Starting from any state 𝑠 ∈ S, a stationary memoryless policy 𝜋 : S → M1 (A) interacts with
the MDP in a sequential manner for time-steps 𝑡 ∈ N, defining a probability distribution P𝜋,𝑠
over the episode trajectory {𝑆𝑖 , 𝐴𝑖 , 𝑅𝑖}𝑖∈N as follows: 𝑆0 = 𝑠 deterministically, 𝐴𝑖 ∼ 𝜋(𝑆𝑖), and
(𝑆𝑖+1, 𝑅𝑖) ∼ Q(𝑆𝑖 , 𝐴𝑖). By a slight variation, let P𝜋,𝑠,𝑎 denote (for some 𝑎 ∈ A) the distribution of
the trajectory when 𝐴0 = 𝑎 deterministically, while the distribution of the rest of the trajectory is
defined analogously.

This allows us to conveniently define the expected state-value and action-value functions in the
discounted setting we consider, for some discount factor 0 < 𝛾 < 1, respectively, as

𝑣𝜋 (𝑠) = E𝜋,𝑠

[∑︁
𝑡∈N

𝛾𝑡𝑅𝑡

]
and 𝑞𝜋 (𝑠, 𝑎) = E𝜋,𝑠,𝑎

[∑︁
𝑡∈N

𝛾𝑡𝑅𝑡

]
for all (𝑠, 𝑎) ∈ S × A , (3)

4

where throughout the paper we use the convention that E• is the expectation operator corresponding
to a distribution P• (e.g., E𝜋,𝑠 is the expectation with respect to P𝜋,𝑠). It is well known (see, e.g.,
Puterman, 1994) that there exists an optimal stationary deterministic memoryless policy 𝜋★ such that

sup𝜋𝑣𝜋 (𝑠) = 𝑣𝜋
★ (𝑠) and sup𝜋𝑞𝜋 (𝑠, 𝑎) = 𝑞𝜋

★ (𝑠, 𝑎) for all (𝑠, 𝑎) ∈ S × A .

Let 𝑣★ = 𝑣𝜋
★

and 𝑞★ = 𝑞𝜋
★

. For any policy 𝜋, 𝑣𝜋 and 𝑞𝜋 are known to satisfy the Bellman equations
[Puterman, 1994]:

𝑣𝜋(𝑠)=
∑︁
𝑎∈A

𝜋(𝑎 |𝑠)𝑞𝜋(𝑠, 𝑎) and 𝑞𝜋(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾
∫
𝑠′∈S

𝑣𝜋(𝑠′) d𝑃(𝑠′ |𝑠, 𝑎) for all (𝑠, 𝑎) ∈S × A. (4)

Finally, we call a policy 𝜋 deterministic if for all states, 𝜋(𝑠) is a distribution that assigns unit weight
to one action and zero weight to the others. With a slight abuse of notation, for a deterministic policy
𝜋, we denote by 𝜋(𝑠) the action 𝜋 chooses (deterministically) in state 𝑠 ∈ S.

3 Confident Approximate Policy Iteration

In this section we introduce CONFIDENT APPROXIMATE POLICY ITERATION (CAPI), our new
approximate dynamic programming algorithm. In approximate dynamic programming, the methods
are designed around oracles that return either an approximation to the application of the Bellman
optimality operator to a value function (“approximate value iteration”), or an approximation to the
value function of some policy (“approximate policy iteration”). Our setting is the second. The novelty
is that we assume access to the accuracy of the approximation and use this knowledge to modify the
policy update, which leads to improved guarantees on the suboptimality of the computed policy.

We present the pseudocodes of API [Bertsekas and Tsitsiklis, 1996] and CAPI jointly in Algorithm 1:
starting from an arbitrary (deterministic) policy 𝜋0, the algorithm iterates a policy estimation (Line 2)
and a policy update step (Line 3) 𝐼 times. The policy update for API is greedy with respect to the
action-value estimates 𝑞 and is defined as 𝜋�̂� (𝑠) = arg max𝑎∈A 𝑞(𝑠, 𝑎). We assume that arg max𝑎∈A
breaks ties in a consistent manner by ordering the actions (using the notation A = (A1, . . . ,A |A |))
and always choosing action A𝑖 with the lowest index 𝑖 that achieves the maximum. For CAPI, the
policy update further relies on a global estimation-accuracy parameter 𝜔, and a set of fixed-states
Sfix ⊆ S. For the purposes of this section, it is enough to keep Sfix = {}. CAPI updates the policy to
one that acts greedily with respect to 𝑞 only on states that are not in Sfix and where it is confident that
this leads to an improvement over the previous policy (Case 5a); otherwise, the new policy will return
the same action as the previous one (Case 5b). To decide, 𝑞(𝑠, 𝜋(𝑠)) + 𝜔 is treated as the upper
bound on the previous policy’s value, and max𝑎∈A 𝑞(𝑠, 𝑎) −𝜔 as the lower bound of the action-value
of the greedy action (Eq. 5):

𝜋�̂�, 𝜋,Sfix (𝑠) =
{ arg max

𝑎∈A
𝑞(𝑠, 𝑎) , if 𝑠 ∉ Sfix and 𝑞(𝑠, 𝜋(𝑠)) + 𝜔 < max𝑎∈A 𝑞(𝑠, 𝑎) − 𝜔 ; (5a)

𝜋(𝑠) , otherwise. (5b)

Note that 𝜋�̂�, 𝜋,Sfix also depends on 𝜔, however, this dependence is omitted from the notation (as 𝜔 is
kept fixed throughout).

CAPI can also be seen as a refinement of CONSERVATIVE POLICY ITERATION (CPI) of Kakade
and Langford [2002] with some important differences: While CPI introduces a global parameter to
ensure the update stays close to the previous policy, CAPI has no such parameter, and it dynamically
decides when to stay close to (more precisely, use) the previous policy, individually for every state,
based on whether there is evidence for a guaranteed improvement.

Let 𝜋 be any stationary deterministic memoryless policy, 𝑞𝜋 : S × A → R be any function, 𝜔 ∈ R+,
and Sfix ⊆ S. First, we show that as long as 𝑞𝜋 is an 𝜔-accurate estimate of 𝑞𝜋 , the CAPI policy
update only improves the policy’s values:
Lemma 3.1 (No deterioration). Let 𝜋′ = 𝜋�̂�𝜋 , 𝜋,Sfix . Assume that for all 𝑠 ∈ S \ Sfix and 𝑎 ∈ A,
𝑞𝜋 (𝑠, 𝑎) ≈𝜔 𝑞𝜋 (𝑠, 𝑎). Then, for any 𝑠 ∈ S, 𝑣𝜋

′ (𝑠) ≥ 𝑣𝜋 (𝑠) .
Proof. Fix any 𝑠 ∈ S. If 𝑠 ∈ Sfix or 𝑞𝜋 (𝑠, 𝜋(𝑠)) + 𝜔 ≥ max𝑎∈A 𝑞𝜋 (𝑠, 𝑎) − 𝜔, then 𝜋′ (𝑠) = 𝜋(𝑠)
and therefore 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) = 𝑣𝜋 (𝑠). Otherwise, 𝑠 ∉ Sfix and 𝑞𝜋 (𝑠, 𝜋(𝑠)) + 𝜔 ≤ max𝑎∈A 𝑞𝜋 (𝑠, 𝑎) −
𝜔, hence 𝜋′ (𝑠) = arg max𝑎∈A 𝑞𝜋 (𝑠, 𝑎), and it follows by our assumptions that 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) ≥

5

Algorithm 1 APPROXIMATE POLICY ITERATION (API) and CONFIDENT APPROXIMATE POLICY
ITERATION (CAPI)

1: for 𝑖 = 1 to 𝐼 do
2: 𝑞 ← ESTIMATE(𝜋𝑖−1)

3: 𝜋𝑖 ←
{
𝜋�̂� API
𝜋�̂�, 𝜋𝑖−1 ,Sfix CAPI

4: return 𝜋𝐼

𝑞𝜋 (𝑠, 𝜋′ (𝑠)) − 𝜔 = max𝑎∈A 𝑞𝜋 (𝑠, 𝑎) − 𝜔 > 𝑞𝜋 (𝑠, 𝜋(𝑠)) + 𝜔 ≥ 𝑞𝜋 (𝑠, 𝜋(𝑠)) = 𝑣𝜋 (𝑠). Therefore, in
any case, 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) ≥ 𝑣𝜋 (𝑠). Since this holds for any 𝑠 ∈ S, the Policy Improvement Theorem
[Sutton and Barto, 2018, Section 4.2] implies that for any 𝑠 ∈ S, 𝑣𝜋

′ (𝑠) ≥ 𝑣𝜋 (𝑠). □

Next we introduce two approximate optimality criterion for a policy on a set of states:
Definition 3.2 (Policy optimality on a set of states). A policy 𝜋 is Δ-optimal (for some Δ ≥ 0) on a
set of states S′ ⊆ S, if for all 𝑠 ∈ S′, 𝑣★(𝑠) − 𝑣𝜋 (𝑠) ≤ Δ .

Definition 3.3 (Next-state optimality on a set of states). A policy 𝜋 is next-state Δ-optimal
(for some Δ ≥ 0) on a set of states S′ ⊆ S, if for all 𝑠 ∈ S′ and all actions 𝑎 ∈ A,∫
𝑠′∈S (𝑣

★(𝑠′) − 𝑣𝜋 (𝑠′)) d𝑃(𝑠′ |𝑠, 𝑎) ≤ Δ.

Note that in the special case of S′ = S the first property implies the second, that is, if 𝜋 is Δ-optimal
on S, then it is also next-state Δ-optimal on S. Next, we show that the suboptimality of a policy
updated by CAPI evolves as follows (the proof is relegated to Appendix A):
Lemma 3.4 (Iteration progress). Let 𝜋′ = 𝜋�̂�𝜋 , 𝜋,Sfix . Assume that for all 𝑠 ∈ S \ Sfix and 𝑎 ∈ A,
𝑞𝜋 (𝑠, 𝑎) ≈𝜔 𝑞𝜋 (𝑠, 𝑎), and that 𝜋 is next-state Δ-optimal on S \ Sfix. Then 𝜋′ is (4𝜔 + 𝛾Δ)-optimal
on S \ Sfix.

3.1 CAPI guarantee with accurate estimation everywhere

To obtain a final suboptimality guarantee for CAPI, first consider the ideal scenario in which we
assume that we have a mechanism to estimate 𝑞𝜋 (𝑠, 𝑎) up to some 𝜔 accuracy for all 𝑠 ∈ S and
𝑎 ∈ A, and for any policy 𝜋:
Assumption 3.5. There is an oracle called ESTIMATE that accepts a policy 𝜋 and returns 𝑞𝜋 :
S × A → R such that for all 𝑠 ∈ S and 𝑎 ∈ A, 𝑞𝜋 (𝑠, 𝑎) ≈𝜔 𝑞𝜋 (𝑠, 𝑎).
Theorem 3.6 (CAPI performance). Assume CAPI (Algorithm 1) is run with Sfix = {}, iteration
count to 𝐼 = ⌈log𝜔/log 𝛾⌉, and suppose that the estimation used in Line 2 satisfies Assumption 3.5.
Then the policy 𝜋𝐼 returned by the algorithm is 5𝜔/(1 − 𝛾)-optimal on S.
Proof. We prove by induction that policy 𝜋𝑖 is Δ𝑖-optimal on S for Δ𝑖 = 4𝜔

∑
𝑗∈[𝑖] 𝛾

𝑗 + 𝛾𝑖

1−𝛾 . This
holds immediately for the base case of 𝑖 = 0, as rewards are bounded in [0, 1] and thus 𝑣★(𝑠) ≤
1/(1−𝛾) for any 𝑠. Assuming now that the inductive hypothesis holds for 𝑖−1 we observe that 𝜋𝑖−1 is
next-state Δ-optimal on S = S \ Sfix. Together with Assumption 3.5, this implies that the conditions
of Lemma 3.4 are satisfied for 𝜋 = 𝜋𝑖−1, which yields 𝑣★(𝑠) − 𝑣𝜋𝑖 (𝑠) ≤ 4𝜔 + 𝛾Δ𝑖−1 = Δ𝑖 , finishing
the induction. Finally, by the definition of 𝐼, 𝜋𝐼 is Δ𝐼 -optimal with Δ𝐼 ≤ 4𝜔

1−𝛾 +
𝛾𝐼

1−𝛾 ≤
5𝜔
1−𝛾 . □

4 Local access planning with 𝑞𝜋-realizability

Our planner, CAPI-QPI-PLAN, is based on the CONFIDENT MC-LSPI algorithm of Yin et al. [2022].
This latter algorithm gradually builds a core set of state-action pairs whose corresponding features
are informative. The 𝑞-values of the state-action pairs in the core set are estimated using rollouts. The
procedure is restarted with an extended core set whenever the algorithm encounters a new informative
feature. If such a new feature is not encountered, the estimation error can be controlled, and the
estimation is extended to all state-action pairs using the least-squares estimator. Finally, the extended
estimation is used in Line 2 of API.

CAPI-QPI-PLAN improves upon CONFIDENT MC-LSPI in two ways. First, using CAPI instead
of API improves the final suboptimality bound by a factor of the effective horizon. Second, we

6

Algorithm 2 MEASURE

1: Input: state 𝑠, action 𝑎, deterministic policy 𝜋, set of states S′ ⊆ S, accuracy 𝜔 > 0, failure
probability Z ∈ (0, 1]

2: Initialize: 𝐻 ← ⌈log((𝜔/4) (1 − 𝛾))/log 𝛾⌉ , 𝑛←
⌈
(𝜔/4)−2 (1 − 𝛾)−2 log(2/Z)/2

⌉
3: for 𝑖 = 1 to 𝑛 do
4: (𝑆, 𝑅𝑖,0) ← SIMULATOR(𝑠, 𝑎)
5: for ℎ = 1 to 𝐻 − 1 do
6: if 𝑆 ∉ S′ then return (discover, 𝑆)
7: 𝐴← 𝜋(𝑆)
8: (𝑆, 𝑅𝑖,ℎ) ← SIMULATOR(𝑆, 𝐴) ⊲ Call to the simulator oracle
9: return (success, 1

𝑛

∑𝑛
𝑖=1

∑𝐻−1
ℎ=0 𝛾ℎ𝑅𝑖,ℎ)

apply a novel analysis on a more modular variant of the CONFIDENTROLLOUT subroutine used in
CONFIDENT MC-LSPI, which delivers 𝑞-estimation accuracy guarantees with respect to a large
class of policies simultaneously. This allows for a dynamically evolving version of policy iteration,
that does not have to restart whenever a new informative feature is encountered. Intuitively, this
prevents duplication of work.

4.1 Estimation oracle

To obtain an algorithm for planning with local access whose performance degrades gracefully with
the uniform approximation error, we must weaken Assumption 3.5. This is because under local
access, we cannot guarantee to cover all states or hope to obtain accurate 𝑞-value estimates for all
states. Instead, we are interested in an accuracy guarantee that holds for 𝑞-values only on some subset
S′ ⊆ S of states, but holds simultaneously for any policy that agrees with 𝜋 on S′ but may take
arbitrary values elsewhere. For this, we define the extended set of policies:
Definition 4.1. Let Πdet be the set of all stationary deterministic memoryless policies, 𝜋 ∈ Πdet, and
S′ ⊆ S. For (𝜋,S′), we define Π𝜋,S′ to be the set of policies that agree with 𝜋 on 𝑠 ∈ S′:

Π𝜋,S′ = {𝜋′ ∈ Πdet : 𝜋(𝑠) = 𝜋′ (𝑠) for all 𝑠 ∈ S′} .

We aim to first accurately estimate 𝑞𝜋 (𝑠, 𝑎) for some specific (𝑠, 𝑎) pairs, based on which we extend
the estimates to other state-action pairs using least-squares. To this end, we first devise a subroutine
called MEASURE (Algorithm 2). MEASURE is a modularized variant of the CONFIDENTROLLOUT
subroutine of Yin et al. [2022]. The modularity of our variant is due to the parameter S′ that
corresponds to the set of states on which the planner is “confident” for CONFIDENTROLLOUT.
MEASURE unrolls the policy 𝜋 starting from (𝑠, 𝑎) for a number of episodes, each lasting 𝐻 steps,
and returns with the average measured reward. Throughout, we let 𝐻 = ⌈log((𝜔/4) (1 − 𝛾))/log 𝛾⌉
be the effective horizon. At the end of this process, MEASURE returns status success along with
the empirical average 𝑞-value, where compared to Eq. (3), the discounted summation of rewards
is truncated to 𝐻. If, however, the algorithm encounters a state not in its input S′, it returns with
status discover, along with that state. This is because in such cases, the algorithm could no longer
guarantee an accurate estimation with respect to any member of the extended set of policies. The next
lemma, proved in Appendix B, shows that MEASURE provides accurate estimates of the action-value
functions for members of the extended policy set.
Lemma 4.2. For any input parameters 𝑠 ∈ S, 𝑎 ∈ A, 𝜋 ∈ Πdet,S′ ⊂ S, 𝜔 > 0, Z ∈ (0, 1),
MEASURE either returns with (discover, 𝑠′) for some 𝑠′ ∉ S′ (Line 6), or it returns with (success, 𝑞)
such that with probability at least 1 − Z ,

𝑞𝜋
′ (𝑠, 𝑎) ≈𝜔 𝑞 for all 𝜋′ ∈ Π𝜋,S′ . (6)

Suppose we have a list of state-action pairs 𝐶 = (𝑠𝑖 , 𝑎𝑖)𝑖∈[|𝐶 |] and corresponding 𝑞-estimates
𝑞 = (𝑞𝑖)𝑖∈ |𝐶 | . We use the regularized least-squares estimator LSE (Eq. 8) to extend the estimates
for all state-action pairs, with regularization parameter _ = 𝜔2/𝐵2 (recall that 𝐵 is defined in
Definition 1.1):

𝑉 (𝐶) = _I +∑
𝑖∈[|𝐶 |]𝜑(𝑠𝑖 , 𝑎𝑖)𝜑(𝑠𝑖 , 𝑎𝑖)⊤ , (7)

LSE𝐶,�̄� (𝑠, 𝑎) =
〈
𝜑(𝑠, 𝑎), 𝑉 (𝐶)−1∑

𝑖∈[|𝐶 |]𝜑(𝑠𝑖 , 𝑎𝑖)𝑞𝑖
〉
. (8)

7

For 𝐶 = 𝑞 = () (the empty sequence), we define LSE𝐶,�̄� (·, ·) = 0. This estimator satisfies the
guarantee below.
Lemma 4.3. Let 𝜋 be a stationary deterministic memoryless policy. Let 𝐶 = (𝑠𝑖 , 𝑎𝑖)𝑖∈[𝑛] be
sequences of state-action pairs of some length 𝑛 ∈ N and 𝑞 = (𝑞𝑖)𝑖∈[𝑛] a sequence of corresponding
reals such that for all 𝑖 ∈ [𝑛], 𝑞𝜋 (𝑠𝑖 , 𝑎𝑖) ≈𝜔 𝑞𝑖 . Then, for all 𝑠, 𝑎 ∈ S × A,��LSE𝐶,�̄� (𝑠, 𝑎) − 𝑞𝜋 (𝑠, 𝑎)

�� ≤ Y + ∥𝜑(𝑠, 𝑎)∥𝑉 (𝐶)−1

(√
_𝐵 + (𝜔 + Y)

√
𝑛

)
, (9)

where Y is the uniform approximation error from Definition 1.1.

The proof is given in Appendix C. The order of the estimation accuracy bound (Eq. 9) is optimal, as
shown by the lower bounds of Du et al. [2019] and Lattimore et al. [2020].

We intend to use the LSE estimator given in Eq. (8) and the bound in Lemma 4.3 only for state-action
pairs where ∥𝜑(𝑠, 𝑎)∥𝑉 (𝐶)−1 ≤ 1 (and 𝑛 = Õ(𝑑)). We call these state-action pairs covered by 𝐶, and
we call a state 𝑠 covered by 𝐶 if for all their corresponding actions 𝑎, the pair (𝑠, 𝑎) is covered by 𝐶:

ActionCover(𝐶) = {(𝑠, 𝑎) ∈ S × A : ∥𝜑(𝑠, 𝑎)∥𝑉 (𝐶)−1 ≤ 1} (10)

Cover(𝐶) = {𝑠 ∈ S : ∀𝑎 ∈ A, (𝑠, 𝑎) ∈ ActionCover(𝐶)} . (11)

We will use the parameter Sfix of CAPI (see CAPI’s update rule in Eq. 5) to ensure policies are only
updated on covered states, where the approximation error is well-controlled by Eq. (9).

4.2 Main algorithm

Finally, we are ready to introduce CAPI-QPI-PLAN, presented in Algorithm 3, our algorithm
for planning with local access under approximate 𝑞𝜋-realizability. For this, we define levels 𝑙 =
0, 1, . . . , 𝐻, and corresponding suboptimality requirements: For any 𝑙 ∈ [𝐻 + 1], let

Δ𝑙 = 8(Y + 𝜔)
(√︁
𝑑 + 1

) ∑︁
𝑗∈[𝑙]

𝛾 𝑗 + 𝛾𝑙

1 − 𝛾 ,

for some 𝑑 = Θ̃(𝑑) defined in Eq. (13). For each level 𝑙, the algorithm maintains a policy 𝜋𝑙 and a set
of covered states on which it can guarantee that 𝜋𝑙 is a Δ𝑙-optimal policy. More specifically, this set
is Cover(𝐶𝑙), where 𝐶𝑙 is a list of state-action pairs with elements 𝐶𝑙,𝑖 = (𝑠𝑖𝑙 , 𝑎

𝑖
𝑙
) for 𝑖 ∈ [|𝐶𝑙 |]. The

algorithm maintains the following suboptimality guarantee below, which we prove in Appendix E
after showing some further key properties of the algorithm.
Lemma 4.4. Assuming that Eq. (6) holds whenever MEASURE returns success, 𝜋𝑙 is Δ𝑙-optimal
on Cover(𝐶𝑙) (Definition 3.2) for all 𝑙 ∈ [𝐻 + 1] at the end of every iteration of the main loop of
CAPI-QPI-PLAN.

CAPI-QPI-PLAN aims to improve the policies, while propagating the members of 𝐶𝑙 to 𝐶𝑙+1, and
so on, all the way to 𝐶𝐻 . During this, whenever the algorithm discovers a state-action pair with a
sufficiently “new” feature direction, this pair is appended to the sequence 𝐶0 corresponding to level 0,
as there are no suboptimality guarantees yet available for such a state. However, such a discovery can
only happen Õ(𝑑) times. When, eventually, all discovered state-action pairs end up in 𝐶𝐻 , the final
suboptimality guarantee is reached, and the algorithm returns with the final policy. Note that in the
local access setting we consider, the algorithm cannot enumerate the set Cover(𝐶𝑙), but can answer
membership queries, that is, for any 𝑠 ∈ S it encounters, it is able to decide if 𝑠 ∈ Cover(𝐶𝑙). The
algorithm maintains sequences 𝑞𝑙 , corresponding to 𝐶𝑙 , for each level 𝑙. Whenever a new (𝑠, 𝑎) pair
is appended to the sequence 𝐶𝑙 , a corresponding ⊥ symbol is appended to the sequence 𝑞𝑙 , to signal
that an estimate of 𝑞𝜋𝑙 (𝑠, 𝑎) is not yet known.

After initializing 𝐶0 to cover the initial state 𝑠0 (Lines 4 to 6), the algorithm measures 𝑞𝜋ℓ (𝑠, 𝑎)
for the smallest level ℓ for which there still exists a ⊥ in the corresponding 𝑞ℓ . After a successful
measurement, if there are no more ⊥’s left at this level (i.e., in 𝑞ℓ), the algorithm executes a policy
update on 𝜋ℓ (Line 17) using the least-squares estimate obtained from the measurements at this level,
but only for states in Cover(𝐶ℓ) (using Sfix = S \ Cover(𝐶ℓ)). Next, Line 18 merges this new policy
𝜋′ with the existing policy 𝜋ℓ+1 of the next level, setting 𝜋ℓ+1 to be the policy 𝜋′′ defined as

𝜋′′ (𝑠) =
{
𝜋ℓ+1 (𝑠), if 𝑠 ∈ Cover(𝐶ℓ+1);
𝜋′ (𝑠), otherwise.

8

Algorithm 3 CAPI-QPI-PLAN

1: Input: initial state 𝑠0 ∈ S, dimensionality 𝑑, parameter bound 𝐵, accuracy 𝜔, failure probability
𝛿 > 0

2: Initialize: 𝐻 ← ⌈log((𝜔/4) (1 − 𝛾))/log 𝛾⌉, for 𝑙 ∈ [𝐻 + 1], 𝐶𝑙 ← (), 𝑞𝑙 ← (), 𝜋𝑙 ←
policy that always returns action A1, _← 𝜔2/𝐵2

3: while True do ⊲ main loop
4: if ∃𝑎 ∈ A, (𝑠0, 𝑎) ∉ ActionCover(𝐶0) then
5: append (𝑠0, 𝑎) to 𝐶0, append ⊥ to 𝑞0
6: break
7: let ℓ be the smallest integer such that 𝑞ℓ,𝑚 = ⊥ for some 𝑚; set ℓ = 𝐻 if no such 𝑙 exists
8: if ℓ = 𝐻 then return 𝜋𝐻
9: (status, result) ← MEASURE(𝑠𝑚

ℓ
, 𝑎𝑚
ℓ
, 𝜋ℓ ,Cover(𝐶ℓ), 𝜔, 𝛿/(𝑑𝐻)) ⊲ recall 𝐶ℓ,𝑚 = (𝑠𝑚

ℓ
, 𝑎𝑚
ℓ
)

10: if status = discover then
11: append (result, 𝑎) to 𝐶0 for some 𝑎 such that (result, 𝑎) ∉ ActionCover(𝐶0)
12: append ⊥ to 𝑞0
13: break
14: 𝑞ℓ,𝑚 ← result
15: if �𝑚′ such that 𝑞ℓ,𝑚′ = ⊥ then
16: 𝑞 ← LSE𝐶ℓ ,�̄�ℓ

17: 𝜋′ ← 𝜋�̂�, 𝜋ℓ ,S\Cover(𝐶ℓ)
18: 𝜋ℓ+1 ← (𝑠 ↦→ 𝜋ℓ+1 (𝑠) if 𝑠 ∈ Cover(𝐶ℓ+1) else 𝜋′ (𝑠))
19: for (𝑠, 𝑎) ∈ 𝐶ℓ such that (𝑠, 𝑎) ∉ 𝐶ℓ+1 do
20: append (𝑠, 𝑎) to 𝐶ℓ+1, ⊥ to 𝑞ℓ+1

This ensures that the existing policy 𝜋ℓ+1 remains unchanged by 𝜋′′ (its replacement) on states that
are already covered by 𝐶ℓ+1, and therefore 𝜋′′ ∈ Π𝜋ℓ+1 ,Cover(𝐶ℓ+1) = Π𝜋′′ ,Cover(𝐶ℓ+1) . We also observe
that 𝐶𝑙 can only grow for any 𝑙 (elements are never removed from these sequences), thus for any
update where 𝐶𝑙 is assigned a new value 𝐶′

𝑙
(Lines 5, 11, and 20), 𝑉 (𝐶′

𝑙
) ⪰ 𝑉 (𝐶𝑙), and therefore

Cover(𝐶′
𝑙
) ⊇ Cover(𝐶𝑙) and Π𝜋𝑙 ,Cover(𝐶′

𝑙
) ⊆ Π𝜋𝑙 ,Cover(𝐶𝑙) . Combining these properties yields the

following result:
Lemma 4.5. If for any 𝑙 ∈ [𝐻], 𝜋𝑙 and𝐶𝑙 take some values 𝜋old

𝑙
and𝐶old

𝑙
at any point in the execution

of the algorithm, then at any later point during the execution, 𝜋𝑙 ∈ Π𝜋𝑙 ,Cover(𝐶𝑙) ⊆ Π𝜋old
𝑙
,Cover(𝐶old

𝑙
) .

Any value in 𝑞𝑙 that is set to anything other than ⊥ will never change again. Since as long as the
sample paths generated by MEASURE in Line 9 of CAPI-QPI-PLAN remain in Cover(𝐶𝑙), their
distribution is the same under any policy from Π𝜋𝑙 ,Cover(𝐶𝑙) , the 𝑞𝑙 estimates are valid for these
policies, as well. Combined with Lemma 4.5, we get that the accuracy guarantees of Lemma 4.2
continue to hold throughout:
Lemma 4.6. Assuming that Eq. (6) holds whenever MEASURE returns success, for any level 𝑙 and
index 𝑚 such that 𝑞𝑙,𝑚 ≠ ⊥, 𝑞𝜋

′ (𝑠𝑚
𝑙
, 𝑎𝑚
𝑙
) ≈𝜔 𝑞𝑙,𝑚 for all 𝜋′ ∈ Π𝜋𝑙 ,Cover(𝐶𝑙) throughout the execution

of CAPI-QPI-PLAN.

Once 𝜋ℓ+1 is updated in Line 18, in Line 20 we append to the sequence 𝐶ℓ+1 all members of 𝐶ℓ that
are not yet in 𝐶ℓ+1, while adding a corresponding ⊥ to 𝑞ℓ+1 indicating that these 𝑞-values are not yet
measured for policy 𝜋ℓ+1. Thus, whenever all ⊥ values disappear from some level 𝑙 ∈ [𝐻 + 1], by
the end of that iteration 𝐶𝑙+1 = 𝐶𝑙 , and hence ActionCover(𝐶𝑙) = ActionCover(𝐶𝑙+1). Together with
the fact that for any 𝑙 ∈ [𝐻 + 1], whenever a new state-action pair is appended to 𝐶𝑙 , an ⊥ symbol is
appended to 𝑞𝑙 , we have by induction the following result:
Lemma 4.7. Throughout the execution of CAPI-QPI-PLAN,after Line 7 when ℓ is set,

ActionCover(𝐶0) = ActionCover(𝐶1) = · · · = ActionCover(𝐶ℓ) .

As a result, whenever the MEASURE call of Line 9 outputs (discover, 𝑠) for some state 𝑠, by
Lemma 4.2, there is an action 𝑎 ∈ A such that (𝑠, 𝑎) ∉ ActionCover(𝐶ℓ) = ActionCover(𝐶0).
This explains why adding such an (𝑠, 𝑎) pair to 𝐶0 is always possible in Line 11. Consider the 𝑖th

time Line 11 is executed, and denote 𝑠 by 𝑠𝑖 and 𝑎 by 𝑎𝑖 , and 𝑉𝑖 = _I +
∑𝑖−1
𝑡=1 𝜑(𝑠𝑡 , 𝑎𝑡)𝜑(𝑠𝑡 , 𝑎𝑡)⊤.

Observe that as 𝑉𝑖 = 𝑉 (𝐶), (𝑠𝑖 , 𝑎𝑖) ∉ ActionCover(𝐶0) implies ∥𝜑(𝑠𝑖 , 𝑎𝑖)∥𝑉−1
𝑖

> 1. Therefore,

9

∑𝑖
𝑡=1 min{1, ∥𝜑(𝑠𝑡 , 𝑎𝑡)∥𝑉−1

𝑡
} = 𝑖, and thus by the elliptical potential lemma [Lattimore and Szepesvári,

2020, Lemma 19.4], 𝑖 ≤ 2𝑑 log
(
𝑑_+𝑖𝐿2

𝑑_

)
. This inequality is satisfied by the largest value of 𝑖, that

is, the total number of times MEASURE returns with discover. Since any element of 𝐶𝑙 is also an
element of 𝐶0 for any 𝑙 ∈ [𝐻 +1], we have that at any time during the execution of CAPI-QPI-PLAN,

|𝐶𝑙 | ≤ 4𝑑 log
(
1 + 4𝐿2

_

)
=: 𝑑 = Õ(𝑑) . (13)

When CAPI-QPI-PLAN returns at Line 8 with the policy 𝜋𝐻 , it is Δ𝐻 -optimal on Cover(𝐶𝐻) by
Lemma 4.4 when the estimates of MEASURE are correct. Furthermore, 𝑠0 ∈ Cover(𝐶0) is guaranteed
by Lines 4 to 6, and hence 𝑠0 ∈ Cover(𝐶𝐻) by Lemma 4.7 when the algorithm finishes. Hence,
bounding Δ𝐻 using the definition of 𝐻 immediately gives the following result:

Lemma 4.8. Assuming that Eq. (6) holds whenever MEASURE returns success, the policy 𝜋 returned
by CAPI-QPI-PLAN is Δ-optimal on {𝑠0} for

Δ = 9(Y + 𝜔)
(√︁
𝑑 + 1

)
(1 − 𝛾)−1 = Õ

(
(Y + 𝜔)

√
𝑑 (1 − 𝛾)−1

)
.

To finish the proof of Theorem 1.2, we only need to analyze the query complexity and the failure
probability (i.e., the probability of Eq. (6) not being satisfied for some MEASURE call that returns
success) of CAPI-QPI-PLAN:

Proof of Theorem 1.2. Both the total failure probability and query complexity of CAPI-QPI-PLAN
depend on the number of times MEASURE is executed, as this is the only source of randomness and
of interaction with the simulator. MEASURE can return discover at most |𝐶0 | times, which is bounded
by 𝑑 by Eq. (13). For every 𝑙 ∈ [𝐻], MEASURE is executed exactly once with returning success for
each element of 𝐶𝑙 . Hence, by Eq. (13) again, MEASURE returns success at most 𝑑𝐻 times, each
satisfying Eq. (6) with probability at least 1 − Z = 1 − 𝛿/(𝑑𝐻) by Lemma 4.2. By the union bound,
MEASURE returns success in all occasions with probability at least 1 − 𝛿. Hence Eq. (6) holds with
probability at least 1 − 𝛿, which, combined with Lemma 4.8, proves Eq. (1).

Each successful run of MEASURE executes at most 𝑛𝐻 queries (𝑛 is set in Line 2 of Algorithm 2).
Since 𝐻 < (1 − 𝛾)−1 log(4𝜔−1 (1 − 𝛾)−1) = Õ((1 − 𝛾)−1), in total CAPI-QPI-PLAN executes at
most Õ

(
𝑑 (1 − 𝛾)−4𝜔−2) queries. As this happens at most 𝑑𝐻 times, we obtain the desired bound on

the query complexity. □

5 Conclusions and future work

In this paper we presented CONFIDENT APPROXIMATE POLICY ITERATION, a confident version of
API, which can obtain a stationary policy with a suboptimality guarantee that scales linearly with the
effective horizon 𝐻 = Õ(1/(1− 𝛾)). This scaling is optimal as shown by Scherrer and Lesner [2012].

CAPI can be applied to local planning with approximate 𝑞𝜋-realizability (yielding the CAPI-QPI-
PLAN algorithm) to obtain a sequence of policies with successively refined accuracies on a dynami-
cally evolving set of states, resulting in a final, recursively defined policy achieving simultaneously
the optimal suboptimality guarantee and best query cost available in the literature. More precisely,
CAPI-QPI-PLAN achieves Õ(Y

√
𝑑𝐻) suboptimality, where Y is the uniform policy value-function

approximation error. We showed that this bound is the best (up to polylogarithmic factors) that is
achievable by any planner with polynomial query cost. We also proved that the Õ

(
𝑑𝐻4Y−2) query

cost of CAPI-QPI-PLAN is optimal up to polylogarithmic factors in all parameters except for 𝐻;
whether the dependence on 𝐻 is optimal remains an open question.

Finally, our method comes at a memory and computational cost overhead, both for the final policy
and the planner. It is an interesting question if this overhead necessarily comes with the API-style
method we use (as it is also present in the works of Scherrer and Lesner, 2012, Scherrer, 2014), or if
it is possible to reduce it by, for example, compressing the final policy into one that is greedy with
respect to some action-value function realized with the features.

10

Acknowledgements

The authors would like to thank Tor Lattimore and Qinghua Liu for helpful discussions. Csaba
Szepesvári gratefully acknowledges the funding from Natural Sciences and Engineering Research
Council (NSERC) of Canada, “Design.R AI-assisted CPS Design” (DARPA) project and the Canada
CIFAR AI Chairs Program for Amii.

References
Dimitri P. Bertsekas. Dynamic Programming and Optimal Control: Approximate dynamic program-

ming, volume II. 4 edition, 2012.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient for
sample efficient reinforcement learning? In International Conference on Learning Representations,
2019.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–2143.
PMLR, 2020.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In In
Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

T. Lattimore and Cs. Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

Tor Lattimore, Csaba Szepesvári, and Gellért Weisz. Learning with good feature representations in
bandits and in RL with a generative model. In ICML, pages 9464–9472, 2020.

A Woodbury Max. Inverting modified matrices. In Memorandum Rept. 42, Statistical Research
Group, page 4. Princeton Univ., 1950.

Remi Munos. Error bounds for approximate policy iteration. In ICML, pages 560–567, 2003.

Remi Munos. Error bounds for approximate value iteration. In AAAI, pages 1006–1011, 2005.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley-Interscience, 1994.

Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York, 1976.

Daniel Russo. Approximation benefits of policy gradient methods with aggregated states. arXiv
preprint arXiv:2007.11684, 2020.

Bruno Scherrer. Approximate policy iteration schemes: a comparison. In International Conference
on Machine Learning, pages 1314–1322. PMLR, 2014.

Bruno Scherrer and Boris Lesner. On the use of non-stationary policies for stationary infinite-horizon
Markov decision processes. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 25, 2012.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Andrew Wagenmaker, Yifang Chen, Max Simchowitz, Simon S Du, and Kevin Jamieson. Reward-
free RL is no harder than reward-aware RL in linear Markov decision processes. arXiv preprint
arXiv:2201.11206, 2022.

Yuanhao Wang, Ruosong Wang, and Sham Kakade. An exponential lower bound for linearly
realizable MDP with constant suboptimality gap. Advances in Neural Information Processing
Systems, 34, 2021.

Gellért Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds for planning in
MDPs with linearly-realizable optimal action-value functions. In ALT, volume 132 of Proceedings
of Machine Learning Research, pages 1237–1264, 2021.

11

Chenjun Xiao, Ilbin Lee, Bo Dai, Dale Schuurmans, and Csaba Szepesvari. The curse of passive data
collection in batch reinforcement learning. In International Conference on Artificial Intelligence
and Statistics, pages 8413–8438, 2022.

Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári. Efficient local
planning with linear function approximation. In International Conference on Algorithmic Learning
Theory, pages 1165–1192. PMLR, 2022.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent Bellman error. In International Conference on Machine
Learning, pages 10978–10989. PMLR, 2020.

Dongruo Zhou, Jiafan He, and Quanquan Gu. Provably efficient reinforcement learning for discounted
MDPs with feature mapping. arXiv preprint arXiv:2006.13165, 2020.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

A Proof of Lemma 3.4

Take any 𝑠 ∈ S \ Sfix.

𝑣★(𝑠) − 𝑣𝜋′ (𝑠) = 𝑣★(𝑠) − 𝑞𝜋′ (𝑠, 𝜋′ (𝑠))
= 𝑣★(𝑠) − 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) + 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) − 𝑞𝜋′ (𝑠, 𝜋′ (𝑠))
≤ 𝑣★(𝑠) − 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) , (14)

where the first equality holds because 𝜋′ is deterministic, and the inequality is true because

𝑞𝜋 (𝑠, 𝜋′ (𝑠)) − 𝑞𝜋′ (𝑠, 𝜋′ (𝑠)) = 𝛾
∫
𝑠′∈S

(
𝑣𝜋 (𝑠′) − 𝑣𝜋′ (𝑠′)

)
d𝑃(𝑠′ |𝑠, 𝜋′ (𝑠)) ≤ 0

by Lemma 3.1. Next observe that

𝑞𝜋 (𝑠, 𝜋′ (𝑠)) ≥ max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) − 2𝜔 (15)

since, as 𝑠 ∉ Sfix, either 𝜋′ (𝑠) is defined by Case 5a as 𝜋′ (𝑠) = arg max𝑎∈A 𝑞𝜋 (𝑠, 𝑎) and
so 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) = max𝑎∈A 𝑞𝜋 (𝑠, 𝑎), or it is defined by Case 5b in which case 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) =

𝑞𝜋 (𝑠, 𝜋(𝑠)) ≥ max𝑎∈A 𝑞𝜋 (𝑠, 𝑎) − 2𝜔. Combining Eqs. (14) and (15), we obtain

𝑣★(𝑠) − 𝑣𝜋′ (𝑠) ≤ 𝑣★(𝑠) − 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) + 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) − 𝑞𝜋 (𝑠, 𝜋′ (𝑠))
≤ 𝑣★(𝑠) − 𝑞𝜋 (𝑠, 𝜋′ (𝑠)) + 𝜔
≤ 𝑣★(𝑠) −max

𝑎∈A
𝑞𝜋 (𝑠, 𝑎) + 3𝜔 ,

where in the first line we added and subtracted 𝑞𝜋 (𝑠, 𝜋′ (𝑠)), and the second inequality holds as
𝑞𝜋 (𝑠, 𝑎) ≈𝜔 𝑞𝜋 (𝑠, 𝑎) for 𝑠 ∉ Sfix and 𝑎 ∈ A by the assumptions of the lemma.

We continue by adding and subtracting max𝑎∈A 𝑞𝜋 (𝑠, 𝑎):

𝑣★(𝑠) − 𝑣𝜋′ (𝑠) ≤ 𝑣★(𝑠) −max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) +max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) −max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) + 3𝜔

≤ 𝑣★(𝑠) −max
𝑎∈A

𝑞𝜋 (𝑠, 𝑎) + 4𝜔

= max
𝑎∈A

[
𝑟 (𝑠, 𝑎) + 𝛾

∫
𝑠′∈S

𝑣★(𝑠′) d𝑃(𝑠′ |𝑠, 𝑎)
]

−max
𝑎∈A

[
𝑟 (𝑠, 𝑎) + 𝛾

∫
𝑠′∈S

𝑣𝜋 (𝑠′) d𝑃(𝑠′ |𝑠, 𝑎)
]
+ 4𝜔

≤ max
𝑎∈A

[
𝛾

∫
𝑠′∈S

(
𝑣★(𝑠′) − 𝑣𝜋 (𝑠′)

)
d𝑃(𝑠′ |𝑠, 𝑎)

]
+ 4𝜔

≤ 4𝜔 + 𝛾Δ ,
where in the fifth line we used that 𝜋 is next-state Δ-optimal by assumption. □

B Proof of Lemma 4.2

For an episode trajectory {𝑆ℎ, 𝐴ℎ, 𝑅ℎ}ℎ∈N, let 𝐾 be the smallest positive integer such that 𝑆𝐾 ∉ S′.
For any 𝑖 ∈ {1, . . . , 𝑛}, let 𝐼𝑖 denote the indicator of the event that at the 𝑖th iteration of the outer loop of
Algorithm 2, the algorithm encounters 𝑆 ∉ S′ in Line 6. Note that E𝜋,𝑠,𝑎 [𝐼𝑖] = P𝜋,𝑠,𝑎 [1 ≤ 𝐾 < 𝐻].
Then, by Hoeffding’s inequality (see, e.g., Lattimore and Szepesvári [2020]), with probability at
least 1 − Z/2, �����P𝜋,𝑠,𝑎 [1 ≤ 𝐾 < 𝐻] − 1

𝑛

𝑛∑︁
𝑖=1

𝐼𝑖

����� ≤ 𝜔(1 − 𝛾)4
.

MEASURE only returns success if all indicators are zero; therefore, the above inequality implies that
if MEASURE returns success then, with probability at least 1 − Z/2, we have

P𝜋,𝑠,𝑎 [1 ≤ 𝐾 < 𝐻] ≤ 𝜔(1 − 𝛾)
4

. (16)

14

Recall that if MEASURE returns (success, 𝑞), then 𝑞 = 1
𝑛

∑𝑛
𝑖=1

∑𝐻−1
ℎ=0 𝛾ℎ𝑅𝑖,ℎ. Since

0 ≤ 𝑞𝜋 (𝑠, 𝑎) − E𝜋,𝑠,𝑎
𝐻−1∑︁
ℎ=0

𝛾ℎ𝑅ℎ = E𝜋,𝑠,𝑎

∞∑︁
ℎ=𝐻

𝛾ℎ𝑅ℎ ≤
𝛾𝐻

1 − 𝛾 ≤
𝜔

4
,

another application of Hoeffding’s inequality yields that 𝑞𝜋 (𝑠, 𝑎) and 𝑞 are close with high probability:
with probability at least 1 − Z/2,

|𝑞𝜋 (𝑠, 𝑎) − 𝑞 | =
�����𝑞𝜋 (𝑠, 𝑎) − 1

𝑛

𝑛∑︁
𝑖=1

𝐻−1∑︁
ℎ=0

𝛾ℎ𝑅𝑖,ℎ

�����
≤ 𝜔/4 +

�����E𝜋,𝑠,𝑎 𝐻−1∑︁
ℎ=0

𝛾ℎ𝑅ℎ −
1
𝑛

𝑛∑︁
𝑖=1

𝐻−1∑︁
ℎ=0

𝛾ℎ𝑅𝑖,ℎ

����� ≤ 𝜔/2 , (17)

where we also used that the range of the sum of the rewards above for every 𝑖 is [0, 1/(1 − 𝛾)].
Pick any 𝜋′ ∈ Π𝜋,S′ . Observe that for any 𝑠 ∈ S and 𝑎 ∈ A, the distribution of the trajectory
𝑆0, 𝐴0, 𝑅0, 𝑆1, 𝐴1, 𝑅1, . . . , 𝐴𝐾−1, 𝑅𝐾−1, 𝑆𝐾 is the same under P𝜋′ ,𝑠,𝑎 and P𝜋,𝑠,𝑎, as 𝜋 and 𝜋′ select
the same actions for states in S′. By Eqs. (3) to (4), we can write���𝑞𝜋′ (𝑠, 𝑎) − 𝑞𝜋 (𝑠, 𝑎)��� = ������E𝜋′ ,𝑠,𝑎

∑︁
𝑡∈[𝐾]

𝛾𝑡𝑅𝑡 + 𝛾𝐾𝑣𝜋
′ (𝑆𝐾)

 − E𝜋,𝑠,𝑎

∑︁
𝑡∈[𝐾]

𝛾𝑡𝑅𝑡 + 𝛾𝐾𝑣𝜋
′ (𝑆𝐾)

������

=

���E𝜋,𝑠,𝑎 [
𝛾𝐾

(
𝑣𝜋
′ (𝑆𝐾) − 𝑣𝜋 (𝑆𝐾)

)] ��� ≤ 1
1 − 𝛾E𝜋,𝑠,𝑎

[
𝛾𝐾

]
≤ 1

1 − 𝛾P𝜋,𝑠,𝑎 [1 ≤ 𝐾 < 𝐻] + 𝛾𝐻

1 − 𝛾 ≤
1

1 − 𝛾P𝜋,𝑠,𝑎 [1 ≤ 𝐾 < 𝐻] + 𝜔/4 .
(18)

Combining Eqs. (16) to (18), it follows by the union bound that if MEASURE returns with (success, 𝑞),
then with probability at least 1 − Z ,���𝑞𝜋′ (𝑠, 𝑎) − 𝑞��� ≤ ���𝑞𝜋′ (𝑠, 𝑎) − 𝑞𝜋 (𝑠, 𝑎)��� + |𝑞𝜋 (𝑠, 𝑎) − 𝑞 | ≤ 𝜔 . □

C Proof of Lemma 4.3

We start the proof by showing that there exists a \ ∈ R𝑑 such that
∥\∥2 ≤ 𝐵 and for all 𝑠 ∈ S and 𝑎 ∈ A, 𝑞𝜋 (𝑠, 𝑎) ≈Y ⟨\, 𝜑(𝑠, 𝑎)⟩ . (19)

For any finite set𝑊 ⊆ S × A, max(𝑠,𝑎) ∈𝑊 |𝑞𝜋 (𝑠, 𝑎) − ⟨𝜑(𝑠, 𝑎), \′⟩ | is a continuous function of \′,
hence it attains its infimum on the compact set {\′ ∈ R𝑑 : ∥\′∥2 ≤ 𝐵}. By Definition 1.1, this
infimum is at most Y. Therefore, the compact sets Θ𝑠,𝑎 = {\′ ∈ R𝑑 : ∥\′∥2 ≤ 𝐵 and |𝑞𝜋 (𝑠, 𝑎) −
⟨𝜑(𝑠, 𝑎), \′⟩ | ≤ Y} are non-empty for all (𝑠, 𝑎) ∈ S × A, and any intersection of a finite collection
of these sets is also non-empty. Therefore,

⋂
(𝑠,𝑎) ∈S×A Θ𝑠,𝑎 is non-empty by [Rudin et al., 1976,

Theorem 2.36], and any element \ of this set satisfies Eq. (19). For the remainder of this proof, fix
such a \.

For any 𝑖 ∈ [𝑛], with a slight abuse of notation, we introduce the shorthand 𝜑𝑖 = 𝜑(𝑠𝑖 , 𝑎𝑖), and
let 𝑞𝑖 = ⟨\, 𝜑𝑖⟩ and b𝑖 = 𝑞𝑖 − 𝑞𝑖 . Note that by the triangle inequality, |b𝑖 | ≤ |𝑞𝑖 − 𝑞𝜋 (𝑠𝑖 , 𝑎𝑖) | +
|𝑞𝜋 (𝑠𝑖 , 𝑎𝑖) − 𝑞𝑖 | ≤ 𝜔 + Y. Let \̄ = 𝑉 (𝐶)−1 ∑

𝑖∈[𝑛] 𝜑𝑖𝑞𝑖 and \̂ = 𝑉 (𝐶)−1 ∑
𝑖∈[𝑛] 𝜑𝑖𝑞𝑖 .

For any 𝑣 ∈ R𝑑 by the Cauchy-Schwarz inequality,��〈\̄ − \, 𝑣〉�� ≤ ��〈\̂ − \, 𝑣〉�� + ��〈\̄ − \̂, 𝑣〉�� ≤ ∥𝑣∥𝑉 (𝐶)−1
\̂ − \

𝑉 (𝐶) +

������
〈
𝑉 (𝐶)−1

∑︁
𝑖∈[𝑛]

𝜑𝑖b𝑖 , 𝑣

〉������ .
To bound the first term on the right-hand side above, observe that\̂ − \

𝑉 (𝐶) =

𝑉 (𝐶)−1 ©«
∑︁
𝑖∈[𝑛]

𝜑𝑖𝜑𝑖
⊤ª®¬ \ − \

𝑉 (𝐶)

= _ ∥\∥𝑉 (𝐶)−1 ≤ _ ∥\∥ 1
_
I ≤
√
_𝐵 ,

15

where in the last line we used that 𝑉 (𝐶) ⪰ _I.
The second term can be bounded as������
〈
𝑉 (𝐶)−1

∑︁
𝑖∈[𝑛]

𝜑𝑖b𝑖 , 𝑣

〉������ ≤ ∑︁
𝑖∈[𝑛]

��〈𝑉 (𝐶)−1𝜑𝑖b𝑖 , 𝑣
〉��

≤ (𝜔 + Y)
∑︁
𝑖∈[𝑛]

��〈𝑉 (𝐶)−1𝜑𝑖 , 𝑣
〉��

≤ (𝜔 + Y)
√
𝑛

√︄ ∑︁
𝑖∈[𝑛]

(〈
𝑉 (𝐶)−1𝜑𝑖 , 𝑣

〉)2

≤ (𝜔 + Y)
√
𝑛

√√√√
𝑣⊤𝑉 (𝐶)−1 ©«

∑︁
𝑖∈[𝑛]

𝜑𝑖𝜑𝑖
⊤ª®¬𝑉 (𝐶)−1𝑣 + 𝑣⊤𝑉 (𝐶)−1_I𝑉 (𝐶)−1𝑣

= (𝜔 + Y)
√
𝑛 ∥𝑣∥𝑉 (𝐶)−1 ,

where the first inequality holds by the triangle inequality, the second by our bound on |b𝑖 |, the third
by the Cauchy-Schwartz inequality, and the fourth by the positivity of _. Putting it all together, for
any 𝑠 ∈ S and 𝑎 ∈ A, using the previous bounds with 𝑣 = 𝜑(𝑠, 𝑎),��LSE𝐶,�̄� (𝑠, 𝑎) − 𝑞𝜋 (𝑠, 𝑎)

�� ≤ |𝑞𝜋 (𝑠, 𝑎) − ⟨\, 𝜑(𝑠, 𝑎)⟩| + ��〈\̄ − \, 𝜑(𝑠, 𝑎)〉��
≤ Y + ∥𝜑(𝑠, 𝑎)∥𝑉 (𝐶)−1

(√
_𝐵 + (𝜔 + Y)

√
𝑛

)
,

completing the proof. □

D Deriving next-state optimality of 𝜋ℓ for Lemma 4.4

Lemma D.1. Assume that Eq. (6) holds whenever MEASURE returns success. At any point of
CAPI-QPI-PLAN after Line 16 is executed, for any 𝜋′′ ∈ Π𝜋ℓ ,Cover(𝐶ℓ) , 𝑠 ∈ Cover(𝐶ℓ), and 𝑎 ∈ A,���𝑞(𝑠, 𝑎) − 𝑞𝜋′′ (𝑠, 𝑎)��� ≤ (𝜔 + Y) (√︁𝑑 + 1) .

Proof. By Lemma 4.6 and Eq. (6), 𝑞𝑙,𝑚 ≈𝜔 𝑞𝜋
′′ (𝐶𝑙,𝑚) for all 𝑚 ∈ [|𝐶ℓ |] (recall that 𝐶𝑙,𝑚 is the 𝑚th

state-action pair in 𝐶𝑙). Therefore, applying Lemma 4.3 with 𝑞𝜋
′′
, 𝐶ℓ and 𝑞ℓ , as 𝑞 = LSE𝐶ℓ ,�̄�ℓ , we

get that for any 𝑠 ∈ Cover(𝐶ℓ) and all 𝑎 ∈ A,���𝑞(𝑠, 𝑎) − 𝑞𝜋′′ (𝑠, 𝑎)��� ≤ Y + ∥𝜑(𝑠, 𝑎)∥𝑉 (𝐶ℓ)−1

(√
_𝐵 + (𝜔 + Y)

√︁
|𝐶ℓ |

)
≤ (𝜔 + Y) (

√︁
𝑑 + 1) ,

where the second inequality holds because ∥𝜑(𝑠, 𝑎)∥𝑉 (𝐶ℓ)−1 ≤ 1 since 𝑠 ∈ Cover(𝐶ℓ), |𝐶ℓ | ≤ 𝑑 by
Eq. (13), and the definition of _. □

Lemma D.2. Assume that Eq. (6) holds whenever MEASURE returns success. Consider a time when
Lines 17 to 20 of CAPI-QPI-PLAN are run and assume that at this time, for all 𝑙 ∈ [𝐻 + 1], 𝜋𝑙 is
Δ𝑙-optimal on Cover(𝐶𝑙). Then, 𝜋ℓ is next-state (Δℓ + 4(𝜔 + Y) (

√︁
𝑑 + 1)/𝛾)-optimal on Cover(𝐶ℓ).

Proof. Let 𝜋+
ℓ

be defined as in Eq. (22). As 𝜋+
ℓ
∈ Π𝜋ℓ ,Cover(𝐶ℓ) , by Lemma D.1, for any 𝑠 ∈ Cover(𝐶ℓ)

and all 𝑎 ∈ A, ���𝑞(𝑠, 𝑎) − 𝑞𝜋+ℓ (𝑠, 𝑎)��� ≤ (𝜔 + Y) (√︁𝑑 + 1) .

Similarly, applying Lemma D.1 with 𝜋ℓ (which trivially belongs to Π𝜋ℓ ,Cover(𝐶ℓ)), we also have

|𝑞(𝑠, 𝑎) − 𝑞𝜋ℓ (𝑠, 𝑎) | ≤ (𝜔 + Y) (
√︁
𝑑 + 1) .

16

Therefore, ���𝑞𝜋+ℓ (𝑠, 𝑎) − 𝑞𝜋ℓ (𝑠, 𝑎)��� ≤ 2(𝜔 + Y) (
√︁
𝑑 + 1). (20)

Since 𝜋ℓ is Δℓ-optimal on Cover(𝐶ℓ) by assumption, this makes 𝜋+
ℓ
Δ-optimal on Cover(𝐶ℓ) for

Δ = Δℓ + 2(𝜔 + Y) (
√︁
𝑑 + 1). (21)

For a trajectory in the MDP, let the random variable 𝜏 be the first time the state is in Cover(𝐶ℓ):
𝜏 = min{𝑡 ∈ N | 𝑆𝑡 ∈ Cover(𝐶ℓ)} .

Since 𝜋+
ℓ

agrees with 𝜋★ on states not in Cover(𝐶ℓ), the distribution of the trajectory up to and
including 𝑆𝜏 is the same under both policies, starting from any state 𝑠 ∈ S. Therefore, for any 𝑠 ∈ S,

𝑣★(𝑠) − 𝑣𝜋+ℓ (𝑠) = E𝜋★,𝑠

[∑︁
𝑡∈N

𝛾𝑡𝑅𝑡

]
− E𝜋+

ℓ
,𝑠

[∑︁
𝑡∈N

𝛾𝑡𝑅𝑡

]
= E𝜋+

ℓ
,𝑠

[
𝛾𝜏

(
𝑣★(𝑆𝜏) − 𝑣𝜋

+
ℓ (𝑆𝜏)

)]
≤ Δ ,

as 𝛾𝜏 ≤ 1 and 𝜋+
ℓ

is Δ-optimal on Cover(𝐶ℓ). That is, 𝜋+
ℓ

is also Δ-optimal on S (with Δ defined in
Eq. 21). Using this, for any 𝑠 ∈ Cover(𝐶ℓ), and 𝑎 ∈ A, we have∫

𝑠′∈S

(
𝑣★(𝑠′) − 𝑣𝜋ℓ (𝑠′)

)
d𝑃(𝑠′ |𝑠, 𝑎)

≤
∫
𝑠′∈S

(
𝑣★(𝑠′) − 𝑣𝜋+ℓ (𝑠′)

)
d𝑃(𝑠′ |𝑠, 𝑎) +

����∫
𝑠′∈S

(
𝑣𝜋
+
ℓ (𝑠′) − 𝑣𝜋ℓ (𝑠′)

)
d𝑃(𝑠′ |𝑠, 𝑎)

����
≤ Δℓ + 2(𝜔 + Y) (

√︁
𝑑 + 1) + 1

𝛾

���𝑞𝜋+ℓ (𝑠, 𝑎) − 𝑞𝜋ℓ (𝑠, 𝑎)���
≤ Δℓ + 2(𝜔 + Y) (

√︁
𝑑 + 1) + 2(𝜔 + Y) (

√︁
𝑑 + 1)/𝛾

= Δℓ + 4(𝜔 + Y) (
√︁
𝑑 + 1)/𝛾 ,

where the third inequality holds by Eq. (20). Therefore 𝜋ℓ is next-state (Δℓ + 4(𝜔 + Y) (
√︁
𝑑 + 1)/𝛾))-

optimal on Cover(𝐶ℓ). □

E Poof of Lemma 4.4

Proof of Lemma 4.4. We prove by induction on the iterations of the main loop of CAPI-QPI-PLAN
the inductive hypothesis: at the start of iteration 𝑖, for all 𝑙 ∈ [𝐻 + 1], 𝜋𝑙 is Δ𝑙-optimal on Cover(𝐶𝑙).
We first observe that after initialization, 𝐶𝑙 is the empty sequence for every 𝑙, so we can apply
Lemma 4.3 with 𝑞★ and empty sequences (𝑛 = 0) to get that for any 𝑠 ∈ Cover(()) and 𝑎 ∈ A,
𝑞★(𝑠, 𝑎) ≤ Y +

√
_𝐵 = Y + 𝜔. Then, 𝑣★(𝑠) ≤ Y + 𝜔 ≤ Δ𝑙 . Therefore, at initialization, any policy is

Δ𝑙-optimal on Cover(𝐶𝑙) for any 𝑙 ∈ [𝐻 + 1].
Assuming that the inductive hypothesis holds at the start of some iteration, it is left to prove that it
continues to hold at the end of the iteration (assuming Eq. (6) holds whenever MEASURE returns
success); this implies that the hypothesis also holds at the start of the next iteration and hence also
proves the lemma. For any (𝑠, 𝑎) appended to 𝐶0, the inductive hypothesis trivially continues to hold
as Δ0 = 1/(1 − 𝛾) ≥ 𝑣★(𝑠) for any 𝑠 ∈ S because the rewards are bounded in [0, 1]. The only other
case in which 𝐶𝑙 or 𝜋𝑙 changes for any 𝑙 is in Lines 18 and 20, where the changes happen only for
𝑙 = ℓ + 1.

We will use Lemma 3.4 to analyze the effect of these updates, thus next we show that the conditions
of the lemma are satisfied:

(a) In Lemma D.2 we show that 𝜋ℓ is next-state (Δℓ + 4(𝜔 + Y) (
√︁
𝑑 + 1)/𝛾)-optimal on Cover(𝐶ℓ).

In the proof of the lemma, we introduce a policy in Eq. (22) that acts as 𝜋ℓ on states in Cover(𝐶ℓ),
and as an optimal stationary deterministic memoryless policy 𝜋★ otherwise:

𝜋+ℓ (𝑠) =
{
𝜋ℓ (𝑠) if 𝑠 ∈ Cover(𝐶ℓ);
𝜋★(𝑠) otherwise.

(22)

17

Intuitively, this policy corrects 𝜋ℓ on the low-confidence states. The proof of Lemma D.2 then uses
the fact that this policy is also 𝑞𝜋-realizable (Definition 1.1) and satisfies 𝜋+

ℓ
∈ Π𝜋ℓ ,Cover(𝐶ℓ) to

show (i) that the 𝑞-values of 𝜋ℓ and 𝜋+
ℓ

are close on the measured state-action pairs (via Lemma 4.6
and Lemma D.1); (ii) an optimality guarantee on 𝜋+

ℓ
for all 𝑠 ∈ S; and, as a consequence, (iii) the

next-state optimality of 𝜋ℓ .

(b) Next, to analyze the effect of Line 18, we introduce hypothetical 𝑞-approximators 𝑞𝑙 for 𝑙 ∈ [𝐻+1],
defined as follows: At initialization, 𝑞𝑙 (𝑠, 𝑎) = 0 for all 𝑙 ∈ [𝐻 + 1], 𝑠 ∈ S, and 𝑎 ∈ A. It is updated
every time after Line 16 of the algorithm is executed as

𝑞ℓ (𝑠, 𝑎) ←
{
𝑞ℓ (𝑠, 𝑎) if 𝑠 ∈ Cover(𝐶ℓ+1); (23a)
𝑞(𝑠, 𝑎) otherwise. (23b)

In other words, 𝑞ℓ is only updated to the newly computed 𝑞 for states that are not in Cover(𝐶ℓ+1),
and stays unchanged for other states. We show in Lemma F.2 that the new policy that 𝜋ℓ+1 is updated
to, which is constructed in two steps (Lines 17–18), can be expressed as the result of a single CAPI
policy update that uses 𝑞:

𝜋ℓ+1 ← 𝜋�̃�ℓ , 𝜋ℓ ,S\Cover(𝐶𝑙) .

We show in Lemma F.1 that 𝑞ℓ ≈𝜔′ 𝑞𝜋ℓ with 𝜔′ = (𝜔 + Y) (
√︁
𝑑 + 1) on Cover(𝐶ℓ).

By the above, we can apply Lemma 3.4 with policy 𝜋ℓ , 𝑞-approximation 𝑞ℓ (with approximation
error guarantee 𝜔′ on Cover(𝐶ℓ), and Sfix = S \ Cover(𝐶ℓ) to get that the new value of 𝜋ℓ+1 is a
Δℓ+1 = (8(𝜔 + Y) (

√︁
𝑑 + 1) + 𝛾Δℓ)-optimal policy on Cover(𝐶ℓ). By the end of the loop in Line 20,

Cover(𝐶ℓ+1) = Cover(𝐶ℓ), so 𝜋ℓ+1 is Δℓ+1-optimal on Cover(𝐶ℓ+1). This finishes the proof that the
inductive hypothesis continues to hold at the end of the iteration, finishing the proof of the lemma. □

F Auxiliary results for Lemma 4.4 about 𝑞𝑙

Throughout the execution of CAPI-QPI-PLAN, for 𝑙 ∈ [𝐻 + 1], let 𝑞−
𝑙

, 𝜋−
𝑙

, 𝐶−
𝑙

denote the values of
variables 𝑞ℓ , 𝜋ℓ , 𝐶ℓ , respectively, at the time when Lines 16–20 were most recently executed with
ℓ = 𝑙 in a previous iteration of the main loop of CAPI-QPI-PLAN. If such a time does not exist, let
their values be the initialization values. Thus, 𝐶−

𝑙
may (only) change at the start of some iteration 𝑖

if Lines 16–20 were executed with ℓ = 𝑙 in the previous iteration 𝑖 − 1. Observe that whenever this
happens, Lines 16–20 may also change 𝐶ℓ+1 in iteration 𝑖 − 1, and this is the only time 𝐶𝑙+1 can be
changed for any 𝑙 ∈ [𝐻]. After this, at the beginning of iteration 𝑖, 𝐶𝑙+1 always has the same elements
as 𝐶−

𝑙
. Therefore, since it also holds at the initialization of the algorithm, we conclude that at the

start of each iteration,

Cover(𝐶𝑙+1) = Cover(𝐶−𝑙) . (24)

Lemma F.1. Assume that Eq. (6) holds whenever MEASURE returns success. Then, whenever
Line 18 of CAPI-QPI-PLAN is executed, for all 𝑠 ∈ Cover(𝐶ℓ) and 𝑎 ∈ A,���𝑞ℓ (𝑠, 𝑎) − 𝑞𝜋′′ (𝑠, 𝑎)��� ≤ (𝜔 + Y) (√︁𝑑 + 1) for all 𝜋′′ ∈ Π𝜋ℓ ,Cover(𝐶ℓ) . (25)

Proof. We prove this by induction for every time Line 18 is executed with any value of ℓ. We first
observe that after initialization, 𝐶𝑙 is the empty sequence for every 𝑙, so we can apply Lemma 4.3
with 𝑞★ and empty sequences (𝑛 = 0) to get that for any 𝑠 ∈ Cover(()) and 𝑎 ∈ A, 𝑞𝜋

′′ (𝑠, 𝑎) ≤
𝑞★(𝑠, 𝑎) ≤ Y +

√
_𝐵 = Y + 𝜔. Also, 𝑞𝑙 (·, ·) = 0 at initialization, so Eq. (25) holds for any value of ℓ.

Consider a time when Line 18 is executed and assume the inductive hypothesis holds for the previous
time Line 18 was executed with the same value of ℓ (or at the initialization if this is the first time),
that is,���𝑞−ℓ (𝑠, 𝑎) − 𝑞𝜋′′ (𝑠, 𝑎)��� ≤ (𝜔 + Y) (√︁𝑑 + 1) for all 𝜋′′ ∈ Π𝜋−

ℓ
,Cover(𝐶−

ℓ
) , 𝑠 ∈ Cover(𝐶−ℓ) .

To prove that the statement now holds for any 𝑠 ∈ Cover(𝐶ℓ), first consider any 𝑠 ∈ Cover(𝐶ℓ+1) =
Cover(𝐶−

ℓ
). For such an 𝑠, by Lemma 4.5 we have that Π𝜋ℓ ,Cover(𝐶ℓ) ⊆ Π𝜋−

ℓ
,Cover(𝐶−

ℓ
) . Also, by

definition, 𝑞ℓ (𝑠, ·) = 𝑞−
ℓ
(𝑠, ·) for 𝑠 ∈ Cover(𝐶ℓ+1). Combining with the inductive hypothesis, it

follows that Eq. (25) holds for 𝑠 ∈ Cover(𝐶ℓ+1).

18

It remains to show that Eq. (25) also holds for 𝑠 ∈ Cover(𝐶ℓ) \ Cover(𝐶ℓ+1). For such an 𝑠,
𝑞ℓ (𝑠, ·) = 𝑞(𝑠, ·) by definition, and hence Lemma D.1 implies that Eq. (25) holds in this case.

Combining the two cases, it follows that the inductive hypothesis continues to hold when Line 18 is
executed. □

Lemma F.2. Throughout the execution of CAPI-QPI-PLAN, at the start of any iteration, for all
𝑙 ∈ [𝐻],

𝜋𝑙+1 = 𝜋�̃�−
𝑙
, 𝜋−

𝑙
,S\Cover(𝐶−

𝑙
) . (26)

Proof. We prove this by induction for the start of any iteration. Eq. (26) holds at the start of the
algorithm due to its initialization (because at initialiaztion, 𝑞−

𝑙
(𝑠, 𝑎) = 0 for all 𝑠, 𝑎, and hence by our

tie-breaking rule, the policy on the right-hand side of Eq. (26) always chooses action A1, which is
the initial policy for 𝜋𝑙).

In what follows, we use the fact that for any 𝑞 : S × A → R, policy 𝜋, and Sfix ⊆ S, the CAPI
policy update 𝜋𝑞,𝜋,Sfix is a policy whose value at any 𝑠 ∈ S only depends on 𝑞(𝑠, ·), 𝜋(𝑠), and
whether or not 𝑠 ∈ Sfix, by definition (Eq. 5). Therefore, for an alternative 𝑞′, 𝜋′, S′fix, for any 𝑠 ∈ S,
𝜋𝑞,𝜋,Sfix (𝑠) = 𝜋𝑞′ , 𝜋′ ,S′fix

(𝑠) whenever the following three conditions hold: (C1) 𝑞(𝑠, 𝑎) = 𝑞′ (𝑠, 𝑎) for
all 𝑎 ∈ A; (C2) 𝜋(𝑠) = 𝜋′ (𝑠); and (C3) either both or none of Sfix and S′fix include 𝑠.

Assume the inductive hypothesis holds at the beginning of some iteration. Let 𝜋′′ be the policy
Line 18 updates 𝜋ℓ+1 to, noting that this is the only place where policies are updated. All we need to
prove is that 𝜋′′ is equal to

�̃� = 𝜋�̃�ℓ , 𝜋ℓ ,S\Cover(𝐶ℓ) .

First, for any 𝑠 ∉ Cover(𝐶ℓ+1), 𝜋′′ (𝑠) = 𝜋′ (𝑠) = 𝜋�̂�, 𝜋ℓ ,S\Cover(𝐶ℓ) (𝑠) and 𝑞(𝑠, ·) = 𝑞ℓ (𝑠, ·) by
definition. Hence, 𝜋′′ (𝑠) = 𝜋�̂�, 𝜋ℓ ,S\Cover(𝐶ℓ) (𝑠) = 𝜋�̃�ℓ , 𝜋ℓ ,S\Cover(𝐶ℓ) (𝑠) = �̃�(𝑠), as all of conditions
(C1)-(C3) are satisfied for 𝑠 (C2 and C3 hold trivially).

Next, take any 𝑠 ∈ Cover(𝐶ℓ+1) = Cover(𝐶−
ℓ
). Then, by Line 18, 𝜋′′ (𝑠) = 𝜋ℓ+1 (𝑠). By the

inductive hypothesis, the current value of 𝜋ℓ+1 can be written as 𝜋�̃�−
ℓ
, 𝜋−

ℓ
,S\Cover(𝐶−

ℓ
) . We prove that

this policy takes the same value as �̃� at 𝑠, by showing conditions (C1)-(C3). First, by Lemma 4.5,
𝜋ℓ ∈ Π𝜋−

ℓ
,Cover(𝐶−

ℓ
) . Thus, as 𝑠 ∈ Cover(𝐶−

ℓ
), 𝜋ℓ (𝑠) = 𝜋−ℓ (𝑠), showing condition (C2). Furthermore,

as 𝑠 ∈ Cover(𝐶ℓ+1), by definition, 𝑞ℓ (𝑠, ·) = 𝑞−
ℓ
(𝑠, ·), showing condition (C1). Finally, as 𝑠 ∈

Cover(𝐶ℓ+1) = Cover(𝐶−
ℓ
) ⊆ Cover(𝐶ℓ), 𝑠 ∉ S \ Cover(𝐶−

ℓ
) and 𝑠 ∉ S \ Cover(𝐶ℓ), showing

condition (C3).

Combining the two cases, 𝜋′′ (𝑠) = �̃�(𝑠) for any 𝑠 ∈ S, finishing the induction. □

G Efficient implementation and proof of Theorem 1.3

In this section we consider the efficient implementation of CAPI-QPI-PLAN in terms of memory and
computational costs of both the algorithm itself and the final policy it outputs.

Focusing on the memory cost, first we can observe that throughout the execution of the algorithm,
𝐶𝑙 for all 𝑙 ∈ [𝐻 + 1] only stores up to 𝑑 unique state-action pairs altogether (cf. Eq. (13)), as they
use the same pairs; let 𝑊 = (𝑠𝑖 , 𝑎𝑖)𝑖∈𝑑 denote these for some 𝑑 ≤ 𝑑. Furthermore, throughout the
execution of the algorithm, for any level 𝑙, the only features that 𝜋𝑙 depends on are the features
associated with members of𝑊 . Storing all these features takes 𝑑𝑑 memory. Denote all the policies
that CAPI-QPI-PLAN constructs in Line 18, in order, as 𝜋 (0) , 𝜋 (1) , . . . , 𝜋 (𝑛−1) , where 𝑛 is the
number of times Line 18 is executed. Recall from the proof of Theorem 1.2 that the number of times
MEASURE returns success, which is an upper bounds on 𝑛, is itself bounded by 𝑑𝐻, hence 𝑛 ≤ 𝑑𝐻.
Together, Lines 17-18 construct a policy that, for an 𝑠 ∈ S, decides whether the action should be
arg max𝑎∈A ⟨𝜑(𝑠, 𝑎), \⟩ for some \ given by LSE (Eq. (8)), or the value of the policy should be
determined by a recursive call to a previously constructed policy, either 𝜋ℓ+1 or 𝜋ℓ (through 𝜋′). Now
there exist some 𝑎, 𝑏 ∈ [𝑛] such that 𝜋 (𝑎) = 𝜋ℓ and 𝜋 (𝑏) = 𝜋ℓ+1 before the new policy is constructed
in Line 18. To implement the new 𝜋ℓ+1 constructed policy, it is enough therefore to store, in addition
to the existing policies, \ (from 𝑞), the decision rules, and the indices 𝑎 and 𝑏. The decision rules are
fully defined by \, 𝐶ℓ , and 𝐶ℓ+1. It is therefore enough to further store 𝐶ℓ , 𝐶ℓ+1 ⊆ 𝑊 , which can be

19

encoded as 𝑑-dimensional vectors each, storing the bitmask of which state-action pairs are included.
We also store the current value of ℓ (the level) for the newly constructed policy. Together, a policy
thus consumes 3 + 𝑑 + 2𝑑 memory. We store all policies constructed, along with the features of𝑊 ,
and the final value of 𝑉 (𝐶𝐻)−1, at a memory cost of 𝑑𝑑 + 𝑑𝐻 (3 + 𝑑 + 𝑑) + 𝑑2 = Õ(𝑑2/(1 − 𝛾)).
This is the memory cost of the final policy outputted by CAPI-QPI-PLAN. The memory cost of
running CAPI-QPI-PLAN itself is of the same order, as additionally storing 𝐶𝑙 , 𝑞𝑙 , and 𝑉 (𝐶𝑙)−1 for
𝑙 ∈ [𝐻 + 1] takes Õ(𝑑2/(1 − 𝛾)) memory.

To efficiently implement the final policy found by CAPI-QPI-PLAN with the stored information
described above, we start from evaluating the last policy constructed, 𝜋 (𝑖) for 𝑖 = 𝑛 − 1. We introduce
auxiliary variables �̃� (𝐶𝑙)−1 and �̃�𝑙 for 𝑙 ∈ [𝐻 + 1] to efficiently track the required values of 𝑉 (𝐶𝑙)−1

and 𝐶𝑙 . We keep updating these variables so that for 𝑙 ∈ {ℓ, ℓ + 1}, they match the values of 𝑉 (𝐶𝑙)−1

and 𝐶𝑙 , respectively, at the time of construction of the current policy 𝜋 (𝑖) under consideration, where
ℓ is the (saved) level of 𝜋 (𝑖) . For 𝑖 = 𝑛− 1, observe that when it was constructed, 𝐶0 = 𝐶1 = · · · = 𝐶𝐻
by Lemma 4.7. We therefore start by initializing variables �̃� (𝐶0)−1, . . . , �̃� (𝐶𝐻)−1 to the saved final
value of 𝑉 (𝐶𝐻)−1, and variables �̃�0, . . . , �̃�𝐻 to𝑊 . Implementing the decisions of a policy takes an
order of |A|𝑑2 computation (|A| vector and matrix multiplications), after which we recover either
the policy output or a previously constructed policy to recurse into. For the latter case, we have to
consider the evaluation of this policy, denoted by 𝜋 (𝑖

′) . Let the (saved) level of 𝜋 (𝑖
′) be ℓ′. Before

we set 𝑖 to 𝑖′ and start evaluating it, we need to update the values of �̃� (𝐶𝑙) and 𝐶𝑙 for 𝑙 ∈ {ℓ′, ℓ′ + 1}.
The updates are needed for these two levels only, as the decision rule of policy 𝑖′ only depends on
these levels, as shown before. Let us describe the update procedure for some 𝑙 ∈ {ℓ′, ℓ′ + 1}: Since
𝜋 (𝑖

′) was constructed earlier than 𝜋 (𝑖) (i.e., 𝑖′ < 𝑖), and 𝐶𝑙′ can only grow during the algorithm for
any 𝑙′ ∈ [𝐻 + 1], we only need to remove members of the variable �̃�𝑙 to match the value of 𝐶𝑙 at the
time of construction of 𝜋 (𝑖

′) . The members to be removed are given by the difference of the members
of �̃�𝑙 and the bitmasks stored for 𝜋 (𝑖

′) for level 𝑙. For each state-action pair (𝑠, 𝑎) removed, we also
need to update �̃� (𝐶𝑙)−1 to

(
�̃� (𝐶𝑙) − 𝜑(𝑠, 𝑎)𝜑(𝑠, 𝑎)⊤

)−1, which can be done in order 𝑑2 computation
using the Sherman–Morrison–Woodbury formula [Max, 1950]. The total number of such removal
operations for any level 𝑙 is bounded by the sum of the number of state-action pairs in the initialization
of �̃�𝑙′ (for 𝑙′ ∈ [𝐻 + 1]), that is, by (𝐻 + 1)𝑑. As a result, the computational cost of the final policy
of CAPI-QPI-PLAN is Õ((𝐻 + 1)𝑑𝑑2) + 𝑛Õ(|A|𝑑2) = Õ(𝑑3 |A|/(1 − 𝛾)).
Finally, we consider the computational cost of running CAPI-QPI-PLAN. The number of iterations of
the outer loop is bounded by Õ(𝑑𝐻) = Õ(𝑑/(1−𝛾)), as each iteration involves either a MEASURE call
that returns success, or a new member added to some 𝐶𝑙 . For each iteration, Line 4 takes Õ(𝑑2 |A|),
Line 7 takes Õ(𝑑/(1−𝛾)), Line 11 takes Õ(𝑑2 |A|) computation; for Line 16, calculating \, the second
component of the inner product of the least-squares predictor in Eq. (8) takes Õ(𝑑2) computation,
and if 𝐶𝑙 ever changes for some 𝑙, updating 𝑉 (𝐶𝑙)−1 by the Sherman–Morrison–Woodbury takes
Õ(𝑑2) computation. Overall, all the operations except those associated to the MEASURE call of
Line 9 take Õ(𝑑3 |A|/(1 − 𝛾)) computation in total. We conclude our calculations by considering
the computational cost of the MEASURE calls, which will dominate the overall computational
cost. Line 6 of Algorithm 2 has a computational cost of order 𝑑2 |A|, while the majority of the
computational cost comes from evaluating the policy at Line 7. By our previous calculations, this
takes Õ(𝑑3 |A|/(1 − 𝛾)) computation and happens (at most) once for each simulator call. Using the
query cost bound of Theorem 1.2, we conclude that the computational cost of CAPI-QPI-PLAN is
Õ(𝑑4 |A|(1 − 𝛾)−5𝜔−2). □

H Query cost lower bounds with random access

In this section we prove lower bounds on the worst-case expected query cost of planning algorithms
with a simulator supporting random access. Recall from Section 1 that in this setting a planner can
issue queries for any state-action pair, not just the ones already visited. As this is a more powerful
access to the simulator than local access, statements that hold for all planners using random access
(as such, all lower bounds presented in this section) trivially hold for planners using local access. We
prove two bounds, Theorem H.2 and Theorem H.3, whose combination trivially implies Theorem 1.4.

Formally, the planner interacts with a random access simulator that simulates some MDP
𝑀 as follows: at step 𝑡 starting from 1, given the whole interaction history 𝐻𝑡 =

20

(𝑆1, 𝐴1, 𝑅1, 𝑆
′
1, . . . , 𝑆𝑡−1, 𝐴𝑡−1, 𝑅𝑡−1, 𝑆

′
𝑡−1) (where 𝐻1 is the empty sequence by definition), the plan-

ner either selects a state-action pair (𝑆𝑡 , 𝐴𝑡), or halts and outputs a stationary memoryless policy.
The planner is allowed to randomize. Let 𝜏 denote the number of queries the planner sends to the
simulator before it halts, and 𝜋𝜏 the policy it outputs. If the planner does not stop, the simulator
responds to the query (𝑆𝑡 , 𝐴𝑡) by returning (𝑆′𝑡 , 𝑅𝑡) sampled independently from the transition-reward
kernel Q(𝑆𝑡 , 𝐴𝑡) of 𝑀 . Let P𝑀 denote the probability measure associated with this procedure, and
let E𝑀 denote the expectation operator corresponding to P𝑀 . Both P𝑀 and E𝑀 implicitly depend
on the planner, which is omitted in the notation for brevity but will always be clear from the context.
Using this notation, clearly E𝑀 (𝜏) is the expected query cost of the planner on 𝑀 .

As usual, we only consider the query complexity of planners which are reasonable in the sense that
they can find a near-optimal policies for a class of MDPs:

Definition H.1 (Soundness and query complexity). A planner is said to be (𝛼, 𝛿)-sound for an MDP
𝑀 if, when used with a simulator of 𝑀 , it halts almost surely (i.e., P𝑀 (𝜏 < ∞) = 1) and outputs a
policy 𝜋𝜏 that is 𝛼-optimal for 𝑀 with probability at least 1 − 𝛿, that is,

P𝑀
(
𝑣★(𝑠0) − 𝑣𝜋𝜏 (𝑠0) ≤ 𝛼

)
≥ 1 − 𝛿 ,

where 𝑣★ and 𝑣𝜋𝜏 are the value-functions of the optimal policy and 𝜋𝜏 in the MDP 𝑀 and 𝑠0 is
the initial state of 𝑀. A planner is (𝛼, 𝛿)-sound for a class of MDPsM if it is (𝛼, 𝛿)-sound for
every MDP in the class. The query complexity of a planner overM is defined as the maximum of its
expected query cost over the members of the class.

In the rest of the section, for 𝑑 ≥ 1 and 𝐿 > 0, we use B𝑑 (𝐿) = {𝑥 ∈ R𝑑 : ∥𝑥∥ ≤ 𝐿} to denote the
𝑑-dimensional Euclidean ball of radius 𝐿 centered at the origin.

H.1 Exponential lower bound for planners with small suboptimality

We first show an exponential query complexity lower bound for sound planners that guarantee a small
suboptimality bound. The result is a simple application of the techniques in Lattimore et al. [2020],
and establishes the barrier for the suboptimality attainable by query-efficient planners:

Theorem H.2. Let 𝛿 ≤ 0.9, 𝛼 ≤ 0.49/(1 − 𝛾), and Y ≥ 0, 𝑑 ≥ 3. There is a class of MDPsM with
uniform policy value-function approximation error Y for some 𝑑-dimensional feature map such that
the query complexity of any (𝛼, 𝛿)-sound planner overM is at least exp

(
Ω

(
𝑑
(

Y
𝛼(1−𝛾)

)2)) .

Proof. Our proof is based on a similar complexity lower bound of Lattimore et al. [2020] for the
multi-armed bandit setting, which is a special case of our problem. As such, we start by rewriting
the class of bandit problems they used in their proof in our MDP framework, introducing a set
of MDPs M̃ each of which gets into a terminal state with no rewards after the first step. Let
𝛼′ = 2.01𝛼(1 − 𝛾) ≤ 1 and 𝑘 =

⌊
exp

(
𝑑−2

8
(
Y
𝛼′

)2
)⌋

. M̃ = {�̃�1, . . . , �̃�𝑘} is defined to be a set of

𝑘 MDPs as follows: Each MDP in M̃ has 𝑘 actions (i.e., A = [𝑘]) and two states: S = (𝑠0, 𝑠1)
with 𝑠0 being the initial state, and deterministic transitions 𝑃(𝑠1 |𝑠, 𝑎) = 1 and 𝑃(𝑠0 |𝑠, 𝑎) = 0 for
all (𝑠, 𝑎) ∈ S × A. For any 𝑖 ∈ [𝑘], the reward distribution R𝑖 for MDP �̃�𝑖 is defined as follows:
rewards for state 𝑠1 are deterministically zero, that is, R𝑖 (0|𝑠1, 𝑎) = 1 for all 𝑎 ∈ A, making 𝑠1 an
absorbing state with zero reward, while rewards for state 𝑠0 are deterministically 𝛼′ for action 𝑖 and
zero otherwise, that is, R𝑖 (𝛼′ |𝑠0, 𝑖) = 1 and R𝑖 (0|𝑠0, 𝑗) = 1 for 𝑗 ∈ [A] with 𝑗 ≠ 𝑖. Since this class
of MDPs is equivalent to the class of muti-armed bandit problems defined by Lattimore et al. [2020],
their proof of Corollary 3.3 implies that

• there exists a feature map �̃� : S×A → B𝑑−1 (1) such that Y is the maximum uniform policy
value-function approximation error (Definition 1.1) over M̃ equipped with features �̃�; and

• any planner that almost surely outputs an 𝛼′-optimal deterministic policy for all �̃� ∈ M̃
(when run with a random access simulator for �̃�) executes at least

1
2

exp
(
𝑑 − 2

8

(Y
𝛼′

)2
)

(27)

queries in expectation.

21

We construct a new set M = {𝑀1, . . . , 𝑀𝑘} of 𝑘 MDPs where for each 𝑖 ∈ [𝑘], 𝑀𝑖 is a slight
modification of �̃�𝑖 , always returning to the initial state 𝑠0 instead of stopping after the first step: as
such, the only modification is that the transition probabilities for all 𝑀 ∈ M are 𝑃(𝑠0 |𝑠, 𝑎) = 1 and
𝑃(𝑠1 |𝑠, 𝑎) = 0 for all (𝑠, 𝑎) ∈ S × A. Let 𝜑 : S × A → B𝑑 (2) be the features for all MDPs inM,
where for all (𝑠, 𝑎) ∈ S × A, 𝜑(𝑠, 𝑎) is a concatenation of the (𝑑 − 1)-dimensional �̃�(𝑠, 𝑎) and the
scalar 1, so that the 𝑑th coordinate of 𝜑(𝑠, 𝑎) is 𝜑(𝑠, 𝑎)𝑑 = 1.

Fix any 𝑖 ∈ [𝑘] and any stationary deterministic memoryless policy 𝜋, and let \̃ be the parameter
realizing the low approximation error for �̃�𝑖 and �̃�, that is, satisfying Eq. (19) (see Appendix C for a
proof that such a �̃� exists). In what follows, we denote 𝑞- and 𝑣-functions (with arbitrary superscripts)
of an MDP 𝑀 by adding 𝑀 as a superscript to the corresponding function. Let \ be a concatenation
of \̃ and the scalar 𝛾𝑣𝜋

𝑀𝑖
(𝑠0). For any (𝑠, 𝑎) ∈ S × A,

𝑞𝜋𝑀𝑖
(𝑠, 𝑎) = 𝑞𝜋

�̃�𝑖
(𝑠, 𝑎) + 𝛾𝑣𝜋𝑀𝑖

(𝑠0) ≈Y
〈
�̃�(𝑠, 𝑎), \̃

〉
+ 𝛾𝑣𝜋𝑀𝑖

(𝑠0) = ⟨𝜑(𝑠, 𝑎), \⟩ .

The uniform policy value-function approximation error therefore remains at most Y for 𝑀𝑖 with
feature map 𝜑, and this is true for any 𝑖 ∈ [𝑘]. We can therefore take any (𝛼, 𝛿)-sound planner
with query complexity 𝑇 (for some 𝑇 ≥ 0) over M, and provide it with a simulator of 𝑀𝑖 for
any 𝑖 ∈ [𝑘] (which we can trivially build with access to a simulator of �̃�𝑖), to get a policy 𝜋
that is 𝛼-optimal for 𝑀𝑖 with P𝑀𝑖

-probability at least 1 − 𝛿. Recall that the rewards of 𝑀𝑖 are 0
for every action apart from a single optimal action, 𝑖, where the reward is 𝛼′. Thus, 𝑣★

𝑀𝑖
(𝑠0) =

𝛼′/(1 − 𝛾) and 𝑣𝜋
𝑀𝑖
(𝑠0) = 𝛼′𝜋(𝑖 |𝑠0)/(1 − 𝛾) = 𝜋(𝑖 |𝑠0)𝑣★𝑀𝑖

(𝑠0). Thus, with probability at least 1 − 𝛿,
𝑣★
𝑀𝑖
(𝑠0) − 𝑣𝜋𝑀𝑖

(𝑠0) ≤ 𝛼 < 0.5𝛼′/(1 − 𝛾) = 0.5𝑣★
𝑀𝑖
(𝑠0). Therefore, 𝜋(𝑖 |𝑠0) > 0.5. As we know that

the optimal action achieves a deterministic reward of 𝛼′, we can test with a single query whether
the action that 𝜋 assigns the highest probability to is optimal. If not, we can run the planner again
and repeat the check. Since each run of the planner is successful with probability at least 1 − 𝛿,
independently of each other, almost surely one of the checks eventually passes and we output the
deterministic policy that chooses the optimal action. Now the number of times the planner needs to
be run is a stopping time (with respect to the sequence of the runs) with expectation at most 1/(1− 𝛿),
hence the expected query cost of the whole procedure is at most (𝑇 + 1)/(1 − 𝛿) by Wald’s equation.
Note that the same policy is 𝛼′-optimal for �̃�𝑖 . Therefore, the planner defined above almost surely
outputs an 𝛼′-optimal deterministic policy for any MDP in M̃, and hence by Eq. (27) we have

𝑇 ≥ 1
2
(1 − 𝛿) exp

(
𝑑 − 2

8

(Y
𝛼′

)2
)
− 1 .

Therefore 𝑇 = exp
(
Ω

(
𝑑
(

Y
𝛼(1−𝛾)

)2)) , finishing the proof. □

H.2 Lower bound for linear MDPs

We close this section by proving a lower bounds on the query complexity of random access planners
for linear MDPs (c.f. Theorem H.3).

We start by recalling the definition of linear MDPs [Zanette et al., 2020]: An MDP with countable
state space is said to be linear if there exists a feature map 𝜑 : S × A → B𝑑 (𝐿), a state-transition
feature map 𝜓 : S → R𝑑 , and a reward parameter \𝑟 ∈ B𝑑 (𝐵) such that 𝑟 (𝑠, 𝑎) = ⟨𝜑(𝑠, 𝑎), \𝑟 ⟩ and
𝑃(𝑠′ |𝑠, 𝑎) = ⟨𝜑(𝑠, 𝑎), 𝜓(𝑠′)⟩ for any (𝑠, 𝑎, 𝑠′) ∈ S × A × S, and

∑
𝑠∈S ∥𝜓(𝑠)∥2 ≤ 𝐵. Clearly, any

linear MDP satisfies Definition 1.1 with Y = 0. As such, the lower bounds presented below trivially
transfer to the Y uniform policy value-function approximation error case for any Y ≥ 0.

Theorem H.3. Let 𝛿 ∈ (0, 0.08], 𝛾 ∈ [7
12 , 1], 𝐻 = 1/(1 − 𝛾), 𝛼 ∈ (0, 0.05𝛾𝐻/(1 + 𝛾)2], and 𝑑 ≥ 3.

Then there is a class of linear MDPsM such that the query complexity of any (𝛼, 𝛿)-sound planner
overM is at least Ω

(
𝑑2𝐻3/𝛼2) .

In the remainder of the section we prove the above bound. Throughout we assume that the conditions
in Theorem H.3 are satisfied. We start with the construction of the classM of MDPs, then prove
several auxiliary results, before finally presenting the proof of the theorem.

The construction ofM is based on a combination of hard tabular MDPs [Xiao et al., 2022] and hard
linear bandit problems [Lattimore and Szepesvári, 2020, Section 24.1]. Each MDP inM has two
states: S = {𝑠0, 𝑠1} with 𝑠0 being the initial state. The action space is the intersection of a unit sphere

22

and a (𝑑 − 2)-dimensional hypercube: A = {±1/
√
𝑑 − 2}𝑑−2. We construct MDPs 𝑀𝛽 for all 𝛽 ∈ A,

and letM = {𝑀𝛽 | 𝛽 ∈ A}. The feature map 𝜑 is defined, for any 𝑎 ∈ A, as

𝜑(𝑠0, 𝑎) = (1, 0, 𝑎⊤)⊤ and 𝜑(𝑠1, 𝑎) = (0, 1, 0, . . . , 0)⊤ .

We define the linear MDPs 𝑀𝛽 to have deterministic rewards for any 𝛽 ∈ A. Thus, 𝑀𝛽 is fully
defined by its reward parameter \𝑟 and state-transition feature map 𝜓, according to the definition of
linear MDPs. Let \𝑟 = (1, 0, . . . , 0)⊤, making state 𝑠0 the only rewarding state, as then for all 𝑎 ∈ A,

𝑟𝛽 (𝑠0, 𝑎) = ⟨\𝑟 , 𝜑(𝑠0, 𝑎)⟩ = 1 and 𝑟𝛽 (𝑠1, 𝑎) = ⟨\𝑟 , 𝜑(𝑠0, 𝑎)⟩ = 0.

Let Δ = 4(1 + 𝛾)2𝛼/(𝛾𝐻2); since 𝛼 ≤ 0.05𝛾𝐻/(1 + 𝛾)2, Δ ≤ 0.2/𝐻 = 0.2(1 − 𝛾). Let

𝜓(𝑠0) = (𝛾, 0,Δ𝛽⊤)⊤ and 𝜓(𝑠1) = (1 − 𝛾, 1,−Δ𝛽⊤)⊤.

This implies that

𝑃𝛽 (𝑠0 |𝑠0, 𝑎) = 𝛾 + Δ𝛽⊤𝑎, 𝑃𝛽 (𝑠1 |𝑠0, 𝑎) = 1 − 𝛾 − Δ𝛽⊤𝑎,
𝑃𝛽 (𝑠0 |𝑠1, 𝑎) = 0, 𝑃𝛽 (𝑠1 |𝑠1, 𝑎) = 1.

Our assumptions guarantee that 𝑃𝛽 defines a valid transition kernel with probabilities in [0, 1]. The
MDP starts in 𝑠0 and rewards are collected until the state transitions to 𝑠1, which is a terminal state
with zero reward.

For the proof, we also need the following notation and supporting lemmas.

Notation. The probability measure P𝑀𝛽
induced by the interconnection of a planner and a simulator

for 𝑀𝛽 is written for simplicity as P𝛽 . Similarly, E𝑀𝛽
is written as E𝛽 . 𝑣𝛽 (with arbitrary superscripts)

denotes value functions (corresponding to the superscripts) of 𝑀𝛽 . For any integer 𝑖 ∈ {1, . . . , 𝑑 − 2},
err𝑖 (𝜋, 𝛽) =

∑
𝑎∈A 𝜋(𝑎 |𝑠0)𝐼sgn(𝑎𝑖)≠sgn(𝛽𝑖) denotes the average error of a policy 𝜋 at the 𝑖th coordinate,

where 𝑎𝑖 and 𝛽𝑖 are the 𝑖th components of 𝑎 and 𝛽, respectively, and 𝐼𝐸 is the indicator function of
event 𝐸 . With a slight abuse of notation, for a stationary memoryless policy 𝜋, we let 𝜋⊤𝛽 denote∑
𝑎∈A 𝜋(𝑎 |𝑠0)𝑎⊤𝛽.

Lemma H.4. For any 𝑀𝛽 ∈ M, the value function of a stationary memoryless policy 𝜋 is given by

𝑣𝜋𝛽 (𝑠0) =
1

1 − 𝛾2 − 𝛾Δ𝜋⊤𝛽
, and 𝑣𝜋𝛽 (𝑠1) = 0 .

Proof. It clearly holds that 𝑣𝜋
𝛽
(𝑠1) = 0. From the Bellman equation, 𝑣𝜋

𝛽
(𝑠0) = 1+𝛾(𝛾+Δ𝜋⊤𝛽)𝑣𝜋

𝛽
(𝑠0),

and the claim follows from solving this equation for 𝑣𝜋
𝛽
(𝑠0). □

It is easy to see that the optimal policy in 𝑀𝛽 is defined by 𝜋★
𝛽
(𝛽 |𝑠0) = 1 (the actions in 𝑠1 do not

matter). Hence, by the above lemma,

𝑣★𝛽 (𝑠0) − 𝑣𝜋𝛽 (𝑠0) =
𝛾Δ(1 − 𝜋⊤𝛽)(

1 − 𝛾2 − 𝛾Δ
) (

1 − 𝛾2 − 𝛾Δ𝜋⊤𝛽
) . (28)

Because 1 − 𝜋⊤𝛽 = 2
∑𝑑−2
𝑖=1 err𝑖 (𝜋, 𝛽)/(𝑑 − 2),

𝑣★𝛽 (𝑠0) − 𝑣𝜋𝛽 (𝑠0) =
2𝛾Δ

∑𝑑−2
𝑖=1 err𝑖 (𝜋, 𝛽)

(𝑑 − 2)
(
1 − 𝛾2 − 𝛾Δ

) (
1 − 𝛾2 − 𝛾Δ𝜋⊤𝛽

) . (29)

Accordingly, to prove a lower bound on the suboptimality of 𝜋, we need a lower bound for the sum of
errors,

∑𝑑−2
𝑖=1 err𝑖 (𝜋, 𝛽). To this end, Lemma H.5 below plays a key role.

Lemma H.5 (Error Probability Lower Bound). For any planner there exists a 𝛽 ∈ A such that

𝑑−2∑︁
𝑖=1
P𝛽

(
err𝑖 (𝜋𝜏 , 𝛽) ≥

1
2

)
≥ 𝑑 − 2

2
− 𝑑 − 2

2

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)
. (30)

23

To prove Lemma H.5, we need some technical lemmas. First, let F𝑡 for any 𝑡 ∈ N+ denote the
𝜎-algebra generated by random variables in 𝐻𝑡 , with F1 being the trivial 𝜎-algebra. F = (F𝑡)∞𝑡=1 is
chosen to be the filtration. The following lemma is adopted from Exercise 15.7 of Lattimore and
Szepesvári [2020] with a slight modification.
Lemma H.6 (KL-divergence decomposition). Let 𝑀 and 𝑀 ′ be two MDPs differing only in their
transition probability kernels, denoted by 𝑃 and 𝑃′, respectively. Then, for any any F-adapted
stopping time 𝜏 satisfying P𝑀 (𝜏 < ∞) = 1, and an F𝜏-measurable1 random variable 𝑍 ,

KL
(
P𝑍𝑀

P𝑍𝑀′) ≤ ∑︁
(𝑠,𝑎) ∈S×A

E𝑀 [N𝜏 (𝑠, 𝑎)] KL (𝑃(·|𝑠, 𝑎)∥𝑃′ (·|𝑠, 𝑎)) ,

where P𝑍
𝑀

and P𝑍
𝑀′ are the laws of 𝑍 under P𝑀 and P𝑀′ , respectively, N𝑡 (𝑠, 𝑎) denotes the number

of queries with (𝑠, 𝑎) ∈ S × A up to time step 𝑡, and KL(·, ·) denotes the Kullback-Leibler (KL-)
divergence of two distributions.

The next lemma provides an upper bound on the KL-divergence of certain next-state distributions. A
similar result appears in the proof of Lemma 6.8 of Zhou et al. [2020], but it requires that 𝛾 ≥ 2/3;
ours only requires the weaker assumption that 𝛾 ≥ 7/12.
Lemma H.7. Take any 𝛽, 𝛽′ ∈ A that only differ at a single coordinate. Then for any action 𝑎 ∈ A,

KL
(
𝑃𝛽 (·|𝑠0, 𝑎)

𝑃𝛽′ (·|𝑠0, 𝑎)
)
≤ 5Δ2𝐻

(𝑑 − 2)2
.

Proof. Our proof relies on Proposition 2 of Xiao et al. [2022]: for two Bernoulli distributions Ber(𝑝)
and Ber(𝑝′) with parameters 𝑝, 𝑝′ ∈ (0, 1), it holds that

KL (Ber(𝑝)∥Ber(𝑝′)) ≤ (𝑝 − 𝑝′)2
2 min {𝑝(1 − 𝑝), 𝑝′ (1 − 𝑝′)} .

Since 𝑃𝛽 (𝑠1 |𝑠0, 𝑎) = 1 − 𝛾 − Δ𝛽⊤𝑎 and 𝑃𝛽′ (𝑠1 |𝑠0, 𝑎) = 1 − 𝛾 − Δ(𝛽′)⊤𝑎,

KL
(
𝑃𝛽 (·|𝑠0, 𝑎)

𝑃𝛽′ (·|𝑠0, 𝑎))
)
≤ Δ2 ((𝛽 − 𝛽′)⊤𝑎)2

2 min𝑏∈A (𝛾 + Δ𝛽⊤𝑏) (1 − 𝛾 − Δ𝛽⊤𝑏)

=
2Δ2

(𝑑 − 2)2 min𝑏∈A (𝛾 + Δ𝛽⊤𝑏) (1 − 𝛾 − Δ𝛽⊤𝑏)
(31)

for any action 𝑎 ∈ A. Note that

min
𝑏∈A
(𝛾 + Δ𝛽⊤𝑏) (1 − 𝛾 − Δ𝛽⊤𝑏)

(𝑎)
≥ (𝛾 + Δ) (1 − 𝛾 − Δ)

(𝑏)
≥ 1 − 𝛾 − Δ

2
(𝑐)
≥ 2(1 − 𝛾)

5
,

where (𝑎) is due to the fact that 𝑥(1− 𝑥) is monotone decreasing for 𝑥 ≥ 0.5 and 𝛾 +Δ𝛽⊤𝑏 ≥ 𝛾−Δ ≥
0.5 since 𝛾 ≥ 7/12 and Δ ≤ 0.2(1 − 𝛾), (𝑏) follows since 0.5 ≤ 𝛾 + Δ, and (𝑐) holds because
Δ ≤ 0.2(1 − 𝛾). Combining this result with Eq. (31) concludes the proof of the lemma. □

Now we are ready to prove Lemma H.5.

Proof of Lemma H.5. Let 𝛽 (𝑖) be a vector obtained by flipping the sign of 𝛽’s 𝑖th coordinate. Then,

P𝛽
(
err𝑖 (𝜋𝜏 , 𝛽) ≥

1
2

)
+ P𝛽 (𝑖)

(
err𝑖 (𝜋𝜏 , 𝛽 (𝑖)) ≥

1
2

)
= P𝛽

(
err𝑖 (𝜋𝜏 , 𝛽) ≥

1
2

)
+ P𝛽 (𝑖)

(
err𝑖 (𝜋𝜏 , 𝛽) ≤

1
2

)
≥ P𝛽

(
err𝑖 (𝜋𝜏 , 𝛽) ≥

1
2

)
+ P𝛽 (𝑖)

(
err𝑖 (𝜋𝜏 , 𝛽) <

1
2

)
≥ 1 −

√︂
1 − exp

(
−KL

(
Perr𝑖 (𝜋𝜏 ,𝛽)
𝛽

Perr𝑖 (𝜋𝜏 ,𝛽)
𝛽 (𝑖)

))
1By a slight abuse of notation, F𝜏 is the 𝜎-algebra generated by the random vector (with random length)

(𝑆1, 𝐴1, 𝑅1, 𝑆
′
1, . . . , 𝑆𝜏−1, 𝐴𝜏−1, 𝑅𝜏−1, 𝑆

′
𝜏−1).

24

where Perr𝑖 (𝜋𝜏 ,𝛽)
𝛽

,Perr𝑖 (𝜋𝜏 ,𝛽)
𝛽 (𝑖)

∈ M1 ([0, 1]) are the laws of the random variable err𝑖 (𝜋𝜏 , 𝛽) in 𝑀𝛽

and 𝑀𝛽 (𝑖) , respectively , and the last line follows from an improved Bretagnolle-Huber inequality
(inequality (14.11) of Lattimore and Szepesvári [2020]). Applying Lemmas H.6 and H.7 to the
KL-divergence in the exponent in the right hand side of the above inequality together with the fact
that

∑
(𝑠,𝑎) ∈S×A E𝛽 [N𝜏 (𝑠, 𝑎)] ≤ E𝛽 [𝜏], we can further lower-bound the last line by

1 −
√︂

1 − exp
(
−KL

(
Perr𝑖 (𝜋𝜏 ,𝛽)
𝛽

Perr𝑖 (𝜋𝜏 ,𝛽)
𝛽 (𝑖)

))
≥ 1 −

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)
.

Therefore,

1
|A|

∑︁
𝛽∈A

𝑑−2∑︁
𝑖=1
P𝛽

(
err𝑖 (𝜋𝜏 , 𝛽) ≥

1
2

)
=

1
|A|

𝑑−2∑︁
𝑖=1

1
2

∑︁
𝛽∈A

[
P𝛽

(
err𝑖 (𝜋𝜏 , 𝛽) ≥

1
2

)
+ P𝛽 (𝑖)

(
err𝑖 (𝜋𝜏 , 𝛽 (𝑖)) ≥

1
2

)]
≥ 𝑑 − 2

2
− 𝑑 − 2

2

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)
where the first equality holds because for any 𝛽, there is exactly one 𝛽 (𝑖) in A. As max𝛽∈A 𝑓 (𝛽) ≥∑
𝛽∈A 𝑓 (𝛽)/|A| for any 𝑓 : A → R, arg max𝛽∈A

∑𝑑−2
𝑖=1 P𝛽

(
err𝑖 (𝜋𝜏 , 𝛽 (𝑖)) ≥ 1/2

)
satisfies the

claim of the lemma. □

Now we are ready to prove Theorem H.3.

Proof of Theorem H.3. Take any (𝛼, 𝛿)-sound planner onM. Let err(𝜋, 𝛽) :=
∑𝑑−2
𝑖=1 err𝑖 (𝜋, 𝛽) for

brevity. From Eq. (29),

E𝛽

[
𝑣★𝛽 (𝑠0) − 𝑣𝜋𝜏𝛽 (𝑠0)

]
≥

2𝛾ΔE𝛽 [err(𝜋𝜏 , 𝛽)]
(𝑑 − 2)

(
1 − 𝛾2 − 𝛾Δ

) (
1 − 𝛾2 + 𝛾Δ

) (32)

≥ 𝛾Δ

(𝑑 − 2)
(
1 − 𝛾2 − 𝛾Δ

) (
1 − 𝛾2 + 𝛾Δ

) 𝑑−2∑︁
𝑖=1
P𝛽

(
err𝑖 (𝜋𝜏 , 𝛽) ≥

1
2

)
≥ 𝛾Δ

2
(
1 − 𝛾2 − 𝛾Δ

) (
1 − 𝛾2 + 𝛾Δ

) ©«1 −

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)ª®¬ , (33)

where the first inequality holds because 𝜋⊤𝛽 ≥ −1 for any stationary memoryless policy 𝜋, the
second inequality is due to the Markov inequality, while the last inequality holds by Lemma H.5.
From Eq. (29) and 𝜋⊤𝛽 ≤ 1 we also have that

E𝛽

[
𝑣★𝛽 (𝑠0) − 𝑣𝜋𝜏𝛽 (𝑠0)

]
≤

2𝛾ΔE𝛽 [err(𝜋𝜏 , 𝛽)]
(𝑑 − 2)

(
1 − 𝛾2 − 𝛾Δ

)2

≤ 𝛾Δ

4
(
1 − 𝛾2 − 𝛾Δ

)2

[
7P𝛽

(
err(𝜋𝜏 , 𝛽) >

𝑑 − 2
8

)
+ 1

]
,

where the second inequality holds because

E𝛽 [err(𝜋𝜏 , 𝛽)] = E𝛽
[
err(𝜋𝜏 , 𝛽)𝐼err(𝜋𝜏 ,𝛽)> 𝑑−2

8
+ err(𝜋𝜏 , 𝛽)𝐼err(𝜋𝜏 ,𝛽)≤ 𝑑−2

8

]
≤ E𝛽

(
(𝑑 − 2)𝐼err(𝜋𝜏 ,𝛽)> 𝑑−2

8
+ 𝑑 − 2

8
𝐼err(𝜋𝜏 ,𝛽)≤ 𝑑−2

8

)
=
𝑑 − 2

8

(
7P𝛽

(
err(𝜋𝜏 , 𝛽) >

𝑑 − 2
8

)
+ 1

)
.

25

Combining this result with Eq. (33),

P𝛽
(
err(𝜋𝜏 , 𝛽) >

𝑑 − 2
8

)
≥ 2

7
1 − 𝛾2 − 𝛾Δ
1 − 𝛾2 + 𝛾Δ

©«1 −

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)ª®¬ − 1
7

=
2
7

(
1 − 2𝛾Δ

1 − 𝛾2 + 𝛾Δ

) ©«1 −

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)ª®¬ − 1
7

>
2
7

(
1 − 2𝛾Δ

1 − 𝛾2

) ©«1 −

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)ª®¬ − 1
7
.

Note that err(𝜋𝜏 , 𝛽) > (𝑑 − 2)/8 implies that 𝑣★
𝛽
(𝑠0) − 𝑣𝜋𝜏𝛽 (𝑠0) > 𝛼 since similarly to Eq. (32) (i.e.,

without the expectation)

𝑣★𝛽 (𝑠0) − 𝑣𝜋𝜏𝛽 (𝑠0) ≥
2𝛾Δ err(𝜋𝜏 , 𝛽)

(𝑑 − 2)
(
(1 − 𝛾2)2 − 𝛾2Δ2) > 1

4
𝛾Δ

(1 − 𝛾2)2 − 𝛾2Δ2 >
1
4

𝛾Δ

(1 − 𝛾2)2
= 𝛼 ,

where the last equality follows because Δ = 4(1 + 𝛾)2𝛼/(𝛾𝐻2) = 4(1 − 𝛾2)2𝛼/𝛾. Therefore,

P𝛽
(
𝑣★𝛽 (𝑠0) − 𝑣𝜋𝜏𝛽 (𝑠0) > 𝛼

)
≥ P𝛽

(
err(𝜋𝜏 , 𝛽) >

𝑑 − 2
8

)
>

2
7

(
1 − 2𝛾Δ

1 − 𝛾2

) ©«1 −

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)ª®¬ − 1
7

(𝑎)
≥ 2

7

(
1 − 0.4𝛾

1 + 𝛾

) ©«1 −

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)ª®¬ − 1
7

(𝑏)
≥ 8

35
©«1 −

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)ª®¬ − 1
7

=
3

35
− 8

35

√︄
1 − exp

(
−

5Δ2𝐻E𝛽 [𝜏]
(𝑑 − 2)2

)
.

where (𝑎) follows since Δ ≤ 0.2(1 − 𝛾), and (𝑏) follows since 0 ≤ 0.4𝑥/(1 + 𝑥) ≤ 0.2 for 𝑥 ∈ [0, 1].
This implies that unless E𝛽 [𝜏] ≥ Ω

(
𝑑2𝐻3/𝛼2) , the algorithm is not (𝛼, 𝛿)-sound. Indeed if

E𝛽 [𝜏] ≤
(𝑑 − 2)2
5Δ2𝐻

log

(
1

1 − (3−35𝛿)2
64

)
,

it holds that P𝛽
(
𝑣★
𝛽
(𝑠0) − 𝑣𝜋𝜏𝛽 (𝑠0) > 𝛼

)
> 𝛿, contradicting the assumption that the planner is (𝛼, 𝛿)-

sound on M (the upper bound 𝛿 ≤ 0.08 < 3/35 guarantees that the logarithmic term above is
bounded by a constant). This concludes the proof. □

26

	Introduction
	Notation and preliminaries
	Confident Approximate Policy Iteration
	CAPI guarantee with accurate estimation everywhere

	Local access planning with q-realizability
	Estimation oracle
	Main algorithm

	Conclusions and future work
	Proof of lem:iteration-progress
	Proof of lem:weaker-estimate-oracle
	Proof of lem:lse-guarantee
	Deriving next-state optimality of for lem:level-optimality
	Poof of lem:level-optimality
	Auxiliary results for lem:level-optimality about l
	Efficient implementation and proof of thm:mem-comp-cost
	Query cost lower bounds with random access
	Exponential lower bound for planners with small suboptimality
	Lower bound for linear MDPs

